Supplemental Information

The Influence of Peripheral Substituent Modification on P^V, Mn^{III}, and Mn^V(O) Corrolazines: X-ray Crystallography, Electrochemical and Spectroscopic Properties, and HAT and OAT Relativities

Evan E. Joslin, Jan Paulo T. Zaragoza, Regina A. Baglia, Maxime A. Siegler, and David P. Goldberg*

Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

*Email: dgp@jhu.edu

General Procedures. All reactions were preformed using dry solvents and standard Schlenk techniques unless otherwise noted. Methylene chloride- d_2 was obtained from Cambridge Isotopes, Inc. PPh₃ and Bu₄N⁺F⁻ (tetrabutylammonium fluoride) were purchased from commercial sources and used without further purification. Instrumentation. ³¹P{¹H} NMR spectra were obtained on a Bruker 400 MHz (operating frequency 161.9 MHz) spectrometer and referenced against an external standard of H₃PO₄ ($\delta = 0$).

OAT Product Analysis. PPh₃ (10 equiv) was added by syringe to a CH₂Cl₂ solution of Mn^V(O)(MeOP₈Cz) (1.13 mM). The solution went immediately from a deep green to a dark brown, indicating conversion to Mn^{III}(MeOP₈Cz)(OPPh₃). The reaction was monitored by UV-Vis spectroscopy, which showed conversion to Mn^{III}(MeOP₈Cz). An amount of Bu₄N⁺F⁻ (30 equiv) was then added to release the OPPh₃. The solution was then concentrated to dryness, reconstituted in CD₂Cl₂ (450 µL) and immediately analyzed by ³¹P{¹H} NMR spectroscopy. The delay time (D1) was set to 150 s to allow for complete relaxation of the ³¹P nucleus. Comparison of the integration for the peaks PPh₃ ($\delta = -5.5$ ppm) and OPPh₃ ($\delta = 27.3$ ppm) gave a yield of 77% for OPPh₃ (Figure S16).

Figure S1. UV-vis spectrum of MeOP₈PzH₂ in pyridine.

Figure S2. UV-vis spectrum of $Mg(iPrP_8Pz)$ (solid green line) and iPr_8PzH_2 (dashed blue line) in CH_2Cl_2 .

Figure S3. UV-vis spectrum of MeOP₈CzH₃ in pyridine (blue) and CH₂Cl₂ (red).

Figure S4. Bond lengths for the macrocyclic core of $[TBP_8CzH_4]^+$ cation determined by single crystal X-ray crystallography.

Table S1. Selected Bond Length	ths (A) for <i>t</i> -Bu c	corrolazine complexes.
***		***

	TBP ₈ CzMn ^{III}	[TBP ₈ CzMn ^{III} H][BArF]	[TBP ₈ CzMn ^{III} H ₂][BArF] ₂	[TBP ₈ CzH][BArF]
$C_{\beta}-C_{\beta}(av)$	1.393(5)	1.385(7)	1.391(3)	1.389(2)
C_{α} - $C_{\beta}(av)$	1.447(5)	1.445(6)	1.442(3)	1.451(2)
C_{α} - C_{α}	1.442(6)	1.454(6)	1.409(3)	1.412(2)
(C12-C13)				
C_{α} -N _{pyrrole} (av)	1.378(6)	1.370(6)	1.366(3)	1.352(2)
C_{α} - N_{meso} (av)	1.344(5)	1.348(7)	1.355(3)	1.353(2)

Figure S5. Electron density difference Fourier map drawn in the plane C1-N7-C16 showing the the H atom attached to N7 on $[TBP_8CzH_4]^+$.

Figure S6. Electron density difference Fourier map drawn in the plane C13-N6-C16 showing the the H atom attached to N6 on $[TBP_8CzH_4]^+$.

Figure S7. Electron density difference Fourier map drawn in the plane C8-N4-C9 showing the the H atom attached to N4 on $[TBP_8CzH_4]^+$.

Figure S8. Electron density difference Fourier map drawn in the plane C5-N3-C8 showing the the H atom attached to N3 on $[TBP_8CzH_4]^+$.

Figure S10. UV-vis spectrum of $P^{V}(MeOP_{8}Cz)(OMe)_{2}$ in $CH_{2}Cl_{2}$.

Figure S11. UV-vis spectrum of Mn^{III}(MeOP₈Cz)(pyr) in CHCl₃.

Figure S12. Cyclic voltammogram for $Mn^{III}(TBP_8Cz)$ (0.3 mM) in CH_2Cl_2 with 0.1 M Bu₄N electrolyte.

Figure S13. ¹H NMR spectrum of Mn^V(O)(MeOP₈Cz) in CD₂Cl₂.

Figure S14. a) Time-resolved UV-vis spectral changes observed in the reaction of $Mn^{V}(O)(MeOP_{8}Cz)$ (16 µM) with 9-methyl-9,10-dihydroacridine (2 mM) in CH₂Cl₂ at 25 °C. b) Changes in absorbance vs time for the growth of $Mn^{III}(MeOP_{8}Cz)$ (red circles) and decay of $Mn^{V}(O)(MeOP_{8}Cz)$ (blue squares) with the best fit lines (black). c) Plots of pseudo-first-order rate constants (k_{obs}) versus [9-methyl-9,10-dihydracridine] (R² = 0.99).

Figure S15. a) Time-resolved UV-vis spectral changes observed in the reaction of $Mn^{V}(O)(TBP_{8}Cz)$ (15 µM) with 9-methyl-9,10-dihydracridine (2 mM) in CH₂Cl₂ at 25 °C. b) Changes in absorbance vs time for the growth of Mn^{III}(TBP₈Cz) (red circles) and decay of Mn^V(O)(TBP₈Cz) (blue squares) with the best fit lines (black). c) Plots of pseudo-first-order rate constants (k_{obs}) versus [9-methyl-9,10-dihydracridine] (R² = 0.99).

after addition of excess $Bu_4N^+F^-$ in CD_2Cl_2 . Peaks for PPh₃ ($\delta = -5.5$ ppm) and OPPh₃ ($\delta = 27.3$ ppm) were observed. A yield of 77% for OPPh₃ was obtained by comparison of the integration for PPh₃ and OPPh₃. External standard H₃PO₄ seen at 0.00 ppm.