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Supplementary Figure 1. Effect of rapid control and feedback rates on additional BMI 

measures for monkeys J and C. Figure has the same format as Fig. 2A but for movement error, 

reach time, and % correct measures. We also performed a control related to the effects of these 
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rates. We investigated whether training the point process model of the spikes on a slow-slow 

pathway improves the performance of SS-PPF (see Supplementary Note 3). We found that 

training the point process in the SS-PPF session did not improve the performance of SS-PPF. 

Success rate, movement error, reach time, and % correct did not change significantly when using 

SS-PPF trained in a SS-PPF session and SS-PPF trained in a PPF session (two-sided t-test, P > 

0.26). In particular, success rate for SS-PPF whose point process model was trained in a SS-PPF 

session was 14.95 ± 0.95 compared to 15.65 ± 0.05 for SS-PPF whose point process model was 

trained in a normal PPF session (as is done in this work).  
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Supplementary Figure 2. Movement error, reach time, and % correct measures over the PPF 

and SB-KF blocks for monkeys J and C. Each paired bar is obtained by averaging the 

performance of blocks that were run on the same days. Stars indicate a significant change with 

the same convention as in Fig. 2. Bottom panels show the corresponding percent improvement in 

the measure when using PPF. As a control, we examined the effect of the method of intention 

estimation on SB-KF performance. The state-of-the-art KF performs intention estimation by 
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rotating the decoded velocity vector towards the target while keeping its magnitude unchanged, 

and by setting the velocity to zero while at the target1. We explored whether replacing this 

intention estimation method in the KF with the OFC method2,3 could improve its performance. 

Closed-loop control results in monkey J showed that the success rate of the KF trained with OFC 

was not significantly different from the KF trained with the state-of-the-art intention estimation 

method (two-sided t-test, P = 0.63, 3739 trials). 
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Supplementary Figure 3. PPF outperforms SB-KF in monkey J over 66 additional days of 

experiments in which PPF and SB-KF were run on separate days. Performance measures are 

shown in the top panels and the corresponding percent improvement in the measures when using 

PPF compared to SB-KF are shown in the bottom panels.  Stars indicate a significant change 

with the same convention as in Fig. 2. These results are consistent with those in Fig. 3, 

indicating that PPF vs SB-KF performance improvement was stable over months of recordings 

and was not affected by long term learning of the two decoders. 
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Supplementary Figure 4. Selecting the encoding model for high-rate BMIs. Success rates, 

movement errors, reach times, and % correct for SS-PPF (white) and SB-KF (orange). Figure 

convention is the same as Fig. 2. This figure shows that the point process encoding model 

outperforms the KF encoding model even at slow rates. To enable fast control and feedback 

rates, however, a mathematical encoding model should also enable running the BMI at fast rates 
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and should be able to model the spikes at fast rates. We thus tested the KF on a fast-fast pathway 

(i.e., using 5ms bins) and compared it to the typical KF over 6 sessions (see Supplementary 

Notes 2, Supplementary Table 2). This allowed us to explore the performance of the KF using 

5ms bins to determine whether the KF could also provide the benefit of high rates to the subject. 

This is important to explore since the KF is only optimal when the neural observations are 

Gaussian distributed, which is satisfied better at larger bin-widths. At the fast rates with 5ms 

bins, the neural observations are 0/1 time-series and hence are not Gaussian distributed. Success 

rate was significantly higher in each monkey when using the KF with 100ms bins compared with 

the KF with 5ms bins (one-sided paired t-test, P < 0.03, Supplementary Table 2). Specifically, 

success rate was on average 70% and 19% higher using the KF with 100ms bins compared to the 

KF with 5ms bins in monkeys J and C, respectively. Hence increasing the pathway rate did not 

enable better control with the KF but degraded the quality of control likely as a result of the KF’s 

Gaussian assumption on the binned spike counts being worse at small bin widths. This suggests 

that to take advantage of increased sensorimotor control and feedback rates in BMIs, a point 

process encoding model is more appropriate. 
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Supplementary Table 1. Number of blocks used in pair-wise comparisons for each monkey 

 

 SS-PPF 
vs 

FS-PPF 

FS-PPF 
vs 

PPF 

SS-PPF 
vs 

PPF 

SS-PPF 
vs 

SB-KF 

PPF 
vs 

SB-KF 
Monkey C 14 17 16 11 20 
Monkey J* 17 17 22 14 7 

*Monkey J also performed an additional 66 days of BMI experiments with PPF and SB-KF 
during which the decoders were run on separate days. It also performed the obstacle task with 
PPF and SB-KF over a period spanning 6 days and consisting of 2562 total trials (1152 PPF 
trials and 1410 SB-KF trials). 
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Supplementary Table 2. Summary of performance comparisons 

 

Here we summarize all comparisons performed in the study for the center-out task (see also 

Supplementary Table 1). For simplicity, we report a % improvement in the metric observed in 

the second decoder relative to the first. For example, a success rate improvement of 32% for SB-

KF vs. PPF means success rates were 32% higher for the PPF compared to the SB-KF. In 

addition to the results for the randomized paired comparisons within day, we also show the result 

for the comparison of PPF to SB-KF in monkey J that was done across days, over an additional 

66 day period, denoted by CO (across-day). Abbreviations: CO = center-out. Asterisks denote p-

values where * = p < 0.05; ** = p < 0.01; *** = p < 0.001.      

    Success rate 
(trials/minute) 

 
Test 

Decoders 
compared 

Task J C 
 

R
at

e 
di

ss
oc

ia
ti

on
s Control rate 

SS-PPF 
vs.  

FS-PPF 
CO 9±1*** 10±2*** 

Feedback 
Rate 

FS-PPF 
vs.  

PPF 
CO 9±1*** 5±1** 

Control and 
feedback rate 

SS-PPF 
vs.  

PPF 
CO 16±2*** 11±2*** 

K
F

 v
s.

 P
P

F
 

Encoding 
model 

SB-KF vs. 
SS-PPF 

CO 21±4*** 9±3** 

New BMI 
paradigm  

vs.  
current state-

of-the-art 

SB-KF  
vs.  

PPF 

CO 
(within-

day) 
30±3***	 24±2*** 

CO 
(across-

day) 
32±3*** — 

K
F

  
C

on
tr

ol
s 

Rate 
dependence 

SB-KF 
5ms 
vs.  

SB-KF 
100ms 

CO 70±11** 19±6* 

	

	 	



11	
	

Supplementary Note 1: Detailed Description and Discussion of Rate Manipulations 

 

Real-Time Manipulation of the Control and Feedback Rates 

Here we expand on how the control and feedback rate manipulations are performed. The process 

works as follows. We form the binary time-series of the spikes in real time by binning them in 

small bins containing at most 1 spike (taken to be 5ms here). We run the PPF decoder in real 

time on the binary time-series of a population of neurons as given in equation (5) in the 

‘Methods’ section (see Fig. 1c). This generates a high-rate decoded trajectory based on the spike 

time-series in real time. Real-time manipulation of this high-rate decoded trajectory allows us to 

change the control and feedback rates. In the PPF (with high feedback and control rates), we let 

the monkey move the cursor with every decoded position; we also show every decoded cursor 

position to the monkey on the computer screen (Fig. 1d, first subfigure). To achieve a fast 

control rate and slow feedback rate, we let the monkey move the cursor with every decoded 

position, but do not show every decoded cursor position to the monkey.  The monkey instead 

sees only one of every few controlled cursor positions on the computer screen depending on the 

feedback rate (Fig. 1d, second subfigure). This is equivalent to closing the eyes as one controls a 

movement and only intermittently opening them. To get the slow control rate, we don’t let the 

monkey move the cursor with every decoded position. For example for a control rate of 10Hz, 

we only let the monkey move the cursor with every 20th decoded position (Fig. 1d, third 

subfigure); note that the decoding rate is still 200Hz (reflecting the 5ms spike bins). Hence for 

SS-PPF while every spike between the previous control time and the current control time (100ms 

interval) is processed to get the current controlled position, the subject cannot send control 

commands to the BMI at a high rate, regardless of how it generates the spikes or its control 

strategy. The subject can only send control commands to the BMI at a slow rate. Similarly, note 

that a 10Hz KF also processes all the spikes within a bin-width of 100ms. However, it only sends 

to the cursor one decoded position for all these spikes. 

 

Dissociation and Manipulation of Control and Feedback Rates without Changing the 

Encoding Model – The Reasons for Using the PPF 

Investigating the effect of control and feedback rates on neuroprosthetic control requires 

designing a careful BMI that exhibits two main properties: (1) performs at any rate while using 
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the same mathematical encoding model (so that model changes do not confound the results) (2) 

performs well at any rate (whether high or low). The PPF developed here exhibits these two 

properties. First, since it directly models the 0 and 1 time-series of the spiking activity, it uses the 

exact same mathematical encoding model regardless of the rate. It essentially runs at a high rate 

and can enable any lower rate by sending only one of every few decoded positions to the 

prosthetic or by showing only one of every few controlled position to the subject  (while using a 

single encoding model for all rates). Second, the quality of modeling does not degrade when 

going to lower or higher rates for the point process filter because it directly models the 0 and 1 

time-series of the spikes and provides different rates by real-time manipulation of the decoded 

positions as described above. Indeed in our experiments we see that the monkey can use the PPF 

at any rate. 

 

Note that, in principle, any decoder that performs well at arbitrarily high rates could be combined 

with our novel manipulation experiments to investigate the rate effects. The majority of prior 

BMI decoders, such as the KF or the Wiener filter, however, are based on a Gaussian assumption 

on the neural observation model (e.g., spike counts or firing rates), which breaks down at high 

rates. This assumption will likely result in degraded performance of these decoders at high rates. 

We confirm this theoretical prediction here in our experiments for the KF decoder (see the 

‘Results’ section and Supplementary Fig. 4), showing that a high-rate KF provides worse 

performance than a low-rate equivalent (see the ‘Results’ section, and Supplementary Note 2, 

Supplementary Fig. 4, Supplementary Table 2). Using the KF for the rate dissociation 

experiments performed in this study would require running the KF at high-rates and then 

performing our real-time manipulations to change the rates (without changing the encoding 

model).  Because the KF is rate-dependent and better suited to lower rates (Supplementary 

Table 2), it would be sub-optimal to use the KF for these studies. More broadly, BMI decoders 

based on the Gaussian assumption of neural spiking observations are less useful for perturbation 

experiments to investigate rate effects.  

 

Finally, changing the bin-width of the KF does not result in a BMI with either of the two 

properties required for rate manipulation, i.e., (1) the requirement to perform at any rate while 

using the same mathematical encoding model (so that the mathematical model does not confound 
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the results) (2) the requirement to perform well at any rate (whether high or low). First, the KF is 

a rate-dependent decoder and its mathematical encoding model changes for different bin-widths. 

For example, the number of spikes within 100 ms bins has a different distribution than the 

number of spikes within 200ms bins. These are two different binomial distributions (assuming 

static firing rates within the bin) and result in different Gaussian approximation models for the 

counts. Hence using a KF, any bin-width manipulation will involve both a rate change and a 

model change and cannot disambiguate the two (see also section below). Second, the quality of 

the KF model is strongly dependent on the bin-width or rate. KF is only optimal for Gaussian 

observations. The quality of the Gaussian approximation to the spike count is poor at high rates. 

Hence using the KF, the monkey’s control could degrade for fast rates compared with slow rates 

as we have shown in our experiments (see the ‘Results’ section, Supplementary Fig. 4, 

Supplementary Table 2). This is explained in detail below.  

 

Changing the Bin-Width of the Kalman Filter Cannot Dissociate the Rates  

The following 4 factors all change simultaneously when changing the KF bin-width: 1) control 

rate; 2) feedback rate; 3) statistics of the spike count, i.e., the encoding model; 4) the 

approximation error associated with modeling the spike counts as Gaussian, i.e., goodness of the 

encoding model for which the KF is optimal (Note that the KF is only optimal for Gaussian 

observations). 

1) Changing the KF bin-width changes the feedback and control rates simultaneously.  

2) The encoding model also changes in the case of the KF when the bin-width changes. For 

example, if we use 100ms bins, the KF counts the number of spikes within 100 ms 

whereas if we use, say, 200ms bins, it counts the number of spikes within 200ms. These 

two counts have different statistics/distributions (the mean of the second count is larger, 

for example). These two counts could be modeled as two different binomial distributions. 

Also importantly, they result in two different Gaussian approximations to the count. For 

example, let’s say we bin the 0/1 spikes in 5ms bins. With a 100ms KF bin-width and 

assuming static firing rates within the bin-width for illustration purposes, the spike count, 

ܰ ௧, is distributed according to a binomial distribution with parametersݕ ൌ ଵ

ହ
ൌ  ,20 ൌ

݁ݐܽݎ	݃݊݅ݎ݂݅ ∗   ,.i.e ,ݏ5݉
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௧ሻݕሺ ൌ ൬
ܰ
௧ݕ
൰ ௬ሺ1 െ  ሻேି௬

In the second case the KF count is a different binomial distribution with ܰ ൌ ଶ

ହ
ൌ 40 

and with the same  (assuming static firing rates within the bin-width for illustration 

purposes). Consequently, the Gaussian approximation to the count distribution in the first 

case has mean 20 and in the second case has mean 40  and the variances in the two 

cases are also different (these are only for illustration purposes). Hence the distribution of 

the observations and the Gaussian statistical model approximating them depends on the 

bin-width or equivalently the rate of the KF. This shows the dependence of the KF 

encoding model on bin-width. 

 

3) The quality of the Gaussian approximation of the spike count distribution is also 

dependent on the bin-width or rate. The Gaussian approximation is more accurate at 

larger bin-widths. This can be explained using the central limit theorem—the sum of 

random variables in the limit of an infinite number of them becomes approximately 

Gaussian distributed. Hence larger bins mean closer agreement with a Gaussian 

observation model. Since Kalman filters are only optimal for Gaussian observations, the 

larger the bin-width, the better the KF model in describing the neural data. Hence 

changing the bin-width also changes the quality of the Gaussian approximation to the 

spike counts and consequently the performance of the KF due to the approximation error.  

 

In summary, changing the bin-width in the KF cannot dissociate the effect of the control and 

feedback rates from each other, or from the encoding model or its goodness.  

 

As also mentioned in the above subsection, using a high-rate Kalman filter results in poor 

performance and hence cannot be combined with our novel manipulations to change and study 

the rates. 

 

Setting the fast feedback rate 

While in principle any feedback rate can be selected, since our computer monitors refresh at 

60Hz, the fastest possible feedback rate is effectively 60Hz. Indeed for monkey J, we sent the 
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cursor position to the monitor at the fast decoding rate of 200 Hz, but the monitor only displayed 

this at 60Hz. 
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Supplementary Note 2: Testing the KF at High Rates 

 

Testing the SB-KF on a fast-fast pathway 

While—to compare the encoding models—we also compared the PPF and SB-KF models at the 

slow 10Hz rate to give the KF the benefit of the larger bin-width (Supplementary Fig. 4), a 

more fundamental property of the PPF is that it enables fast control and feedback rates in the 

sensorimotor pathway. For the KF to also facilitate fast control and feedback rates, it needs to be 

able to run well at fast rates. Hence as a control we tested the KF on a fast-fast pathway and 

compared it to the typical KF over 6 sessions. Unlike the PPF model, the KF model changes for 

different pathway rates. We thus trained the fast-fast KF with 5ms bins using two methods. In the 

first indirect method, we first trained a typical 10Hz KF (i.e., with 100ms bins) using 

SmoothBatch CLDA. We then analytically obtained the parameters of the fast-fast KF from the 

10Hz SB-KF as follows. The KF Gaussian neural observation model is given by, 

௧࢟ ൌ ,ሾ1ܪ ௧ሿ்࢜    ௧, (1)

where ࢟௧ is the ܥ ൈ 1 vector of neural spike counts at time ,ݐ	ܪ is the model parameter and ௧ is 

the white Gaussian noise with covariance matrix ܳ. We first find ܪ and ܳ using SmoothBatch 

and for 100ms bins. We then obtain the fast-fast SB-KF observation model parameters as 

ிிܪ ൌ 20/ܪ

ܳிி ൌ ܳ/20ଶ 
(2)  

where 20 is the ratio of the typical KF bin width to the fast-fast KF bin width (i.e., 100/5). 

Moreover, using the same argument as in the PPF case, the fast-fast KF system dynamics model 

was related to the typical KF dynamics model as given in equation (6) in the ‘Methods’ section. 

In the second direct method, we used SmoothBatch CLDA to adapt the KF in closed loop using 

5ms bins. We found that the typical SB-KF using the 100ms bins significantly outperformed the 

SB-KF using the 5ms bins regardless of the method of adaptation (Supplementary Fig. 4, 

Supplementary Table 2).  

 

KF Performance for Spiking Observations 

In this work we showed that regardless of the control or feedback rates, the PPF enables more 

proficient BMI control compared with the KF. Moreover, we showed that a high-rate KF 

performance degraded compared with a low-rate KF (see ‘Results’ section, Supplementary Fig. 
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4, Supplementary Table 2). Here we expand on the theoretical reason why the PPF model has 

an advantage, especially at high rates. 

For the KF to be an optimal decoder, neural observations would need to be Gaussian distributed4. 

However, spiking activity, i.e., a time-series of 0’s and 1’s or a count calculated from these 0’s 

and 1’s are neither continuous-valued nor Gaussian. In contrast, the point process filter directly 

models and operates on the 0/1 time-series of spikes and hence is the approximately optimal 

filter for spiking activity5–7. When neural observations are not continuous-valued or are not 

approximately Gaussian, there is no guarantee that a Kalman filter would perform well. 

In the case of fast rates, the neural observations are far from Gaussian. Indeed they are not 

continuous-valued. These observations are spikes and hence discrete-valued taking values 0 or 1. 

Hence the modeling assumptions needed for optimality in the KF are violated. This could 

explain why the KF does much worse at fast rates compared to PPF or to a slow-rate KF 

(Supplementary Table 2). There have been various studies suggesting this point about point 

process vs. Gaussian models in open-loop applications for example when decoding the 

hippocampal place cell activity offline collected from a rat running in a maze6. Our closed-loop 

BMI results provide experimental evidence that even in a closed-loop scenario, when the animal 

is in the loop, the direct modeling of spikes by a point process results in better closed-loop BMI 

performance (Supplementary Table 2).  

In the case of the slow rate, the KF again did worse than the PPF (Supplementary Table 2). 

However, it did better than the KF with the fast rate. What can explain this is that the neural 

observations in larger 100ms bins are no longer only 0 or 1 but rather they are equal to the total 

number of spikes occurring in a 100ms bin. Hence the distribution of these counts is closer to a 

Gaussian distribution, which is the necessary condition for KF optimality. This can be explained 

based on the central limit theorem—the sum of random variables in the limit of an infinite 

number of them becomes approximately Gaussian distributed. However, despite the Gaussian 

approximation being better in this case, the number of spikes within a 100ms bin is still not fully 

Gaussian-distributed. The point process filter operates on the underlying signal—the spikes—

and models their 0 and 1 time-series regardless of the rate used in the BMI. 
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Supplementary Note 3: Closed-Loop Model Adaptation and Training 

 

Training the PPF decoder using OFC-PPF closed-loop adaptation 

Before conducing the present study, we need to train both the KF and the PPF decoders at the 

beginning of each day, and then fix them to study their steady-state performance in continuous 

closed-loop BMI control across various rate conditions and tasks. Similar to the KF, we also 

train the PPF adaptively using CLDA. We denote the sequence of kinematic states by ࢞,⋯ ,  ௧࢞

and assume that they evolve in the linear dynamical system 

௧࢞ ൌ ௧ିଵ࢞ܣ  ௧࢛ܤ    ௧, (3)࢝

with parameters ܣ and ܤ. Here ࢛௧ is the control command at time ݐ that the brain issues. We 

assume that the brain controls the velocity of movement and hence ࢛௧ is a velocity command in 

the two dimensions (i.e.,  ࢛௧ is 2 1 ) and ܤଶ,ଶ ൌ Δ, ܤସ,ଶ ൌ Δ and ܤ, ൌ 0 for all other ݅, ݆ where 

,, indicates the ሺ݅ܤ ݆ሻth element of ܤ. Note that (3) is the dynamics model we use for intention 

estimation, which is implicitly assumed to be a forward model of the movement that the brain 

has acquired8,9. This could thus be different from equation (3) in the ‘Methods’ section, which is 

the prior model used in the filter for decoding purposes and is thus selected to be as general as 

possible. 

 

To predict the brain’s intended velocity command, ࢛௧, we quantify the goal of the center-out task 

in a cost function. We then model the brain as an optimal feedback controller2,10,11 (OFC) that 

minimizes this cost function over the choices of ࢛௧. We use an infinite-horizon quadratic cost 

function to quantify the task goal. For the center-out task, the goal is to take the cursor to the 

target location, stop there, and use minimum control effort to do so. We hence form the cost 

function as  

ܬ ൌ‖ࢊ௧ െ ଶ‖∗ࢊ  ,௧‖ଶ࢛‖ݓ

ஶ

௧ୀଵ

 (4)  

where ࢊ∗ is the target location. We also assume that the monkey perfectly observes the current 

position of the cursor on the screen, which is the decoded position denoted by ࢞௧|௧ at each time. 

Given the linear state-space model in (3) and the quadratic cost function in (4), the optimal ࢛௧ 
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that minimizes the expected cost is given by the standard linear-quadratic Gaussian (LQG) 

solution. We hence find the velocity intention at each time as  

௧࢛ ൌ െܮሺ࢞௧|௧ െ   ሻ, (5)∗࢞

where ࢞∗ ൌ ሾࢊ∗, ሿ் is the target state for position and velocity, and ܮ is the steady-state solution 

to the algebraic Riccati equation found recursively and offline2,3,10.  

 

Given the inferred velocity intention ࢛௧ and the observed neural activity ଵܰ:௧
ଵ: we now need to 

estimate the parameters of the point process model in closed loop. To do so, we design a spike-

by-spike adaptation algorithm in which the point process parameters are updated with every 0 

and 1 event2,3. This is done by developing a point process decoder for the parameters. The states 

in the parameter decoder are the parameters ࣘ. We build the prior model of the parameters as a 

random-walk model given by 

ࣘ௧
 ൌ ࣘ௧ିଵ

    ௧ିଵ, (6)ࢠ

where ࢠ௧ିଵ is white Gaussian noise. This model indicates that parameters evolve continuously. 

Using equation (1) in the ‘Methods’ section, the observation model is given by  

ሺ ଵܰ:௧
ଵ:|࢛ଵ:௧ሻ ൌෑෑሺߣሺ߬|࢛ఛ, ࣘఛ

ሻΔሻேഓ

expሺെߣሺ߬|࢛ఛ, ࣘఛ

ሻΔሻ



ୀଵ

,

௧

ఛୀଵ

 (7)  

Note that ࢛ଵ:௧ are the inferred velocity intentions given by (5). We can hence obtain the 

recursions of the point process decoder for the parameters similar to equation (5) in the 

‘Methods’ section by reversing the roles of  ࣘఛ
 and ࢛ఛ2,3. 

 

Adapting the point process model on a slow-slow pathway vs. a fast-fast pathway 

The point process encoding model is trained using the PPF decoder on a fast-fast pathway. As a 

control, we investigated whether training the point process model of the spikes on a slow-slow 

pathway improves the performance of SS-PPF. To do so, we performed experiments in which we 

adapted the point process model as the monkey controlled the SS-PPF as opposed to the normal 

PPF. We then constructed two SS-PPF decoders. One used the point process trained in the SS-

PPF session and the other used the point process trained in the normal PPF session. We found 

that training the point process in the SS-PPF session did not improve the performance of SS-PPF 

(control in Supplementary Fig. 1).  
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Supplementary Note 4: Examining a plausible mechanism that may underlie the 

improvement in FS-PPF vs. SS-PPF 

 

We attempted to find a plausible explanation for the observation that holds are significantly 

degraded with SS-PPF compared to FS-PPF. This was the main reason for degradation of 

performance (i.e., success rate) in SS-PPF. The hold period started once the cursor entered the 

target. Hence the monkey would need to know when the cursor enters the target to satisfy the 

hold period. However, given the long visual feedback delays (motor-cortical latencies to visual 

stimuli) of about 120-140ms12,13, the monkey cannot wait for the visual feedback of the cursor 

position—once it enters the target—to start planning the hold, e.g., to start a deceleration 

strategy. This visual feedback will come with a delay of ~120-140ms, which may be too late to 

decelerate and initiate a hold process (depending on the cursor speed). Hence we propose that to 

perform the holds, the monkey may have to predict in a feedforward manner when the cursor 

would enter the target. A plausible way to perform this prediction would be to use an internal 

forward model of the BMI movement. If the decoder model matches the monkey’s internal 

forward model, then the prediction of the entry time is accurate and the monkey will initiate and 

plan the hold process according to the correct entry time and succeed. 

 

One possible hypothesis could be that the monkey’s strategy in performing a hold is closer to 

feedforward prediction using a high-rate forward dynamic model compared with a low-rate 

forward dynamic model, given the better control under FS-PPF. To examine this hypothesis, we 

performed the following analyses in the SS-PPF condition. We computed what time the monkey 

would predict the cursor to enter the target according to a high-rate forward model (matched to 

the high-rate decoder). We then computed whether the monkey satisfied the hold requirement 

starting from this predicted entry time (even though in the actual SS-PPF trial, he may not be 

satisfying the hold). If these ‘adjusted’ hold times in the SS-PPF trials satisfy the hold 

requirement, then this provides some evidence consistent with our hypothesized control 

mechanism. That is, it would suggest the monkey’s strategy is close to a feedforward strategy 

based on a high-rate forward model (as compared to a low rate forward model for example). 

Importantly, we would expect the ‘adjusted’ SS-PPF performance to be similar to the FS-PPF 

condition, i.e., for the difference to become smaller.  
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Thus we calculated what the percent correct (i.e., hold success) would be if we start counting the 

hold time starting from the time the monkey would predict the cursor to enter the target using a 

high-rate forward model. To do this, we found what the time of target entry would have been if 

there was no real-time subsampling for the controlled trajectory. This entry time can be readily 

computed post-hoc by using the original high-rate neural spike commands and the corresponding 

decoded trajectory (which was subsampled in real-time in the slow control-rate condition). Once 

this predicted entry time was computed for each trial, we calculated an ‘adjusted’ hold time that 

starts counting from this forward-predicted time. We tested whether this ‘adjusted’ hold time 

satisfies the hold requirement even if the SS-PPF trajectory does not (‘adjusted’ hold time= time 

the cursor exited the target - the predicted entry time from monkey’s perspective). This allowed 

us to calculate the ‘adjusted’ success rate.  

 

We found that the ‘adjusted’ SS-PPF percent correct was significantly higher than the SS-PPF 

percent correct. In particular, percent correct improved by 8% and 7% for monkeys J and C, 

respectively (P<10-4, one-sided paired t-test, monkey J n=38, monkey C n=19). The adjusted 

reach time did not improve as expected (P>0.1, two-sided paired t-test, monkey J n=38, monkey 

C n=19). Importantly, once we made this adjustment, the difference between the performance 

(success rate) in FS-PPF and ‘adjusted’ SS-PPF almost vanished (two-sided paired t-test, P> 

0.45 in monkey J n=17 and P>0.06 in monkey C n=14). 

 

One interesting point to note is that while the subject does not necessarily need to be trying to 

stay within the target boundaries for just the required hold period and not longer, our analyses 

indicate that the subject may indeed be doing so. In particular, the subject may have optimized its 

control strategy to receive reward by staying inside the target boundaries just as long as the 

required hold time and not longer. That seems to be the reason why if the entry time is just a bit 

off from the predicted time, the error rate goes up.  

 

Finally, since the animal is not cued to the particular condition (i.e., SS-PPF vs. FS-PPF vs. 

PPF), it is possible that he is not aware of the condition, at least initially. The above argument 

does not require the monkey’s strategy to change or the monkey to be aware of the condition. 
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Even in the absence of a strategy change, what our results may indicate are that (i) the hold 

precision (percent correct) significantly drops in the SS-PPF and (ii) this drop is because no 

matter what the monkey’s control strategy is, the high-rate decoder better matches it. However, 

given that the error rate significantly increases in the SS-PPF case, it is also possible that the 

monkey does recognize this condition based on the reward feedback and hence changes its 

strategy. We examined whether the success rate changed between the first and second halves of 

the SS-PPF blocks and did not observe a significant difference (P>0.21; two-sided paired t-test, 

monkey J n=38, monkey C n=19). This may indicate that either the control strategy doesn’t 

change between SS-PPF and FS-PPF or that it is very hard for an alternative strategy to improve 

performance in the SS-PPF case (given the high-rate internal forward model that may be used for 

example). 

 

Overall, the results of these analyses are consistent with the hypothesis that the target holds may 

be performed in a feedforward manner in BMI, and that, assuming a feedforward control strategy 

in BMI, the monkey’s internal forward model is closer to a high-rate model compared with a 

low-rate model. The high-rate dynamic decoder may better match the monkey’s own internal 

model, thereby allowing the monkey to perform more accurate feedforward prediction and 

control, and thus result in higher performance (see Discussion). The full examination of this 

hypothesis requires careful perturbation experiments in future studies, which the PPF BMI can 

enable.  
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Supplementary Note 5: KF and PPF as recursive Bayesian estimators 

KF and PPF are both examples of a recursive Bayesian estimator. A recursive Bayesian 

estimator consists of two models: a prior model on the time-sequence of kinematics states and an 

observation model relating the neural activity to these kinematic states. The mathematical 

distinction between the KF and the PPF is the observation model. In KF-BMIs, the observation 

model is constructed for spike counts (typically estimated using 50-100ms bins). The observation 

model is assumed to be linear and Gaussian, i.e., spike counts are assumed to be Gaussian-

distributed and linearly related to the kinematics. In the PPF-BMI, the observation model is 

constructed for the 0 and 1 time-series of spike events. The observation model is a point process 

whose instantaneous rate function is assumed to be log-linearly related to kinematics.  

The recursive nature of the recursive Bayesian estimator allows it to run efficiently and in real 

time. Hence both KF and PPF are real-time and well-suited for BMI applications. 

The prior model allows a recursive Bayesian decoder to be predictive. This means that a 

recursive Bayesian estimator (whether KF or PPF), can use the prior state evolution model and 

the current estimate of the kinematic state to predict the next kinematic state. Both PPF and KF 

are predictive.  

Finally, both PPF and KF can accommodate adaptation in their training procedure or in response 

to non-stationarity. Adaptive methods to train both KF decoders and PPF decoders have been 

developed. For example, batch-based methods1,14,15 or continuous adaptation methods16 have 

been developed to adaptively train the KF. We have also developed an adaptive method to train 

the PPF2,3. Hence in terms of being adaptive, both KF and PPF have the option of incorporating 

adaptation in their design and need not be fixed in time. In this study, at the beginning of each 

day, we used adaptive training for both the KF and PPF using established methods. Performance, 

however, was compared for fixed trained models, which were found to yield highly stable 

performance within a session (consistent with many previous reports1,14–16). This comparison 

approach avoids potential confounds of ongoing adaptation and algorithmic convergence, 

allowing for more direct assessment of decoder differences in steady-state continuous closed-

loop BMI control.   
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