Disease	Dog	Gender	Age (years)	Studies	
	1984	F	0.8	Sequence/cloning	
	1985	F	0.9	Sequence/cloning/qRT-PCR	
\ \ /T	V11614	-	0.06	qRT-PCR	
VVI	M656	М	0.5	qRT-PCR	
	GS170	М	0.8	qRT-PCR	
	Mateo	М	0.5	IHC	
	GS86	М	0.6	qRT-PCR	
	M550	М	0.08	qRT-PCR	
	GS53	F	2.2	qRT-PCR	
	M676	М	0.4	qRT-PCR	
CNGD5-ACHIVI	M681	F	0.4	qRT-PCR	
	M614	F	2.5	qRT-PCR	
	GS171	М	0.8	qRT-PCR	
	M501	F	7.3	IHC	
<i>PRCD</i> -prcd	X168	F	4.8	qRT-PCR	
	X225	М	3.5	qRT-PCR	
	P774	F	3	qRT-PCR	
	P1450*	F	8.2	IHC	
RPGR-XLPRA2	Z234	М	0.06	qRT-PCR	
PDE6B-rcd1	2055	F	0.06	qRT-PCR	
	1888	М	0.3	IHC	
	2016	F	1.5	IHC	
STK38L-erd	E1044*	М	8.4	IHC	

Supplementary Table S1. Summary of Dogs Used for Molecular Analyses

* Chromatic pupillometry performed

Supplementary Figure S1. Machine-measured pupil size *vs*. actual pupil size in 4 dogs. D1 and D2 are WT dogs that were not included in the main study. *Solid black line* shows x = y.

Supplementary Table S2. Light Intensities Used for Chromatic Pupillometry and Corresponding Corneal Irradiances.

Light Intensities (cd/m ²)	Irradiance - Blue Stimulus (470 nm) (μW/cm ²)	Irradiance – Red Stimulus (640 nm) (μW/cm ²)
1	2.8	0.2
10	22.6	9.9
32	73.4	31.0
100	237.0	98.8
400	926.7	402.1

Antigen	Host	Catalogue No./Source	Working Dilution	Normal Retina Localization
Cone <i>alpha</i> transducin (GNAT2)	Rabbit polyclonal	Santa Cruz sc-390	1:5000	Cone outer segments
Human cone arrestin (hCAR)	Rabbit polyclonal	Cheryl Craft (University of Southern California)	1:5000	Cone photoreceptors
Neural Nuclei (NeuN) cloneA60	Mouse polyclonal	Millipore MAB377	1:2000	Ganglion cells
Neurofilament 200 (NF200)	Rabbit polyclonal	Sigma N4142	1:1000	Nerve fiber, outer and inner plexiform layer
L/M opsin	Rabbit polyclonal	Millipore AB5405	1:500	Outer segments of long- and medium- wavelength-absorbing (L/M)-cones
Melanopsin 1	Rabbit	21st Century	1:1000	ipRGCs
Rhodopsin	Mouse monoclon al	Millipore MAB5316	1:1000	Rod outer segments/axons and pedicles

Supplementary Table S3. Antibodies Used

Santa Cruz Biotechnology Inc., Santa Cruz, CA; Millipore Corporation, Temecula, CA; Sigma-Aldrich Co. LLC., St. Louis, MO; 21st Century Biochemicals, Marlboro, MA

Supplementary Figure S2. Effects of mutations in *PDE6B, CNGB1*, and *PDE6A* on PLRs compared to average *wt* PLRs. *Bold blue* and *red lines* represent mean PLRs of *wt* dogs. *Lighter blue* and *red lines* represent individual PLRs from affected dogs. ★ indicates undetectable PLRs from *PDE6A*- and *CNGB1*-mutant dogs overshadowed by a light artifact. Shaded area/black bar represents 1-s stimulus presentation.

Supplementary Figure S3. PLRs from *CNGB3*-mutant dogs with ACHM with the expected abrogation of phBR responses. In contrast, a subset of *CNGB3*-mutant dogs with incomplete ACHM showed persistent but reduced phBR responses. *Bold blue* and *bold red lines* represent averaged PLRs from *wt* dogs. *Lighter blue* and *red lines* represent individual PLRs from affected dogs. *Shaded area/black bar* represents the 1-s light stimulus presentation.

Supplementary Figure S4. PLRs of dogs bearing mutations in *STK38L*, *IQCB1*, *RPGR*, *RPE65*, and *PRCD*, and older dogs with *PDE6B*, *RD3*, and *PDE6A* mutations. *Bold blue* and *red lines* represent averaged PLRs of *wt* dogs. *Lighter blue* and *red lines* represent individual PLRs of affected dogs. *Shaded area/black bar* represents the 1-s light stimulus presentation. \star indicates absent PLR to scBB in one older *STK38L*-mutant. *Arrows* indicate small residual rod function and near-normal preserved cone function in an older *PRCD*-mutant.

Supplementary Figure S5. Comparison between initial chromatic pupillometry testing results in 1 *wt* and 2 *CNGB3*-mutant dogs with those seen 4-5 months after the first recording. No obvious differences were seen between the first and second recordings for any PLR parameters. The *CNGB3*-mutant dogs were affected by incomplete ACHM with recordable response to phBR.

Canis familiaris		481	
Felis catus		487	89.60%
Homo sapien		478	78.94%
Rattus norvegicus		474	75.38%
Mus musculus	RHL	521	75.37%
Podarcis siculus	EVQEQHQMEASSH	475	46.63%
			Identity

Podarcis siculus Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Podarcis siculus Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Podarcis siculus Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Podarcis siculus

Podarcis siculus Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Podarcis siculus

Podarcis siculus

Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Podarcis siculus

Mus musculus Rattus norvegicus Homo sapien Felis catus Canis familiaris

Podarcis siculus

Rattus norvegicus Homo sapien Felis catus Canis familiaris

Podarcis siculus

Mus musculus

RIKUDVPDRVLYTVGSC FPTVDVPDHAHYTLGTV FPTVDVPDHAHYTLGTV LPTVDVPDHAHYTLGTV FPTVDVPDHAHYTLGTV FPTVDVPDHAHYTLGTV *****: * : *:	VLVIGSIGITGNILVI 'ILLVGLTGMLGNITVI 'ILLVGLTGMLGNITVI 'ILLVGLTGMLGNITVI 'ILLVGLTGILGNIMVI 'ILLVGLTGILGNIMVI :*:::* *: **: ***	AFY SNKRLRT PAN YF IMNL/ TFCRNRGLRT PANMF I I NL/ TFCRNRGLRT PANMF I I NL/ TFCRSRGLRT PANMF I I NL/ TFCRSRGLRT PANMF I I NL/ TFCRTRGLRT PANMF I I NL/	ASDFLM 65 AVSDFLM 118 AVSDFLM 119 AVSDFLM 119 AVSDFLM 119 AVSDFFM 114 AVSDFFM 114 AVSDFFM 114
SATQAFICFLNSMHTEN SVTQAFVFFASSLYKKY SFTQAFVFFASSLYKKY SFTQAFVFFASSLYKKY SFTQAFVFFASSLHKRY SFTQAFVFFASSLHKRY * *****	ILGDI GCNFVVFCGAL LFGET GCEFYAFCGAV LFGET GCKFYAFCGAV LFGET GCKFYAFCGAL LFGEAGCEFYAFCGAL LFGEAGCEFYAFCGAL LFGEAGCEFYAFCGAL	GITSMMTLLAISVDRYCVI GITSMITLTAIAMDRYLVI GIVSMITLTAIAMDRYLVI GISSMITLTAIADRYLVI GITSMITLTAIALDRYLVI GITSMITLTAIALDRYLVI GITSMITLTAIALDRYLVI	KPLQSI 125 RPLATI 178 RPLATI 179 RPLATF 179 HPLATF 174 HPLAAV 174 *:** .
KRSSKKRSCIIIAFUWI GRGSKRRTALVLLGUWI GMRSKRRTALVLLGUWI GVSKRRAAFVLLGUWI GVVSKRRAALVLLGUWI **:*:::::: ***	YSLGWSVCPLPGWSSY YALAMSLPPFFCWSAY YALAMSLPPFFCWSAY YALAMSLPPFFCWSAY YALAMSLPPFFCWSAY YALAWSLPPFFCWSAY YALAWSLPPFFGWSAY *:*.**: *:*****	PEGLMISCTWDYVSYSPAN PEGLLTSCSWDYMTFTPQV PEGLLTSCSWDYVTFTPLV PEGLLTSCSWDYWFFTPLV PEGLLTSCSWDYMSFTPAV PEGLLTSCSWDYMSFTPSV PEGLLTSCSWDYMSFTPSV	SYTML 185 RAYTMLL 238 RAYTMLL 239 RAYTMLL 239 RAYTMLL 234 RAYTMLL 234 RAYTMLL 234
CCFVFFIPLIIIFHCYI FCFVFFLPLLIIFCYI FCFVFFLPLLIIFCYI CCFVFFLPLLIIFCYI FCFVFFLPLLVIYCYI FCFVFFLPLLVIYCYI FCFVFFLPLLVIYCYI	FMFLAIR STGRNVQKLC FIFRAIRETGRA FIFRAIRETGRA FIFRAIRETGRALQTFC FIFRAIRETGQALQTFF FIFRAIRETGQALQTFF *:* ***.**:	SSTYNRKSNV SO SVI CEGCGES PLRQR RQWORL CEGCGES PLR-RRQWORL SACKGNGES LWQRON RL RACEGGGRS PRQRORL RACEGGARS PRQRORL * :	XSEWKLA 239 QSEWKMA 292 QSEVKMA 292 QSECKMA 295 QREWKMA 290 QREWKMA 290 QREWKMA 290
KIAFVATVV FVLSWSP) KVALIVILLFVLSWAPJ KVALIVILLFVLSWAPJ KIMLIVILLFVLSWAPJ KIELLVILLFVLSWAPJ KMELLVILLFVLSWAPJ	ACVT IAWAGYAKINI STVALVAFAGYSHITT STVALVGFAGYSHITT SAVALVAFAGYAHVIT SIVALMAFAGYAHVIT SAVALTAFAGYSHVITI * * * . :*** : : * .	YSK SVPAVIAKASAIYNPI PYMSSVPAVIAKASAIHNPI PYMSSVPAVIAKASAIHNPI PYMSSVPAVIAKASAIHNPI PYMNSVPAVIAKASAIHNPI	IMATIHP 299 IMATHP 352 IMATHP 352 IMATHP 352 IMATHP 355 IMATHP 350 IMATHP 350
RYRRITRSAVPCIRFI KYRVAIAQHIPCIGVI KYRVAIAQHIPCIGVI KYRVAIAQHIPCIGVI KYRVAIAQHIPCIGVI KYRVAIAQHIPCIGVI KYRVAIAQHIPCIGVI *** * * ****	RISPSDLSTSSVNESSI GV SGQRSHPSLSYRST GV SGQRSHPSLSYRST GV SRHSRPYPSYRST GV SGQRTGPYASYRST GV SGQRTGPYASYRST *	RASMSSRHSF-AARNK: IRSTLS QSSDLSWISGRKRQ HSTLS QSSDLSWISGQKR IRSTLS ASSLSWISGRRQ HSTLS QASDLSWISGRRRQ IRSTLS QASDLSWISGRRRQ	SSCVSSI 355 2ESLG 410 2ESLG 410 2ESLG 413 2ASLG 408 *
SAAE TTW SDMELEPVEA SESE VGW TDTETTAAWG SESE VGW TDTETTAAWG SESE VGW THMEAAAVWG SESE VGW MDTAAAAVWG SESE VGW MDTAAAAVWG * ** * *	ARKKQ OPHRSRSFSKQ/ AAQASGQSFCSQ AAQASGQSFCSH AAQANGRSLYGQ AAQPAGGFLCTQQ * *	AEEETGLLLKTQSCNVLT NLEDGELKASSSPQVQRSKT DLEDGEVKAPSSPQEQKSKT SLEDLEAKAPPRPQGREAET SLEDREAKAPVRPQGREAET SLEDREAKAPLRPRGQAVETT *: : *	SEKVAVS 413 PKV-PGP 466 PKT-KRH 466 PCC-TKG 469 PCQ-AMT 464 PCK-VVT 464
SISLHDPFERSFGENAF STCRPMKGQGAF LPSLDRRM LIPSQ MAMAPW TATAAW	PELLLRPSCLF PSSLRGDQKGRLAVCTC D	RTSSLPFGLNSSSTEEN GLSECPHPHTSQFPLAFLED PRM	NADTSDM 4 62 DVTL 518 474 478 487 481
SISLHDPFERSFGENAF STCRPMKGQGAF LPSLDRRM LIPSQ	ELLIRPSCLF PSSLRGDQKGRLAVCTO D	RTSSLPFGLNSSSTEEN SLSECPHPHTSQFPLAFLED PRM PANCELPLHPGWAFH PLHPGWAFQ	NADTSDM 4 62 OVTL 518 474 478 487 481
EVQEQHQMEASSH RHL	475 521 474 478	Identity 46.63% 75.37% 75.38% 78.94%	

-----Мдтон

MDSPSGPRVLSSLTQDPSFTTSPA-LQGIWNGTQN-VSVRAQLLSVSPTTSAHQAAAWVP

MNSPSESRVPSSLTQDPSFTASPALLQGIWNSTQN-ISVRVQLLSVSPTTPGLQAAAWVP

MN PP SGP RV PPS PTQEP SCMAT PA P-PSWWDS SQSSISS LGR LPSIS PTAPGTWAAAWV P

MN PP SGPR-----TQEP SCVAT PAS-PSRWDG YRSSTSSLDQ PL PIS PTAARAQAAAWI P

MNPPSGPG-----AQEPGCVATAAS-PGRWHGSPRSTVGLDQALPTGPTAAGARAAAWAP

5

58

59

59

54

54

Supplemental Figure S6. Alignment of the predicted amino acid sequence of canine melanopsin with those of other species: Italian wall lizard (*Podarcis siculus*), mouse (*Mus musculus*), rat (*Rattus norvegicus*), human (*Homo sapiens*), and cat (*Felis catus*). Residues that are identical to those of the canine sequence are *shaded*. Percentage identity of canine melanopsin to those of other species is reported at the end of the alignment.

Supplementary Figure S7. Immunolabeling of *wt* and mutant retinas. In young and old *PDE6B*-mutant dogs rhodopsin (Rho) is mislocalized from OS to IS and cell bodies; rod OS are stunted (*young, B1*) and lost (*old, C1*). Cone OS (*GNAT2, hCAR,* and *LM*) are short (*young, B1 and B2*) and eventually lost (*old, C1 and C2*), and the ONL shows progressive thinning. In *CNGB3*-mutant dogs, rods (Rhod) are present with normal OS (*D1*). Fewer and abnormally-shaped cone OS are seen compared to those in *wt* (*hCAR, LM* in D2), and they lack detectable GNAT2 (D1). *STK38L*-affected dog with advanced disease shows severe degeneration of retina, with loss of characteristic layering: No rod and cone photoreceptors are present (*E1, E2*). In *PRCD*-mutant dogs, both rods and

cones are still present with normal localization of their specific markers Rho, GNAT2, LM, and hCAR despite reduced ONL thickness (*F1, F2*). In all mutants except the *STK38L*-mutant dog (*E3*), dendrites/axons of secondary neurons (*Neurofil*) as well as RGC (*NeuN*) are well-preserved (A2, B3, C3, D3, F3). Cell nuclei are shown in *blue* with DAPI. Calibration *bar* = 20 µm. OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; Rhod, rhodopsin; LM, long- and medium-wavelength-absorbing cone opsin; hCAR, human cone arrestin; NeuN, Neuronal Nuclei; Neurofil, neurofilament.

Photopigment	Canine	Human
Rhodopsin	506-510 nm	495 nm
L-opsin		560 nm
M-opsin		530 nm
L/M-opsin	555 nm	
S-opsin	429-435 nm	430 nm
Melanopsin	480 nm	480 nm

Supplementary Table S4. Maximum spectral sensitivity of canine *vs.* human photoreceptors. Dogs are functional dichromats, having combined red/green (long- and medium-wavelength-absorbing, L/M) and blue (short-wavelength-absorbing, S) cone pigments with a maximal sensitivity of 555 nm and 429-435 nm, respectively.^{1,2} Humans are trichromats having red (L), green (M), and blue (S) cone pigments with a maximal sensitivity of 560 nm, 530 nm, and 430 nm, respectively.^{3,4} Canine rhodopsin has peak sensitivity of 506-510 nm (human rhodopsin maximal sensitivity: ~495 nm).^{1,5-7} The spectral sensitivity of canine melanopsin has not been validated but it is assumed to be 480 nm, similar to other species, including humans.⁸⁻¹³

Supplementary References

1. Jacobs GH, Deegan JF II, Crognale MA, Fenwick JA. Photopigments of dogs and foxes and their implications for canid vision. *Vis Neurosci.* 1993;10:173–180.

2. Neitz J, Geist T, Jacobs GH. Color vision in the dog. Vis Neurosci. 1989;3:119–125.

3. Schnapf JL, Kraft TW, Baylor DA. Spectral sensitivity of human cone photoreceptors. *Nature*. 1987;325:439–441.

4. Merbs SL, Nathans J. Absorption spectra of human cone pigments. *Nature*. 1992;356:433–435.

5. Kemp CM, Jacobson SG. Rhodopsin levels in the central retinas of normal miniature poodles and those with progressive rod-cone degeneration. *Exp Eye Res*. 1992;54:947–956.

6. Parkes JH, Aguirre G, Rockey JH, Liebman PA. Progressive rodcone degeneration in the dog: characterization of the visual pigment. *Invest Ophthalmol. Vis Sci.* 1982;23:674–678.

7. Kraft TW, Schneeweis DM, Schnapf JL. Visual transduction in human rod photoreceptors. *J Physiol*. 1993;464:747–765.

8. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsincontaining retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. *Science*. 2002;295:1065–1070.

9. Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rodcone photoreceptive systems account for all major accessory visual functions in mice. *Nature*. 2003;424:76–81.

10. Guler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. *Nature*. 2008;453:102–105.

11. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. *Vision Res*.2007;47:946–954.

12. Dacey DM, Liao HW, Peterson BB, et al. Melanopsinexpressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. *Nature*. 2005;433:749–754.

13. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. *J Neurosci*. 2000;20:600–605.