Practical Synthetic Procedures of the Iron-Catalyzed Intermolecular Olefin Aminohydroxylation Using Functionalized Hydroxylamines

Cheng-Liang Zhu,[†] Deng-Fu Lu,[†] Jeffrey D. Sears, Zhen-Xin Jia, and Hao Xu* Department of Chemistry, Georgia State University, Atlanta GA 30303, United States

Supporting Material

A. General Information

- **B.** Procedures for the Iron-Catalyzed Asymmetric Indene Aminohydroxylation
- C. Iron-Catalyzed Amino-Oxygenation of Isomeric β-Methyl Styrenes
- D. Catalytic Indene Aminohydroxylation Using the Preformed Iron Catalyst

E. References

F. NMR Spectra

A. General Information

General Procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks and vials. Stainless steel syringes and cannula were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from Sigma–Aldrich.

Materials. Commercial reagents were purchased from Sigma Aldrich, Fluka, EM Science, and Lancaster and used as received. All solvents were used after being freshly distilled unless otherwise noted.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra, carbon nuclear magnetic resonance (¹³C NMR) spectra and fluorine nuclear magnetic resonance (¹⁹F NMR) were recorded on Bruker UltraShield-400 (400 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl₃: δ 7.26). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent resolvent (CDCl₃: δ 77.0). Chemical shifts for fluorine are reported in parts per million downfield and are referenced to the fluorine resonances of CFCl₃. Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), and integration.

The mass spectroscopic data were obtained at the Georgia State University mass spectrometry facility using a Micromass Platform II single quadruple instrument. Infrared (IR) spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR spectrometer. Data are represented as follows: frequency of absorption (cm⁻¹) and absorption strength (s = strong, m = medium, w = weak).

EtOH-ethanol, EtOAc-ethyl acetate, THF-tetrahydrofuran, MeOH-Abbreviations used: methanol, Et₂O–diethyl ether, CH₂Cl₂–dichloromethane, TEA-triethylamine, MeCNacetonitrile. MS-molecular sieves. CDI-1,1'-carbonyldiimidazole, Troc-2,2,2trichloroethoxycarbonyl, DCC-N,N'dicyclohexylcarbodiimide, TLC-thin layer chromatography, Boc₂O-di-tert-butyl dicarbonate, DMAP-4-dimethylaminopyridine.

B. Procedure for the Iron-Catalyzed Asymmetric Indene Amino-Oxygenation

a. Discovery of Chiral Ligands for Asymmetric Induction

Ligand L3 was synthesized according to a known procedure.¹

To a flame-dried sealable 2-dram vial (vial **A**) equipped with a stir bar were added Fe(NTf₂)₂ (36.9 mg, 0.06 mmol) and a chiral ligand (0.06 mmol). After the vial was evacuated and backfilled with N₂ for three times, anhydrous CHCl₃ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 20 min. To another flame dried 2-dram vial (vial **B**) equipped with a stir bar were added activated 4Å molecular sieves (100 mg) and **2b** (152.4 mg, 0.40 mmol). The vial was also was evacuated and backfilled with N₂ for three times and then anhydrous CHCl₃ (3.0 mL) was added via a syringe. Both solutions were degassed with brief evacuation and backfilling with N₂ twice. Then indene (55.9 μ L, 0.48 mmol) was added to vial **B** and the catalyst solution (vial **A**) was added by a syringe pump over 30 min to vial **B** at -30 °C. The reaction was kept stirring at the same temperature for another 30 min. The reaction was quenched with saturated NaHCO₃ aqueous solution (2 mL) and stirred vigorously for additional 10 min. The organic layer was separated and the aqueous phase was

extracted with CH_2Cl_2 (2 mL \times 2) and EtOAc (2 mL \times 2). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The product **14** was isolated through a silica gel flash column and analyzed through chiral HPLC columns. The results are listed in the table.

When chiral Ligand L3 was applied, the product 14 was isolated through a silica gel flash column (hexanes/acetone: from 50:1 to 6:1) as a white solid.

14, yield: 141.3 mg (71%).

 $[\alpha]_{D}^{20} = -60.1 \ (c \ 1.0, \text{CHCl}_3).$

The ee was measured by Chiral HPLC analysis (Chiral S.S. Whelk, 1.0 mL/min, 254 nm, 5% EtOH in hexanes, t_r (minor) = 20.66 min, t_r (major) = 24.88 min, 81% ee).

Racemic sample

Enantio-enriched sample (81% ee)

b. Derivatization of 14

By following the aforementioned LiAlH_4 reductive procedure, compound **14** can be selectively converted to 2-amino-1-indanol **25** without erosion of its *dr* and *ee* (85% yield).

 $[\alpha]_D^{20} = +23.2 \ (c \ 1.0, \text{CHCl}_3).$

The *ee* was determined by Chiral HPLC analysis (Chiral *S.S.* Whelk, 1.0 mL/min, 265 nm, 15% EtOH in hexanes, t_r (major) = 12.24 min, t_r (minor) = 16.74 min (81% *ee*).

The absolute chemistry was determined by comparison of the rotation data of 2-amino indanol obtained after zinc dust reduction with literature precedent.²

Racemic sample

C. Iron-Catalyzed Amino-Oxygenation of Isomeric β-Methyl Styrenes

Both *trans* and *cis* β -methylstyrene are commercially available and they were distilled before usage.

To a flame-dried sealable 2-dram vial (vial **A**) equipped with a stir bar were added Fe(OTf)₂ (28.3 mg, 0.08 mmol) and **L2** (22.2 mg, 0.08 mmol). After the vial was evacuated and backfilled with N₂ for three times, anhydrous CH₂Cl₂ (0.7 mL) and MeCN (0.5 mL) were added via a syringe and the mixture was stirred at room temperature for 20 min. To another flame dried 2-dram vial (vial **B**) equipped with a stir bar were added activated 4Å molecular sieves (100 mg) and **2c** (132.8 mg, 0.40 mmol). The vial was also was evacuated and backfilled with N₂ for three times and then anhydrous CH₂Cl₂ (0.8 mL) was added via a syringe. Both solutions were degassed with brief evacuation and backfilling with N₂ twice. Then, *trans*- or *cis*- β -methyl styrene (94.6 mg, 0.8 mmol) was added to vial **B** and the catalyst solution (vial **A**) was added by a syringe pump over 30 min to vial **B** at 0 °C. The reaction was kept stirring at the same temperature until it was completed (another 1.5 h for *trans* and 2.5 h for *cis*). The reaction was quenched with saturated NaHCO₃ aqueous solution (2 mL) and stirred vigorously for additional 10 min. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (2 mL × 2) and EtOAc (2 mL× 2). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*.

anti-4-Methyl-5-phenyl-2-(2,2,2-trifluoroethoxy)-4,5-dihydrooxazole (23): compound 23 was isolated through a silica gel flash column (hexanes (buffered with 1% TEA)/acetone: from 50:1 to 10:1) from the reaction of *trans-\beta*-methyl styrene as colorless oil (61.2 mg, 59% yield); IR

 v_{max} (neat)/cm⁻¹: 2967 (w), 1761 (s), 1421 (m), 1345 (m), 1264 (s), 1166 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.30 (m, 5H), 5.16 (d, *J* = 7.5 Hz, 1H), 4.67 (q, *J* = 8.0 Hz, 2H), 4.04 (p, *J* = 6.7 Hz, 1H), 1.41 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 138.8, 128.9, 126.7, 125.6, 122.5 (q, *J* = 277.6 Hz), 90.5, 67.7, 66.2 (q, *J* = 37.1 Hz), 21.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -74.26 (t, *J* = 8.2 Hz); HRMS (ESI, m/z): calcd for C₁₂H₁₃F₃NO₂⁺ [M + H⁺], 260.0893, found 260.0882.

The relative stereochemistry of 23 and 23-syn was determined through *NOE* analysis for both diastereomers.

For the major (*anti*) diastereomer 23: H(a) demonstrates a strong *NOE* with H(c), while it has a very weak *NOE* with H(b).

syn-4-Methyl-5-phenyl-2-(2,2,2-trifluoroethoxy)-4,5-dihydrooxazole (23-*syn*): compound 23*syn* was isolated through a silica gel flash column (hexanes (buffered with 1% TEA)/EtOAc: 50:1 to 5:1) from the reaction of *cis*-β-methyl styrene as colorless oil (15.1 mg, 14% yield); IR v_{max} (neat)/cm⁻¹: 2968 (w), 1761 (s), 1421 (m), 1343 (m), 1264 (s), 1167 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.31 (m, 3H), 7.31 – 7.19 (m, 2H), 5.84 (d, *J* = 9.1 Hz, 1H), 4.76 – 4.59 (m, 2H), 4.45 (dq, *J* = 13.9, 6.9 Hz, 1H), 0.79 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 135.7, 128.4, 128.2, 125.8, 122.5 (d, *J* = 277.3 Hz), 86.3, 66.2 (q, *J* = 37.1 Hz), 62.7, 18.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -74.25 (t, *J* = 8.2 Hz; HRMS (ESI, m/z): calcd for C₁₂H₁₃F₃NO₂⁺ [M + Na⁺], 260.0893, found 260.0887;

For the minor (syn) diastereomer **23**-*syn*: H(a) has a strong *NOE* with H(b), while the effect between it and H(c) is relatively weak. In addition, strong *NOE* is also observed between H(c) and protons in the aromatic region.

anti-1-Phenyl-2-(((2,2,2-trifluoroethoxy)carbonyl)amino)propyl 2,4-dichlorobenzoate (24): compound 24 was isolated through a silica gel flash column (hexanes (buffered with 1% TEA)/acetone: from 50:1 to 10:1) from the reaction of *trans-β*-methyl styrene as colorless oil (*anti*-diastereomer, 32.0 mg, 16% yield). IR v_{max} (neat)/cm⁻¹: 3352 (w), 2977 (w), 1719 (s), 1585 (m), 1520 (m), 1279 (m), 1163 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 1.6 Hz, 1H), 7.44 – 7.29 (m, 6H), 6.13 (d, J = 3.3 Hz, 1H), 5.12 (d, J = 9.0 Hz, 1H), 4.57 – 4.39 (m, 2H), 4.39 – 4.24 (m, 1H), 1.21 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 153.8, 138.8, 136.0, 134.9, 133.1, 131.2, 128.6, 128.5, 127.8, 127.2, 126.6, 79.0, 50.9, 15.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -74.25 (t, J = 8.5 Hz); HRMS (ESI, m/z): calcd for C₁₉H₁₆Cl₂F₃NNaO₄⁺ [M + H⁺], 472.0301, found 472.0281.

Determination of the Relative Stereochemistry of 24

The relative stereochemistry of **24** was determined by comparison of the ¹H NMR data of its derivative with known compounds **27***-anti* and **27***-syn*.^{3,4} The oxazolidinone derived from **24** fits **27***-syn* through ¹H NMR analysis; therefore, the relative stereochemistry of **24** was determined to be *anti*.

	$(Literature Data)^3$	S17b ^{Me} (Literature Data) ⁴	(hydrolysis product obtained from 24
¹ H NMR	δ 7.5-7.3 (m, 5H), 6.41	δ 7.35 (m, 5H), 6.40 (bs,	δ 7.43 – 7.27 (m, 5H),
(400 MHz,	(br s, 1H), 5.04 (d, $J =$	1H), 5.71 (d, $J = 8.0$,	5.72 (d, <i>J</i> = 7.9 Hz, 1H),
CDCl ₃)	7.3 Hz, 1H), 3.84 (p, <i>J</i> =	1H), 4.21 (m, 1H), 0.81	5.50 (br s, 1H), 4.20 (p,
	4×6.3 Hz, 1H), 1.39 (d,	(d, J = 6.5, 3H).	J = 6.7 Hz, 1H), 0.81 (d,
	J = 6.2 Hz, 3H)		<i>J</i> = 6.5 Hz, 1H).

D. Catalytic Indene Aminohydroxylation Using the Preformed Iron Catalyst

To a flame-dried sealable 3-dram vial equipped with a stir bar were added $Fe(NTf_2)_2$ (307.5 mg, 0.5 mmol) and L1 (136.5 mg, 0.5 mmol). After the vial was evacuated and backfilled with N₂ three times, anhydrous CH₂Cl₂ (6 mL) and MeCN (2 mL) were added and the mixture was stirred at room temperature for 1 h. The resulting solution was filtered through a cotton wool under N₂ and the filtrate was concentrated and dried *in vacuo* to afford foam. The residue was suspended in anhydrous hexanes and sonicated. After removal of hexanes *in vacuo*, the orange solid can be used directly as the catalyst. Attempts were made to obtain the X-ray crystallographic analysis of the preformed $Fe(NTf_2)_2$ –L1 complex; however, it proved challenging.

Indene aminohydroxylation using the pre-formed $Fe(NTf_2)_2$ -L1 complex affords 14 (69% yield).

E. References

- (1) Gutierrez, E. G.; Wong, C. J.; Sahin, A. H.; Franz, A. K. Org. Lett. 2011, 13, 5754.
- (2) Corey, E. J.; Roper, T. D.; Ishihara, K.; Sarakinos, G. *Tetrahedron Lett.* **1993**, *34*, 8399.
- (3) Johannes, M.; Altmann, K.-H. Org. Lett. 2012, 14, 3752.
- (4) Paz, J.; Pérez-Balado, C.; Iglesias, B.; Muñoz, L. J. Org. Chem. 2010, 75, 3037.

S14

 0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm

0	-2	20 -40	-60	-80	-100	-120	-140	-160	-180	-200	ppm

S5 (CDCl₃, 377 MHz)

R² = 2,4-Cl₂-bezoyl **S5-***trans* (CDCl₃, 377 MHz)

 0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	

R² = 2,4-Cl₂-bezoyl **S6-***trans* (CDCl₃, 377 MHz)

 									·····		
 0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm

4.23 4.25 4.27

