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Supplemental Methods 

RNA-seq Datasets 

 RNA-seq meta-analysis was performed using reads from four studies utilizing the 

Illumina Genome Analyzer platform (GSE41745, GSE54456/GSE63979 and GSE67785) 44 

patients) (Jabbari et al., 2012; Li et al., 2014; Swindell et al., 2015; Tsoi et al., 2015). Reads in 

each study had been generated from lesional (PP) and uninvolved (PN) skin of psoriasis patients. 

Skin samples were obtained from consenting patients following a 2-4 week washout period 

during which patients did not use systemic medications. PN samples were macroscopically 

normal skin obtained from the buttock/upper thigh (GSE54456/GSE63979 and GSE67785) (Li et 

al., 2014; Swindell et al., 2015; Tsoi et al., 2015) or a region anatomically comparable to the PP 

biopsy site in a given patient (GSE41745) (Jabbari et al., 2012). The complete meta-dataset 

included RNA-seq reads from 88 paired PP and PN samples (n = 44 patients), based upon reads 

from GSE41745 (n = 3), GSE54456/GSE63979 (n = 27) and GSE6778 (n = 14). Informed 

written consent was obtained in each study from volunteer patients in accordance with 

Declaration of Helsinki principles, with protocols approved by institutional review boards of 

participating institutions (University of Michigan, Ann Arbor, MI; Rockefeller University, New 

York, NY). 

 

RNA-seq read processing and gene expression quantification 

  Sequence files in fastq format were downloaded from the Sequence Read Archive using 

SRA Toolkit version 2.3.5 (function: fastq-dump) (Kodama et al., 2012). Quality scores were 

encoded in phred33 format, or otherwise, Trimmomatic was used to convert native scores to 

phred33 format (option: TOPHRED33) (Bolger et al., 2014). This ensured that all files were 
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homogenous with regard to quality score encoding. FastQC was used to assess sequence quality 

before and after read processing (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Read processing steps included adaptor removal (cutadapt), read trimming (fastx-toolkit), 

running-sum filtering (cutadapt), and window-based filtering (fastx-toolkit) 

(http://hannonlab.cshl.edu/fastx_toolkit/; Martin, 2011). The initial 10 bases were removed from 

reads, since FastQC analysis had indicated nucleotide frequency bias at these bases for each 

dataset, as previously observed for reads generated using the Illumina platform (Hansen et al., 

2010). The cutadapt running-sum filter was then applied to remove reads with low phred33 

scores (with –q 25 argument) (Martin, 2011). The fastx-toolkit window-based filter was next 

used to remove reads with phred33 scores less than 25 at > 50% of read sequence (i.e., 

arguments -q 25 -p 50) (http://hannonlab.cshl.edu/fastx_toolkit/). Following these preprocessing 

steps, the average number of reads per sample was reduced from 30.2 to 25.1 million 

(GSE41745), from 45.2 to 31.6 million (GSE54456/GSE63979), and from 29.3 to 29.0 million 

(GSE67785).  

 Processed reads were mapped to the UCSC hg19 genome using tophat (version: 2.0.13) 

(Kim et al., 2013). Reads were mapped using UCSC hg19 transcript annotation files in GTF 

format (-G option) with coverage based search for exon junctions disabled (--no-coverage-

search). The average percentage of mapped reads among samples was 83.8% (GSE41745), 

93.0% (GSE54456/GSE63979) and 95.1% (GSE67785). Average intragenic mapping rates were 

80.7% (GSE41745), 91.0% (GSE54456/GSE63979) and 92.7% (GSE67785). Bam files 

generated by tophat were sorted and indexed using SAMtools (Li et al., 2009). The number of 

reads mapping to each gene feature was then tabulated using HTSeq (function: htseq-count) 

(Anders et al., 2015). Reads with alignment quality lower than 10 were excluded from 
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tabulations (-a 10). Reads were also excluded if they mapped ambiguously to multiple features or 

if they partially mapped to sequence outside of known exons (-m intersection-strict). Cufflinks 

was used to quantify expression in terms of the number of fragments per kilobase of transcript 

per million mapped reads (FPKM) (Trapnell et al., 2012). Read mapping rates and other quality 

control indices for each sample were calculated using RSeQC and RNA-SeQC (DeLuca et al., 

2012; Wang et al., 2012). 

 

RNA-seq differential expression analysis 

 Differential expression analysis was performed for 15643 protein-coding features with 

detectable expression in at least 25% (22) of the 88 PP and PN samples. A feature was 

considered detected in a sample if the lower FPKM 95% confidence limit generated by Cufflinks 

was greater than zero, and if the count per million mapped reads (cpm) was greater than 0.25 

(Swindell et al., 2014). To evaluate differential expression, raw counts from each dataset were 

first normalized independently using the voom algorithm, which generates log2-normalized 

expression values appropriate for differential expression tests relying on the normal distribution 

(Law et al., 2014).  Voom-normalized expression values for each dataset were generated using 

patient as a blocking variable while utilizing inter-patient correlation estimates (i.e., voom 

options “block” and “correlation”). PP versus PN differences in voom-normalized expression 

estimates were calculated for each patient, and these differences were then pooled across datasets 

to yield a meta-dataset with differences from 44 patients. Significant changes in gene expression 

were evaluated by linear modeling with empirical Bayes-based shrinkage of gene-wise variance 

estimates towards a common value (R package: limma; functions: lmFit and eBayes) (Smyth, 

2004). To control the false discovery rate (FDR), raw p-values generated from limma linear 
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models were adjusted using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). 

Genes with two-fold change in expression (PP/PN > 2.0 or < 0.50) and FDR-adjusted p-value 

less than 0.05 were considered differentially expressed (DEGs).  

 

Additional Data Resources 

 A microarray gene signature database was used to compare our DEG list with changes in 

gene expression observed in other human diseases, cultured KCs, and PBMCs (Swindell et al., 

2015). The complete database includes gene signatures from 2178 treatment comparisons 

associated with 21,337 unique Gene Expression Omnibus (GEO) samples (Swindell et al., 2015). 

A subset of this database was used in the current study, including gene signatures associated with 

other human skin diseases (98 signatures), KC cytokine responses (59 signatures), and PBMC 

tissue (421 signatures) (see Supplemental Data File 2). The 98 human skin disease gene 

signatures were generated from microarray comparisons between diseased and macroscopically 

normal skin samples (full thickness biopsies). The 59 KC cytokine signatures were generated 

from comparisons between cytokine-treated KCs and control cells (untreated or mock-treated). 

The 421 PBMC signatures were generated from comparisons between groups of patients that 

differed according to disease status, phenotypic traits, or treatments (e.g., pre- and post-

vaccination). For each signature and treatment comparison, differential expression statistics were 

calculated for all genes represented on the microarray platform used by a given study (i.e., 

estimated fold-change, raw p-value and FDR-adjusted p-value) (Swindell et al., 2015). Linear 

modeling with moderated t-statistics (limma) was used to assess differential expression (see 

above) (Smyth, 2004). To ensure that differences in sample or microarray processing between 
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laboratories and studies did not influence our results, in all cases comparisons were only made 

between samples derived from the same GEO series accession. 

 

Psoriasis Specificity Index (PSI) 

 Psoriasis-specific and non-specific DEGs were distinguished using a psoriasis specificity 

index (PSI). The PSI was calculated based upon gene expression changes in n = 98 microarray 

treatment comparisons between diseased and macroscopically normal skin. For the jth 

comparison, changes in DEG expression were quantified based upon the p-value (Pj) generated 

from the two sample linear model comparison of expression in diseased and normal skin. The p-

value was log10-transformed and multiplied by a directionality indicator (dj) defined as -1 if the 

change in gene expression was psoriasis-consistent and 1 if the change was psoriasis-

inconsistent. This calculation was performed for all treatment comparisons and PSI was defined 

as the average value across the n comparisons (Equation 1). 

 

 PSI thus reflects both the directionality and magnitude of psoriasis DEG expression 

changes in other human skin diseases, allowing discrimination between DEGs that are psoriasis-

specific (PSI ≈ 0 or PSI > 0) and non-specific (PSI < 0). A PSI of zero indicates that the DEG is 

not consistently altered in other skin diseases. A value of -1.30 or less indicates that, on average, 

the DEG shows significant (P < 0.05) psoriasis-like gene expression changes in other diseases. 

Alternatively, a value of 1.3 or greater would indicate that, on average, the DEG shows 

significant (P < 0.05) gene expression changes in other skin diseases that are opposite in 

direction to those observed in psoriasis lesions.  
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 Most microarray platforms provide only partial genome coverage and therefore some 

psoriasis DEGs identified by RNA-seq are not represented by probes. Of 207074 p-values used 

for PSI calculations (2113 DEGs × 98 microarray treatment comparisons), 74.4% (154063) could 

be estimated directly from microarray expression values, but the remaining 25.6% (53011) were 

missing due to lack of probe representation on microarray platforms. For these 53011 instances, 

p-values required by Equation 1 (above) were obtained using nearest neighbor imputation, with 

nearest neighbors of psoriasis DEGs identified by co-expression analysis (using an independent 

RNA-seq dataset; described below). Given a missing DEG p-value for experiment j, we 

identified p-values for the top 10 non-missing genes most strongly co-expressed with that DEG, 

and the average of these 10 p-values was calculated and imputed into Equation 1. Thus, for 

DEGs not represented in a given microarray experiment, treatment effects (p-values) were 

approximated based upon p-values obtained for the 10 most strongly co-expressed genes 

measured in the experiment.  

 An independent RNA-seq dataset was needed to identify nearest neighbors most strongly 

co-expressed with psoriasis DEGs. For this purpose, we utilized 162 skin biopsies analyzed by 

RNA-seq, which included 72 PP samples and 90 normal skin samples from control subjects 

(GSE54456/GSE63979) (Li et al., 2014; Tsoi et al., 2015). These samples had not been utilized 

for identification of psoriasis DEGs (above), since we only used patients with paired PP and PN 

samples to identify DEGs. The 162 samples were processed and mapped to the UCSC hg19 

genome following the same RNA-seq processing steps outlined above. Gene read counts were 

calculated for each sample (HTSeq) and these were subsequently normalized using the voom 

algorithm (Law et al., 2014). A gene distance matrix was then calculated based upon Spearman 

correlation coefficients (1 – rs) between expression profiles (n = 162 samples). This matrix was 
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then used to identify genes most strongly co-expressed with psoriasis DEGs, and these nearest 

neighbor genes were then used if necessary to obtain an imputation p-value for Equation (1). 

 

Cytokine-treated keratinocytes 

 Normal human keratinocyte (NHK) cultures were established in serum-free medium 

(Medium 154, Invitrogen, Portland, OR).  Three independent cell lines from separate donors 

were treated identically and used as biological replicates. Second or third-passage cells from 

each lineage were maintained 4 days post-confluence and starved of growth factors for 24 hours 

(0.1 mM calcium). Cells were subsequently treated with recombinant human IL-17A (20 ng/mL; 

R&D Systems, Minneapolis, MN) for 8 or 24 hours prior to RNA extraction. 

 

Immunohistochemistry  

 Lesional (PP) and uninvolved (PN) tissue samples were obtained following protocols 

described previously (Swindell et al., 2013). Informed written consent was obtained from all 

patients using procedures approved by the University of Michigan institutional review board 

(HUM00037994). Paraffin embedded tissue sections (PP, PN and NN) were heated at 60oC for 

30 minutes, de-paraffinized, and rehydrated. Slides were placed in PH9 antigen retrieval buffer 

and heated at 95oC for 20 minutes in a hot water bath. After cooling, slides were treated with 3% 

H2O2 (5 minutes) and blocked using 10% goat serum (30 minutes). Overnight incubation (4oC) 

was then performed using anti-human ATP1B1 (Lifespan Biosciences, cat. no. LS-

B5781/68401) at a concentration of 1µg/ml. Slides were then washed, treated with secondary 

antibody, peroxidase (30 minutes) and diaminobenzidine substrate. 
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Real time quantitative reverse transcription PCR (RT-PCR) 

 Lesional and uninvolved skin biopsies were flash-frozen and a rotor-stator homogenizer 

was used to disrupt and homogenize samples. RNA was extracted using the RNeasy Fibrous 

Tissue kit (Qiagen, cat. no. 74704) with on-column DNAase digestion (Qiagen, cat. no. 79254). 

RNA from cultured KCs was isolated using the RNeasy Protect Cell Mini Kit (Qiagen, cat. no. 

74624) with on-column DNAase digestion (Qiagen, cat. no. 79254). RNA quantification was 

performed using a NanoDrop spectrophotometer and the Agilent Bioanalyzer was used to assess 

RNA quality. Pre-designed primer assays were used for amplification of ATP1B1 (Applied 

Biosystems, cat. no. Hs00426868_g1), PON2 (Hs00165563_m1), KRT16 (Hs04194235_g1) and 

STAT1 (Hs01013996_m1). Cycle threshold (Ct) values were normalized using RPLP0 

(Hs99999902_m1) as an endogenous control gene.  
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Supplemental Figures 

Figure S1. RNA-seq data from different laboratories diverge in their expression profiles 

but are similar with regard to expression differences between lesional (PP) and 

uninvolved (PN) skin. (A) PP and PN samples were plotted with respect to the first two 

principal component axes (n = 88 samples total). (B) DEG scores were calculated based upon 

100 PP-increased DEGs (horizontal axis) and 100 PP-decreased DEGs (vertical axis) previously 

identified from microarray meta-analysis (n = 237 patients). For each patient, scores represent 

the average RNA-seq-based log2-transformed FC estimate (PP/PN) among the 100 PP-increased 

microarray-based DEGs (horizontal axis) and 100 PP-decreased microarray-based DEGs 

(vertical axis). (C) The 44 patients were clustered (complete linkage) based upon genome-wide 

expression differences between PP and PN samples (Euclidean distance).  

 

Figure S2. Meta-analysis improves correlation between RNA-seq and microarray fold-

change estimates. Fold-change estimates (PP/PN) from a previous microarray meta-analysis (n 

= 237 patients) were compared to those obtained using RNA-seq. The microarray estimates were 

compared to those calculated from individual RNA-seq studies (A – C), as well as those 

calculated from meta-analysis of the three RNA-seq studies (D). The spearman correlation 

coefficient estimate is shown in each plot (lower right). Yellow ellipses outline the 80% of genes 

closest to the bivariate mean (Mahalanobis distance).   

 

Figure S3. Overlap among psoriasis DEGs identified from individual RNA-seq datasets 

and meta-analysis. Psoriasis DEGs were identified based upon PP and PN samples from three 

individual RNA-seq datasets (GSE41745, n = 3 patients; GSE54456/GSE63979, n = 27; 
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GSE67785, n = 14) and a pooled meta-analysis of samples from all three datasets (n = 44). RNA-

seq reads from each source were processed using the same methodology and DEGs were 

identified using the same thresholds (FDR < 0.05 with FC > 2 or FC < 0.50). Venn diagrams 

show the overlap among (A) PP-increased and (B) PP-decreased DEGs. 

 

Figure S4. Genes with decreased expression in psoriasis lesions are longer and weakly 

expressed (RNA-seq meta-analysis). RNA-seq meta-analysis was used to identify 2113 DEGs 

in lesional psoriasis skin (FC > 2 or < 0.50 with FDR < 0.05). Genes were binned according to 

(A) gene length, (B) GC content, or (C) average FPKM (PP and PN skin) and the percentage of 

DEGs within each bin is shown. The percentage of PP-increased and PP-decreased DEGs within 

each bin is indicated (red: PP-increased; blue: PP-decreased; yellow font: FDR < 0.05, Fisher’s 

Exact Test). Asterisk symbols denote a significantly increased percentage of DEGs within a 

given bin (PP-increased + PP-decreased; FDR < 0.05, Fisher’s Exact Test). (D) Overlap between 

DEGs identified from RNA-seq (n = 44 patients) and microarray (n = 237) meta-analyses.  (E) 

Mean FPKM among DEGs identified specifically by RNA-seq and microarray. Mean FPKM 

was calculated across 88 PP and PN samples and the median among DEGs (middle line: median; 

boxes span lower and upper quartiles). (F) Correlation and RNA-seq and microarray FC 

estimates (PP/PN) among genes with different expression levels (FPKM). Correlations are 

shown for each dataset individually (3 ≤ n ≤ 27) and the meta-dataset (n = 44).  

 

Figure S5. Genes with decreased expression in psoriasis lesions are longer and weakly 

expressed (Analysis of individual datasets). Analyses shown in Figure S4A – S4C were 

repeated with respect to each individual RNA-seq dataset (GSE41745, GSE54456/GSE63979 
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and GSE67785). Genes were binned according to gene length (A – C), GC content (D – F), or 

average FPKM in PP and PN skin (G – I). The percentage of DEGs within each bin is shown 

along with the separate contributions of PP-increased DEGs (red) and PP-decreased DEGs (blue) 

(yellow font: FDR < 0.05, Fisher’s Exact Test). Asterisk symbols denote a significantly 

increased percentage of DEGs within a given bin (PP-increased + PP-decreased; FDR < 0.05, 

Fisher’s Exact Test). 

 

Figure S6. Most psoriasis cutaneous DEGs are similarly altered in other human skin 

diseases (psoriasis specificity index). Psoriasis specificity index (PSI) was calculated for (A) 

954 PP-increased DEGs and (B) 1159 PP-decreased DEGs. Most DEGs are non-specific as 

indicated by negative PSI values (right). Heatmaps show changes in DEG expression in 98 

treatment comparisons between diseased and normal skin. DEG expression changes are 

quantified using signed log10-transformed p-values (Log10P; positive values: increased 

expression in diseased sin; negative values: decreased expression in diseased skin). In both (A) 

and (B), rows and columns have been clustered using hierarchical clustering (average linkage) 

and the Euclidean distance. Disease classifications are indicated above each heatmap (see 

legend).  

 

Figure S7. The most and least psoriasis-specific DEGs and their changes in expression 

across human skin disease studies. (A) PP-increased DEGs. PSI was used to identify the 15 

least psoriasis-specific PP-increased DEGs (top) and the 15 most psoriasis-specific PP-increased 

DEGs (bottom). (B) PP-decreased DEGs. PSI was used to identify the 15 least psoriasis-specific 

PP-decreased DEGs (top) and the 15 most psoriasis-specific PP-decreased DEGs (bottom). In 
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both (A) and (B), DEGs are listed in the left margin and the estimated PSI is shown in 

parentheses.  

 

Figure S8. Gene Ontology (GO) Biological process (BP) terms with differential 

enrichment between psoriasis-specific and non-specific DEGs. (A) GO BP terms enriched 

with respect to psoriasis-specific but not non-specific PP-increased DEGs. (B) GO BP terms 

enriched with respect to non-specific but not psoriasis-specific PP-increased DEGs. (C) GO BP 

terms enriched with respect to psoriasis-specific but not non-specific PP-decreased DEGs. (D) 

GO BP terms enriched with respect to non-specific but not psoriasis-specific PP-decreased 

DEGs. In (A) – (D), enrichment of GO BP terms was compared between the 100 most psoriasis-

specific DEGs (highest PSI) and 100 least psoriasis-specific DEGs (lowest PSI). Horizontal axes 

show -log10-transformed p-values obtained from testing whether the indicated GO BP term is 

enriched with respect to each gene set. Example DEGs associated with each GO BP term are 

listed in yellow font.  

 

Figure S9. PP-increased DEGs (psoriasis lesions) and PP-decreased DEGs (PBMC) 

overlap significantly with psoriasis GWAS signals. Overlap was evaluated between genes 

surrounding psoriasis-associated SNPs and (A, B) cutaneous PP-increased DEGs, (C, D) 

cutaneous PP-decreased DEGs, (E) DEGs with decreased expression in psoriasis patient PBMC, 

and (F) DEGs with decreased expression in psoriasis and multiple sclerosis (MS) patient PBMC. 

Each figure compares the GWAS/DEG and GWAS/non-DEG overlap with respect to varying 

window sizes (0 – 200 kb; horizontal axis), where window size reflects the amount of sequence 

scanned to identify genes near psoriasis-associated SNPs. Larger window sizes are more 
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permissive and expand the number of genes associated with GWAS signals. For each window 

size, we tested whether GWAS/DEG overlap was significantly greater than GWAS/non-DEG 

overlap (yellow: P < 0.05, Fisher’s Exact Test).  
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