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Supplemental Methods

RNA-seq Datasets

RNA-seq meta-analysis was performed using reads from four studies utilizing the
[llumina Genome Analyzer platform (GSE41745, GSE54456/GSE63979 and GSE67785) 44
patients) (Jabbari et al., 2012; Li et al., 2014; Swindell et al., 2015; Tsoi et al., 2015). Reads in
each study had been generated from lesional (PP) and uninvolved (PN) skin of psoriasis patients.
Skin samples were obtained from consenting patients following a 2-4 week washout period
during which patients did not use systemic medications. PN samples were macroscopically
normal skin obtained from the buttock/upper thigh (GSE54456/GSE63979 and GSE67785) (L.i et
al., 2014; Swindell et al., 2015; Tsoi et al., 2015) or a region anatomically comparable to the PP
biopsy site in a given patient (GSE41745) (Jabbari et al., 2012). The complete meta-dataset
included RNA-seq reads from 88 paired PP and PN samples (n = 44 patients), based upon reads
from GSE41745 (n = 3), GSE54456/GSE63979 (n = 27) and GSE6778 (n = 14). Informed
written consent was obtained in each study from volunteer patients in accordance with
Declaration of Helsinki principles, with protocols approved by institutional review boards of
participating institutions (University of Michigan, Ann Arbor, MI; Rockefeller University, New

York, NY).

RNA-seq read processing and gene expression quantification

Sequence files in fastq format were downloaded from the Sequence Read Archive using
SRA Toolkit version 2.3.5 (function: fastg-dump) (Kodama et al., 2012). Quality scores were
encoded in phred33 format, or otherwise, Trimmomatic was used to convert native scores to
phred33 format (option: TOPHRED33) (Bolger et al., 2014). This ensured that all files were
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homogenous with regard to quality score encoding. FastQC was used to assess sequence quality
before and after read processing (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Read processing steps included adaptor removal (cutadapt), read trimming (fastx-toolkit),
running-sum filtering (cutadapt), and window-based filtering (fastx-toolkit)
(http://hannonlab.cshl.edu/fastx_toolkit/; Martin, 2011). The initial 10 bases were removed from
reads, since FastQC analysis had indicated nucleotide frequency bias at these bases for each
dataset, as previously observed for reads generated using the Illumina platform (Hansen et al.,
2010). The cutadapt running-sum filter was then applied to remove reads with low phred33
scores (with —q 25 argument) (Martin, 2011). The fastx-toolkit window-based filter was next
used to remove reads with phred33 scores less than 25 at > 50% of read sequence (i.e.,
arguments -q 25 -p 50) (http://hannonlab.cshl.edu/fastx_toolkit/). Following these preprocessing
steps, the average number of reads per sample was reduced from 30.2 to 25.1 million
(GSE41745), from 45.2 to 31.6 million (GSE54456/GSE63979), and from 29.3 to 29.0 million
(GSE67785).

Processed reads were mapped to the UCSC hg19 genome using tophat (version: 2.0.13)
(Kim et al., 2013). Reads were mapped using UCSC hg19 transcript annotation files in GTF
format (-G option) with coverage based search for exon junctions disabled (--no-coverage-
search). The average percentage of mapped reads among samples was 83.8% (GSE41745),
93.0% (GSE54456/GSE63979) and 95.1% (GSE67785). Average intragenic mapping rates were
80.7% (GSE41745), 91.0% (GSE54456/GSE63979) and 92.7% (GSE67785). Bam files
generated by tophat were sorted and indexed using SAMtools (Li et al., 2009). The number of
reads mapping to each gene feature was then tabulated using HTSeq (function: htseq-count)

(Anders et al., 2015). Reads with alignment quality lower than 10 were excluded from

3



tabulations (-a 10). Reads were also excluded if they mapped ambiguously to multiple features or
if they partially mapped to sequence outside of known exons (-m intersection-strict). Cufflinks
was used to quantify expression in terms of the number of fragments per kilobase of transcript
per million mapped reads (FPKM) (Trapnell et al., 2012). Read mapping rates and other quality
control indices for each sample were calculated using RSeQC and RNA-SeQC (DeLuca et al.,

2012; Wang et al., 2012).

RNA-seq differential expression analysis

Differential expression analysis was performed for 15643 protein-coding features with
detectable expression in at least 25% (22) of the 88 PP and PN samples. A feature was
considered detected in a sample if the lower FPKM 95% confidence limit generated by Cufflinks
was greater than zero, and if the count per million mapped reads (cpm) was greater than 0.25
(Swindell et al., 2014). To evaluate differential expression, raw counts from each dataset were
first normalized independently using the voom algorithm, which generates logz-normalized
expression values appropriate for differential expression tests relying on the normal distribution
(Law et al., 2014). Voom-normalized expression values for each dataset were generated using
patient as a blocking variable while utilizing inter-patient correlation estimates (i.e., voom
options “block” and “correlation”). PP versus PN differences in voom-normalized expression
estimates were calculated for each patient, and these differences were then pooled across datasets
to yield a meta-dataset with differences from 44 patients. Significant changes in gene expression
were evaluated by linear modeling with empirical Bayes-based shrinkage of gene-wise variance
estimates towards a common value (R package: limma; functions: ImFit and eBayes) (Smyth,

2004). To control the false discovery rate (FDR), raw p-values generated from limma linear



models were adjusted using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).
Genes with two-fold change in expression (PP/PN > 2.0 or < 0.50) and FDR-adjusted p-value

less than 0.05 were considered differentially expressed (DEGS).

Additional Data Resources

A microarray gene signature database was used to compare our DEG list with changes in
gene expression observed in other human diseases, cultured KCs, and PBMCs (Swindell et al.,
2015). The complete database includes gene signatures from 2178 treatment comparisons
associated with 21,337 unique Gene Expression Omnibus (GEO) samples (Swindell et al., 2015).
A subset of this database was used in the current study, including gene signatures associated with
other human skin diseases (98 signatures), KC cytokine responses (59 signatures), and PBMC
tissue (421 signatures) (see Supplemental Data File 2). The 98 human skin disease gene
signatures were generated from microarray comparisons between diseased and macroscopically
normal skin samples (full thickness biopsies). The 59 KC cytokine signatures were generated
from comparisons between cytokine-treated KCs and control cells (untreated or mock-treated).
The 421 PBMC signatures were generated from comparisons between groups of patients that
differed according to disease status, phenotypic traits, or treatments (e.g., pre- and post-
vaccination). For each signature and treatment comparison, differential expression statistics were
calculated for all genes represented on the microarray platform used by a given study (i.e.,
estimated fold-change, raw p-value and FDR-adjusted p-value) (Swindell et al., 2015). Linear
modeling with moderated t-statistics (limma) was used to assess differential expression (see

above) (Smyth, 2004). To ensure that differences in sample or microarray processing between



laboratories and studies did not influence our results, in all cases comparisons were only made

between samples derived from the same GEO series accession.

Psoriasis Specificity Index (PSI)

Psoriasis-specific and non-specific DEGs were distinguished using a psoriasis specificity
index (PSI). The PSI was calculated based upon gene expression changes in n = 98 microarray
treatment comparisons between diseased and macroscopically normal skin. For the jth
comparison, changes in DEG expression were quantified based upon the p-value (P;) generated
from the two sample linear model comparison of expression in diseased and normal skin. The p-
value was logzo-transformed and multiplied by a directionality indicator (d;) defined as -1 if the
change in gene expression was psoriasis-consistent and 1 if the change was psoriasis-
inconsistent. This calculation was performed for all treatment comparisons and PSI was defined

as the average value across the n comparisons (Equation 1).

1

PSI thus reflects both the directionality and magnitude of psoriasis DEG expression
changes in other human skin diseases, allowing discrimination between DEGs that are psoriasis-
specific (PSI = 0 or PSI > 0) and non-specific (PSI < 0). A PSI of zero indicates that the DEG is
not consistently altered in other skin diseases. A value of -1.30 or less indicates that, on average,
the DEG shows significant (P < 0.05) psoriasis-like gene expression changes in other diseases.
Alternatively, a value of 1.3 or greater would indicate that, on average, the DEG shows
significant (P < 0.05) gene expression changes in other skin diseases that are opposite in

direction to those observed in psoriasis lesions.



Most microarray platforms provide only partial genome coverage and therefore some
psoriasis DEGs identified by RNA-seq are not represented by probes. Of 207074 p-values used
for PSI calculations (2113 DEGs x 98 microarray treatment comparisons), 74.4% (154063) could
be estimated directly from microarray expression values, but the remaining 25.6% (53011) were
missing due to lack of probe representation on microarray platforms. For these 53011 instances,
p-values required by Equation 1 (above) were obtained using nearest neighbor imputation, with
nearest neighbors of psoriasis DEGs identified by co-expression analysis (using an independent
RNA-seq dataset; described below). Given a missing DEG p-value for experiment j, we
identified p-values for the top 10 non-missing genes most strongly co-expressed with that DEG,
and the average of these 10 p-values was calculated and imputed into Equation 1. Thus, for
DEGs not represented in a given microarray experiment, treatment effects (p-values) were
approximated based upon p-values obtained for the 10 most strongly co-expressed genes
measured in the experiment.

An independent RNA-seq dataset was needed to identify nearest neighbors most strongly
co-expressed with psoriasis DEGs. For this purpose, we utilized 162 skin biopsies analyzed by
RNA-seq, which included 72 PP samples and 90 normal skin samples from control subjects
(GSE54456/GSE63979) (Li et al., 2014; Tsoi et al., 2015). These samples had not been utilized
for identification of psoriasis DEGs (above), since we only used patients with paired PP and PN
samples to identify DEGs. The 162 samples were processed and mapped to the UCSC hg19
genome following the same RNA-seq processing steps outlined above. Gene read counts were
calculated for each sample (HTSeq) and these were subsequently normalized using the voom
algorithm (Law et al., 2014). A gene distance matrix was then calculated based upon Spearman

correlation coefficients (1 — rs) between expression profiles (n = 162 samples). This matrix was
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then used to identify genes most strongly co-expressed with psoriasis DEGs, and these nearest

neighbor genes were then used if necessary to obtain an imputation p-value for Equation (1).

Cytokine-treated keratinocytes

Normal human keratinocyte (NHK) cultures were established in serum-free medium
(Medium 154, Invitrogen, Portland, OR). Three independent cell lines from separate donors
were treated identically and used as biological replicates. Second or third-passage cells from
each lineage were maintained 4 days post-confluence and starved of growth factors for 24 hours
(0.1 mM calcium). Cells were subsequently treated with recombinant human IL-17A (20 ng/mL,;

R&D Systems, Minneapolis, MN) for 8 or 24 hours prior to RNA extraction.

Immunohistochemistry

Lesional (PP) and uninvolved (PN) tissue samples were obtained following protocols
described previously (Swindell et al., 2013). Informed written consent was obtained from all
patients using procedures approved by the University of Michigan institutional review board
(HUMOO0037994). Paraffin embedded tissue sections (PP, PN and NN) were heated at 60°C for
30 minutes, de-paraffinized, and rehydrated. Slides were placed in PH9 antigen retrieval buffer
and heated at 95°C for 20 minutes in a hot water bath. After cooling, slides were treated with 3%
H20> (5 minutes) and blocked using 10% goat serum (30 minutes). Overnight incubation (4°C)
was then performed using anti-human ATP1B1 (Lifespan Biosciences, cat. no. LS-
B5781/68401) at a concentration of 1jug/ml. Slides were then washed, treated with secondary

antibody, peroxidase (30 minutes) and diaminobenzidine substrate.



Real time quantitative reverse transcription PCR (RT-PCR)

Lesional and uninvolved skin biopsies were flash-frozen and a rotor-stator homogenizer
was used to disrupt and homogenize samples. RNA was extracted using the RNeasy Fibrous
Tissue kit (Qiagen, cat. no. 74704) with on-column DNAase digestion (Qiagen, cat. no. 79254).
RNA from cultured KCs was isolated using the RNeasy Protect Cell Mini Kit (Qiagen, cat. no.
74624) with on-column DNAase digestion (Qiagen, cat. no. 79254). RNA quantification was
performed using a NanoDrop spectrophotometer and the Agilent Bioanalyzer was used to assess
RNA quality. Pre-designed primer assays were used for amplification of ATP1B1 (Applied
Biosystems, cat. no. Hs00426868_g1), PON2 (Hs00165563 m1), KRT16 (Hs04194235 g1) and
STAT1 (Hs01013996_m1). Cycle threshold (Ct) values were normalized using RPLPO

(Hs99999902_m1) as an endogenous control gene.
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Supplemental Figures

Figure S1. RNA-seq data from different laboratories diverge in their expression profiles
but are similar with regard to expression differences between lesional (PP) and

uninvolved (PN) skin. (A) PP and PN samples were plotted with respect to the first two
principal component axes (n = 88 samples total). (B) DEG scores were calculated based upon
100 PP-increased DEGs (horizontal axis) and 100 PP-decreased DEGs (vertical axis) previously
identified from microarray meta-analysis (n = 237 patients). For each patient, scores represent
the average RNA-seq-based logz-transformed FC estimate (PP/PN) among the 100 PP-increased
microarray-based DEGs (horizontal axis) and 100 PP-decreased microarray-based DEGs
(vertical axis). (C) The 44 patients were clustered (complete linkage) based upon genome-wide

expression differences between PP and PN samples (Euclidean distance).

Figure S2. Meta-analysis improves correlation between RNA-seq and microarray fold-
change estimates. Fold-change estimates (PP/PN) from a previous microarray meta-analysis (n
= 237 patients) were compared to those obtained using RNA-seq. The microarray estimates were
compared to those calculated from individual RNA-seq studies (A — C), as well as those
calculated from meta-analysis of the three RNA-seq studies (D). The spearman correlation
coefficient estimate is shown in each plot (lower right). Yellow ellipses outline the 80% of genes

closest to the bivariate mean (Mahalanobis distance).

Figure S3. Overlap among psoriasis DEGs identified from individual RNA-seq datasets

and meta-analysis. Psoriasis DEGs were identified based upon PP and PN samples from three

individual RNA-seq datasets (GSE41745, n = 3 patients; GSE54456/GSE63979, n = 27,
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GSE67785, n = 14) and a pooled meta-analysis of samples from all three datasets (n = 44). RNA-
seq reads from each source were processed using the same methodology and DEGs were
identified using the same thresholds (FDR < 0.05 with FC > 2 or FC < 0.50). Venn diagrams

show the overlap among (A) PP-increased and (B) PP-decreased DEGs.

Figure S4. Genes with decreased expression in psoriasis lesions are longer and weakly

expressed (RNA-seq meta-analysis). RNA-seq meta-analysis was used to identify 2113 DEGs
in lesional psoriasis skin (FC > 2 or < 0.50 with FDR < 0.05). Genes were binned according to
(A) gene length, (B) GC content, or (C) average FPKM (PP and PN skin) and the percentage of
DEGs within each bin is shown. The percentage of PP-increased and PP-decreased DEGs within
each bin is indicated (red: PP-increased; blue: PP-decreased; yellow font: FDR < 0.05, Fisher’s
Exact Test). Asterisk symbols denote a significantly increased percentage of DEGs within a
given bin (PP-increased + PP-decreased; FDR < 0.05, Fisher’s Exact Test). (D) Overlap between
DEGs identified from RNA-seq (n = 44 patients) and microarray (n = 237) meta-analyses. (E)
Mean FPKM among DEGs identified specifically by RNA-seq and microarray. Mean FPKM
was calculated across 88 PP and PN samples and the median among DEGs (middle line: median;
boxes span lower and upper quartiles). (F) Correlation and RNA-seq and microarray FC
estimates (PP/PN) among genes with different expression levels (FPKM). Correlations are

shown for each dataset individually (3 <n <27) and the meta-dataset (n = 44).

Figure S5. Genes with decreased expression in psoriasis lesions are longer and weakly

expressed (Analysis of individual datasets). Analyses shown in Figure S4A — S4C were

repeated with respect to each individual RNA-seq dataset (GSE41745, GSE54456/GSE63979

13



and GSE67785). Genes were binned according to gene length (A — C), GC content (D — F), or
average FPKM in PP and PN skin (G — I). The percentage of DEGs within each bin is shown
along with the separate contributions of PP-increased DEGs (red) and PP-decreased DEGs (blue)
(yellow font: FDR < 0.05, Fisher’s Exact Test). Asterisk symbols denote a significantly
increased percentage of DEGs within a given bin (PP-increased + PP-decreased; FDR < 0.05,

Fisher’s Exact Test).

Figure S6. Most psoriasis cutaneous DEGs are similarly altered in other human skin

diseases (psoriasis specificity index). Psoriasis specificity index (PSI) was calculated for (A)
954 PP-increased DEGs and (B) 1159 PP-decreased DEGs. Most DEGs are non-specific as
indicated by negative PSI values (right). Heatmaps show changes in DEG expression in 98
treatment comparisons between diseased and normal skin. DEG expression changes are
quantified using signed logio-transformed p-values (LogioP; positive values: increased
expression in diseased sin; negative values: decreased expression in diseased skin). In both (A)
and (B), rows and columns have been clustered using hierarchical clustering (average linkage)
and the Euclidean distance. Disease classifications are indicated above each heatmap (see

legend).

Figure S7. The most and least psoriasis-specific DEGs and their changes in expression

across human skin disease studies. (A) PP-increased DEGs. PSI was used to identify the 15
least psoriasis-specific PP-increased DEGs (top) and the 15 most psoriasis-specific PP-increased
DEGs (bottom). (B) PP-decreased DEGs. PSI was used to identify the 15 least psoriasis-specific

PP-decreased DEGs (top) and the 15 most psoriasis-specific PP-decreased DEGs (bottom). In
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both (A) and (B), DEGs are listed in the left margin and the estimated PSI is shown in

parentheses.

Figure S8. Gene Ontology (GO) Biological process (BP) terms with differential

enrichment between psoriasis-specific and non-specific DEGs. (A) GO BP terms enriched
with respect to psoriasis-specific but not non-specific PP-increased DEGs. (B) GO BP terms
enriched with respect to non-specific but not psoriasis-specific PP-increased DEGs. (C) GO BP
terms enriched with respect to psoriasis-specific but not non-specific PP-decreased DEGs. (D)
GO BP terms enriched with respect to non-specific but not psoriasis-specific PP-decreased
DEGs. In (A) — (D), enrichment of GO BP terms was compared between the 100 most psoriasis-
specific DEGs (highest PSI) and 100 least psoriasis-specific DEGs (lowest PSI). Horizontal axes
show -logio-transformed p-values obtained from testing whether the indicated GO BP term is
enriched with respect to each gene set. Example DEGs associated with each GO BP term are

listed in yellow font.

Figure S9. PP-increased DEGs (psoriasis lesions) and PP-decreased DEGs (PBMC)

overlap significantly with psoriasis GWAS signals. Overlap was evaluated between genes
surrounding psoriasis-associated SNPs and (A, B) cutaneous PP-increased DEGs, (C, D)
cutaneous PP-decreased DEGs, (E) DEGs with decreased expression in psoriasis patient PBMC,
and (F) DEGs with decreased expression in psoriasis and multiple sclerosis (MS) patient PBMC.
Each figure compares the GWAS/DEG and GWAS/non-DEG overlap with respect to varying
window sizes (0 — 200 kb; horizontal axis), where window size reflects the amount of sequence

scanned to identify genes near psoriasis-associated SNPs. Larger window sizes are more
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permissive and expand the number of genes associated with GWAS signals. For each window
size, we tested whether GWAS/DEG overlap was significantly greater than GWAS/non-DEG

overlap (yellow: P < 0.05, Fisher’s Exact Test).

16



Figure S1

N O |

g . |
= Boseaires ¥ K O — Hocstarras ol D mmmmmm =
Q _ [|m csesr7as ¥ e O O GSE67785
C &1|10FP (/]
o] % PN *‘ © |
= (La S | @ _o
" e : %695

[Te)

O o *y o T3] 03%
© * N | (o) (@]
Q2 8 o | I o (o]
O O = o I o 0
C o &) l
= ¥10 Qo |
m % I I I | | | D g i ! | | I 1 |
A -100 -80 -60 -40 -20 0 20 B 1 2 4 8 16 32
( ) Principal Component 1 ( ) Increased DEG Score

(C)

Ll

e — Dataset

| | | |

0.8 06 04 0.2 0.5 0.71 1 1.41 2 @ GSE54456/GSE63979
. B GSE41745
Distance PP vs PN (Fold-Change) B GSE67785

o




Figure S2

~ 7o
g ¥
g © o%@/
S .
s
SR ) I
a »
T & GSE41745
gy r=0.678

° 0.I25 1 AII- 1|6 6I4 256
(A) PP/PN (RNA-seq)
‘;ﬁ‘ L o P £ ©
O3 o 0
F- o -
O o |
o~ o
S -
s | 9%
z
(2 .
T 2 loTh B GSE67785
a - 0© : r= 0.798

0.I25 ’1I 4I- 1|6 6I4 256

(C)

PP/PN (RNA-seq)

16 64 256
1

4

1

PP/PN (Microarray)
16 64 256 0.06

4

1

PP/PN (Microarray)

0.06

(D)

GSEb54456/63979
r=0.773

1 4
P/PN (RNA-seq)

16 64 256

~ R T e

r=0.837
n = 44 Patients

1 4 16 64 256

PP/PN (RNA-seq)



Figure S3

GSE54456/63979 GSE67785 GSE54456/63979 GSE67785

Meta % GSE41745  Meta %

GSE41745




Figure S4

6€°0
8¢0
€0
€0

(B)

98¢

141

€cl

aol

v'6l
A3
LS
L'ev
9's¢
I'og
¥'se
(A T4
9Ll
Svi
8Ll
296
6€°L
€S
LS°€E

Gene Length (kb)

X %E Pl
%t 0L
%86
%8
x %S 0L %<8
%9'6
T T T T
0¢ Gl oL ]
$O3A%
3 %LVl
X %98
X %L'6
X %Z 0k
*x %401 %88
T T T T
0¢ §Gi ol S
$93A%

g8’l

<

RNA-seq

w
w n »
I (/)] % G
S 5o
50 :
j= (]
%8
%€E'8
X
L3 %4701 %28
* %L SL %28
* %P 9l %E’6
%L %26
%LLE
I I 1 I |
g¢ 0 SIL 0L ¢
$93A%

a

8yl

(A4
vec
) ¥4
€9l
L'ElL
901
¥8'8
€L

L9
L0'S
6L'Y
gee
65°C
c6’l
Se'l
16°0
§SS°0
820
€10

Mean FPKM

(C)

9'coy
S'vS
8'ce
§'ve
L'6l
€Sl
LTl
901
86'8
[4: )
8’9
s’
99’y
£8'¢
90'¢
8e'e
€L’}
8Ll
69°0
S¢°0

GSE54456/GSE63979 (n = 27)
= GSE67785 (n = 14)
= Pooled (n = 44)

FPKM

== GSE41745 (n = 3)

080 0’0 090 -
uoneaLI0) ueweadg .._._||\

n=12
7.93
Array-
specific

1.26
n =729
Decreased DEGs

RNA-seq-
specific

7.67
n=29

Array-
specific

Increased DEGs

2.08
n = 446

RNA-seq-
specific

I
ot L€ b
INMdd Uesiy

(E)



Figure S5

591

82§
LT¢
§'¢e
L'l
(4"
gLl
(A
892
9£°9
S2°S
FXA 4
Iv'e
€9'¢
S6°L
L1271
1670
S50
62°0
rAN

Mean FPKM

p—
—
N

SS1
L'6%
'€
L'1e
2’91
oy 2
8'0l
96'8
YL
619
rL's
1A 4
9g°¢
9C

S6°L
62’1
€670
1570
62°0
€10

Mean FPKM

—

9
6'LL
L'l
97’8
259
61°S
Ly
FAR
8.2
[
8’1l
iv'i
8Ll
£6'0
cl'0
S50
o

62°0
6170
Lo

Mean FPKM

(1] 59°0
S5l 9'0
L0l 85'0
8'8L 95'0
109 = ¥5°0
6t m €50
o ~— Zs0 ..m
ARSI S0 @
L'z ._m.. 67'0 W=
Ve o w0 S
L6k @ 91'0 O
g'gl S'0
e @ o Q
oL & ero (O
eLre @ Zv'o
g9 (O 10
90'S ¥'0
Z5'¢ 6£°0
602 1€°0
56°0 9¢'0
Gl oL S 0 -~ 6§l oL S 0 - geg 02 S1L 0L 9 0O
(s930a%) §82293s9 2 (s93a%) §82293s9 L (s93a%) §822938D
%G1 0ee $9'0
GS1L 90
101 850
8'87 950
109 =~ 50
o = £5°0
o ~ 290 =
ces ...m mqoo 2
L1z
'€ mu 81’0 m
L6l @ 9’0 O
851 §¥'0
S @ o O
Lo ¢ er'0 O
€8 Q@ cv'o
x g9 O o
* 90'S ¥o
x Z5'¢ 6€°0
602 L0
S6°0 9¢'0
0¢ m_‘ or g 0 -~ 0¢ GIL 0l g 0 .= G¢ *TA gl g 0
Amomﬁ_o\ov 6.6£9/96¥¥S3SO B AWONDHXL 6.6£9/96¥¥G3SO E (s93A%) 626£9389/96+¥53SO H
%6 L LEE G9°0 %C 6
vSi 90
901 85'0
L 95°0
685 ¥S°0
L m €50
768 ~— Z5°0 ..m
vze o §0 @
%59 1’22 ..m.__ 610 =
9z &2 870 &
L8k @ 91'0 O
GG o S0
8zl g o O
90l ¢ ev'o (D
198 Q@ Zr'o
9 (O L0 x Yol
v0'S 0 X %6°L
15'€ 6£°0 X %l 6
102 180 X %60k
g6'0 9¢'0 X %z ¥l
oL 8 9 ¥ ¢ O o_‘ 8 9 v ¢ 0 -~ 00 m_‘ or S 0

(s93Aa%) sv2L¥3SO

<L (so3a%) SyZLPaSO 2 (s93a%) Sy2LPIASO

T}

S’



Figure S6

(A) PP-increased DEGs
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Figure S7
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Figure S8
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Figure S9
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