

Supplementary Figure 1 | Comparison of serum IgE levels between $Dock8^{+/-}$ and $Dock8^{-/-}$ OTII Tg mice. Serum concentrations of IgE in $Dock8^{+/-}$ and $Dock8^{-/-}$ OTII Tg mice were compared at 6 (n = 10), 12 (n = 9) and 18 (n = 9) weeks old. The lines indicate the mean values.

Supplementary Figure 2 | DOCK8 acts as a negative regulator for IL-31 induction in *Dock8*^{-/-} AND Tg mice. (a,b) Flow cytometric analyses of thymocytes and spleen cells from 6–8-week-old *Dock8*^{+/-} and *Dock8*^{-/-} AND Tg mice. The numerals in quadrants indicate the percentage of each subset of leukocytes. Data are expressed as mean \pm s.d. of 5 mice per group. ***P* < 0.01 (two-tailed Student's *t*-test). See Supplementary Fig. 10 for FACS gating strategy. (c) Antigen-specific proliferation of CD4⁺ T cells from *Dock8*^{+/-} and *Dock8*^{-/-} AND Tg mice. Data are expressed as mean \pm s.d. of 9 samples per group. (d) *Il31* gene expression in CD4⁺ T cells from *Dock8*^{+/-} and *Dock8*^{-/-} AND Tg mice after secondary stimulation with anti-CD3 ϵ and anti-CD28 antibodies. Expression (fold increase) is relative to that of *Dock8*^{+/-} samples without secondary stimulation. Data are expressed as mean \pm s.d. of 7 samples per group. Comparison was made between two groups at the same time point. ***P* < 0.01 (two-tailed Student's *t*-test).

Supplementary Figure 3 | Haematoxylin and eosin staining of the skin from 18-week-old *Dock8^{-/-}* AND Tg mice. Scale bar, 100 μ m. Magnified views of the boxed area show spongiosis (top) and the presence of eosinophils (bottom). The number of eosinophils per mm² was compared between *Dock8^{+/-}* and *Dock8^{-/-}* AND Tg mice. Data are expressed as mean ± s.d. of 4 mice group. **P* < 0.05 (two-tailed Mann-Whitney test).

Supplementary Figure 4 | The skin-infiltrating CD4⁺ T cells in *Dock8^{-/-}* AND Tg mice express Th2 cytokines. The expression of cytokine genes in dermal CD4⁺ T cells upon TCR stimulation. Expression (fold increase) is relative to that of the unstimulated samples. Data are expressed as mean \pm s.d. of 6 samples per group. ***P* < 0.01 (two-tailed Student's *t*-test).

Supplementary Figure 5 | Comparison of serum IL-31 levels between $OSMR^{+/-}$ and $OSMR^{-/-} Dock8^{-/-}$ AND Tg mice. Serum concentrations of IL-31 in $OSMR^{+/-}$ and $OSMR^{-/-} Dock8^{-/-}$ AND Tg mice were compared at 18 weeks old (n = 5). The lines indicate the mean values.

Supplementary Figure 6 | **Expression of DOCK8 in MEFs.** Cell extracts were prepared from CD4⁺ T cells (WT and *Dock8^{-/-}* mice) and WT MEFs, and were subjected to Western blot analysis using anti-DOCK8 and anti- β actin antibodies.

Supplementary Figure 7 | Validation of anti-EPAS1 antibody used in immunofluorescence analyses. Staining profiles of WT and $Epas1^{-/-}$ MEFs are shown. DAPI was used to stain nuclei. Scale bars, 20 µm.

Supplementary Figure 8 | Comparable expression of DOCK8 in $CD4^+$ T cells from AD patients and healthy controls. Following cultivation of $CD4^+$ T cells in a 24-well plate coated with or without anti-CD3 ϵ antibody for 6 h, DOCK8 expression in $CD4^+$ T cells was analysed by immunoblotting.

Supplementary Figure 9 | Effect of HIFVII on association between EPAS1 and ARNT. Following expression of FLAG-tagged EPAS1 and HA-tagged ARNT in HEK-293T cells, association between EPAS1 and ARNT was analysed in the presence or absence of HIFVII (30 μ M). Data are representative of three independent experiments.

Supplementary Figure 10 | FACS gating strategy used in Figure 1a. (a,b) The gating strategy used to analyse the cell-surface expression of CD4, CD8, Thy1.2 (CD90.2) and/or B220 (CD45R) on total thymocytes and spleen cells. (c) The gating strategy used to analyse the cell-surface expression of CD4 and CD8 on Thy1.2⁺ splenic T cells. (d) The gating strategy used to analyse the cell-surface expression of V α 2 and V β 5 on splenic CD4⁺ T cells.

Supplementary Figure 11 | Uncropped scans of the Western blots. (a) Uncropped scans of the Western blots shown in Figure 5b. Positive control indicates HEK-293T cell extracts expressing pcDNA-ARNT-HA (left) or pcDNA-SP1-V5 (right). Mock, untreated MEF lysates. (b) Uncropped scans of the Western blots shown in Figure 6b. (c) Uncropped scans of the Western blots shown in Figure 6d. (d) Uncropped scans of the Western blots shown in Figure 6e. Positive control indicates HEK-293T cell extracts expressing pcDNA-MST1-V5. (e) Uncropped scans of the Western blots shown in Figure 7e. Positive control indicates HEK-293T cell extracts expressing pcDNA-EPAS1-FLAG.

List			*	Dock8 ^{+/-} AND Tg	Dock8 ^{-/-} AND Tg
number	Gene name	Z-score	Z-ratio	Signal	Signal
1	Batf2	6.054390159	3.615418102	1421.913	5140.81
2	Mamstr	5.114130366	24.37466596	4.394995	107.126535
3	Tbx21	4.750302424	2.741328011	2987.6795	8190.2095
4	Batf3	4.309980069	2.496758712	2801.8955	6995.657
5	Ajuba	4.246428907	2.960550293	274.272	811.99605
6	Sox12	4.189911176	13.68761314	9.8169015	134.36995
7	Epasl	4.178403297	2.428002711	824.1352	2001.0025
8	Gfil	3.772857413	1.979372381	5880.417	11639.535
9	Esrl	3.743103396	10.35550974	7.468642	77.341595
10	Atf3	3.632725431	2.162490159	3184.8975	6887.3095
11	Klf17	3.535121188	9.094421931	7.8169075	71.090255
12	Maf	3.521061799	2.459331282	519.41335	1277.4095
13	Jdp2	3.080611771	2.197369027	779.1263	1712.028
14	Klf4	3.065655669	1.917288313	924.21885	1771.994
15	Ifi204	2.895831887	1.68860953	5904.19	9969.8715
16	Etv6	2.671272723	1.763344721	2751.8465	4852.454
17	Stat2	2.623324545	1.745491939	3371.5435	5885.002
18	Fosl1	2.581422651	2.448300343	80.351355	196.72425
19	Cited1	2.578193795	5.003743099	32.33951	161.8186
20	Jun	2.544284329	1.584425847	7257.5375	11499.03
21	Hifla	2.538211437	1.582683758	5029.313	7959.812
22	Nfil3	2.506781342	1.573698186	6755.2375	10630.705
23	Hmoxl	2.411310819	1.546715677	10014.2775	15489.24
24	Cebpe	2.406260935	1.666906096	1086.6125	1811.281
25	Fosl2	2.388469328	1.660623906	1069.103	1775.378
26	Rora	2.372133869	1.833256421	487.3513	893.4399
27	Irf7	2.362097484	1.828557525	637.63895	1165.9595
28	Pou4fl	2.329520671	2.244227222	69.325155	155.5814
29	Etv5	2.317445706	1.807797737	654.55525	1183.3035
30	Trp73	2.296821033	4.197571138	9.113487	38.25451
31	Gata2	2.286631205	2.211216496	84.760425	187.42365
32	Id2	2.284644354	1.511629124	5315.74139	8035.4295
33	L3mbtl4	2.230225584	21.87445325	3.497932	76.51535
34	Vdr	2.200379051	1.754482493	405.45235	711.35905
35	Egr2	2.152819179	1.579615749	2410.302	3807.351
36	Irf5	2.141055969	1.575677169	3423.3145	5394.0385
37	Tnfrsf8	2.126463292	3.77401759	24.47883	92.383535
38	Ebfl	2.109422355	2.079893488	90.175435	187.5553
39	Tead2	2.109112214	3.733352586	15.997455	59.72414
40	Tcf4	2.039810673	1.542181476	1192.9585	1839.7585

Supplementary Table 1 | Transcription factors differently expressed in activated $CD4^+$ T cells from $Dock8^{+/-}$ and $Dock8^{-/-}$ AND Tg mice.

*Z-ratio was calculated by dividing the values of *Dock8*^{-/-} AND Tg samples by those of *Dock8*^{+/-} AND Tg samples.

Supplementary Table 2 | Demographic information for AD patients and healthy controls.

AD	D Age (year)		Severity
n=6	Mean \pm median		
	35.2 ± 4.7		
Patient 1	33	Male	moderate
Patient 2	30	Male	moderate
Patient 3	43	Male	severe
Patient 4	29	Female	moderate
Patient 5	54	Female	moderate
Patient 6	22	Male	moderate

Healthy	Age (year)	Sex
Controls		
n=6	Mean \pm median	
	29.0 ± 1.3	
Control 1	24	Male
Control 2	33	Male
Control 3	28	Male
Control 4	31	Female
Control 5	28	Female
Control 6	30	Female

Supplementary Table 3 | The primers used for conventional RT-PCR and real-time PCR in this study.

Gapdh	5 ′ –CAGTATGACTCCACTCACGGC–3 ′
	5'-TCACGCCACAGCTTTCCAGAG-3'
<i>Il31</i>	5 ′ –AAACAAGAGTCTCAGGATCTTTATAACAAC–3 ′
	5′-AGCCATCTTATCACCCAAGAA-3′
Epas 1	5 ′ –GAGCAAAGGGTCCCTGTCTC–3 ′
	5'-AATTCATCGGGGGCCATGTT-3'
Mst1	5′-GGCAGCGTGTACAAGGCTAT-3′
	5'-ATATGGGGGCTTTCCTTCAG-3'
GAPDH	5 ′ –CCCATCACCATCTTCCAG–3 ′
	5 ′ –ATGACCTTGCCCACAGCC–3 ′
DOCK8	5 ′ –CGACTTGGACGTGGTGTTCACG–3 ′
	5'-TTCTGTTGCCCAGGTGTTCCTTG-3'
EPAS1	5'-GAGTCCTCAGCCTATGGCAAG-3'
	5'-CGGCATCAAAGAAGATGGAG-3'

Conventional RT-PCR

Real-time PCR

Hprt	5 ′ –CTGGTGAAAAGGACCTCTCG–3 ′
	5'-TGAAGTACTCATTATAGTCAAGGGCA-3'
<i>Il31</i>	5′-AAACAAGAGTCTCAGGATCTTTATAACAAC-3′
	5'-ACGGCAGCTGTATTGATTCGT-3'
Il4	5'-CGAAGAACACCACAGAGAGTGAGCT-3'
	5'-GACTCATTCATGGTGCAGCTTATCG-3'
<i>Il5</i>	5′–AAAGAGAAGTGTGGCGAGGAGA–3′
	5'-CACCAAGGAACTCTTGCAGGTAA-3'
<i>Il13</i>	5′-GAGCAACATCACAAGACCAGA-3′
	5'-GGCCAGGTCCACACTCCATA-3'
Il17a	5'-CTCCAGAAGGCCCTCAGACTAC-3'
	5'-GGGTCTTCATTGCGGTGG-3'
<i>Il2</i>	5′–CCTGAGCAGGATGGAGAATTACA–3′
	5'-TCCAGAACATGCCGCAGAG-3'
GAPDH	5′–GTGAAGGTCGGAGTCAACG–3′
	5'-GGTGAAGACGCCAGTGGACTC-3'
IL31	5′-TGGACCTCGCACTAAAATCATTG-3′
	5′-CGAAAGGAAGAGATGGCCTTAA-3′
IL2	5'-GCAACTCCTGTCTTGCATTG-3'
	5'-CAGTTCTGTGGCCTTCTTGG-3'