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Figure S1 | Design principle of tailored thermal expansion. (a) Basic element of the structure shown in 

Fig. 1a (also see plane 𝑃1 in Fig. 1c) at a reference temperature 𝑇 (room temperature). (b) Same, but at 

elevated temperature 𝑇 + d𝑇 (exaggerated for clarity). The effective thermal length-expansion 

coefficient of this element, which changes its lattice constant 𝑎 along one direction, is given by 
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Here, 〈𝛼𝐿〉 is the average thermal length-expansion coefficient resulting from the expansion of the bi-

material beams alone. For positive constituents, this average is also positive. The second contribution 

results from the structure and the bending of the beams. For (𝛼𝐿
A − 𝛼𝐿

B) < 0, it is a shrinkage 

contribution. As pointed out by Lakes [1], the influence of the ratio of Young’s moduli 𝐸A/𝐸B is not 

large. This finding agrees well with the more complete three-dimensional numerical calculations 

depicted in Supplementary Fig. S3. There, we also find a linear dependence of 𝛼𝐿 versus 𝛼𝐿
B. For our 

parameters, the simple formula for the one-dimensional case overestimates the shrinkage contribution 

by about 20% with respect to the numerical calculations for the isotropic three-dimensional case. 

 

 

 

 



 

Figure S2 | Bulk thermal expansion coefficients. Measured thermal length-expansion coefficient of bulk 

polymer cube samples (made from IP-Dip, Nanoscribe GmbH) versus laser exposure power (lower 

horizontal scale). The corresponding power scaling factor is given on the upper horizontal scale. Results 

from two different sets of samples and measurements are shown (red and blue). The bulk polymer 

thermal length-expansion coefficient decreases with increasing exposure power due to increased 

polymer cross-linking density. For comparison, the single-component microstructure shown in Fig. 3a 

has been written with a power scaling factor of 65% (also see Methods).  

 

 

 



 

Figure S3 | Tailorable thermal expansion. Calculated effective metamaterial thermal length-expansion 

coefficient 𝛼𝐿 versus the thermal length-expansion coefficient of constituent material B, 𝛼𝐿
B. The 

thermal length-expansion coefficient of constituent material A is indicated by the arrow. It has been 

fixed to 𝛼𝐿
A = +4 × 10−5 K−1. The ratio of the Young’s moduli 𝐸 of the two constituent materials is the 

parameter (see legend). The Young’s modulus of constituent material A has been fixed to 𝐸A = 4 GPa. 

Note the sign reversal of 𝛼𝐿 around 𝛼𝐿
B ≈ +5 × 10−5 K−1. Geometrical parameters (compare Fig. 1a): 

𝑎 = 100 μm, ℎ = 2.5 μm, and 𝐿 = 40 μm. 

 

 

 

 

 

 



 

Figure S4 | Illustration of the image cross-correlation analysis. (a) Two optical images of a sample are 

taken, one reference at room temperature RT (left top), the other one at RT + Δ𝑇 (right top). Here, the 

sample is a piece of copper. The two images may appear equal at first sight, but they are actually 

different. Regions of interest (ROI) at center coordinates (𝑥, 𝑦) with a footprint of 33 × 33 image pixels 

are defined. One example for a ROI is indicated by the white square. Next, cross-correlation functions 



𝐶(Δ𝑥, Δ𝑦) of the reference image and ROI are computed. If one correlates the reference with the ROI of 

the reference (bottom left), one essentially gets the autocorrelation function, which peaks at 

(Δ𝑥 = 0, Δ𝑦 = 0) indicated by the crossing of the black lines. If one correlates the reference with the 

ROI of the image at elevated temperature (bottom right), the peak shifts to the displaced position 

(Δ𝑥 = 𝑢𝑥, Δ𝑦 = 𝑢𝑦) = �⃗� ≠ 0⃗ . Repeating this position for many different ROI, we obtain the 

displacement vector field �⃗� (𝑥, 𝑦). To remove overall shifts and drifts, we replace �⃗� (𝑥, 𝑦) → �⃗� (𝑥, 𝑦) −

〈�⃗� 〉, where 〈… 〉 refers to the average over all chosen ROI. (b) Resulting displacement-vector field. The 

example ROI used in Fig. S4a is shown by the white square in the upper right-hand side corner. To make 

the yellow displacement vectors �⃗�  visible, we have stretched them by a factor of 500, as indicated at the 

bottom. To emphasize the sensitivity of the approach, the size of one image pixel (stretched by the same 

factor of 500) is highlighted by the yellow bar. The derived average length-expansion coefficient of 

𝛼𝐿 = (+1.6 ± 0.1) × 10−5 K−1 is in agreement with literature.  

 


