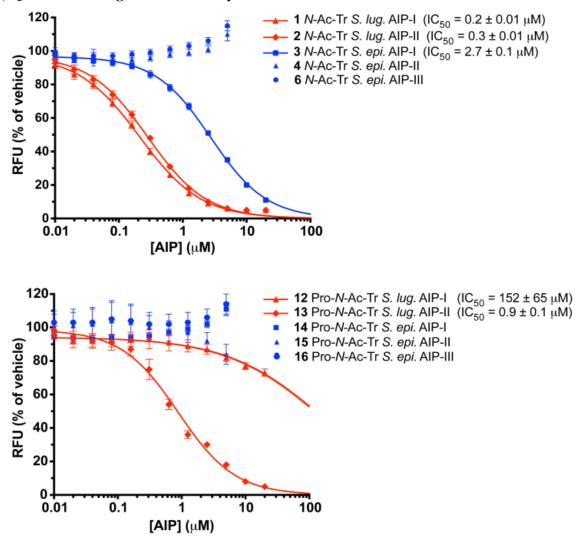

Supplementary Information

Truncated auto-inducing peptides as antagonists of *Staphylococcus lugdunensis* quorum sensing


Christopher P. Gordon,^a* Shondra D. Olson,^b Jessica L. Lister,^b Jeffrey S. Kavanaugh,^b and Alexander R. Horswill^b*

Competitive quorum sensing antagonisim (QS) offers a novel strategy for attenuating current multi-drug resistant staphylococcal infections. To this end, a series of 10 truncated analogues based on the parent auto-inducing peptides (AIPs) of *Staphylococcus lugdunensis* (group I & II) and *Staphylococcus epidermidis* (groups I – III) were sequentially assessed against a newly developed Staphylococcus *lugdunensis* group I QS reporter strain. The truncated analogues based upon *Staphylococcus lugdunensis* AIP-1 (1) and AIP-2 (2) displayed respective IC₅₀ values of $0.2 \pm 0.01 \mu$ M and $0.3 \pm 0.01 \mu$ M whilst the truncated analogue of the *S Staphylococcus. epidermidis* AIP-1 (3) elicited an IC₅₀ value of $2.7 \pm 0.1 \mu$ M. These findings demonstrate the potential of cognate and 'cross-talk' competitive quorum sensing inhibition using truncated AIPs as a means of attenuating staphylococcal infections in species beyond *Staphylococcus aureus*.

Dose response, OD600, and RFU curves	S2
General biology methods	S4
General chemistry methods	S5
General procedure for resin loading	S 6
General procedure for linear peptide synthesis (compound 6)	S7
General procedure for peptide cyclisation (compound 7)	S9
General procedure for peptide de-protection (compound 1)	S11
Synthesis of truncated S lug AIP-II analogues (compounds 11 & 2)	S17
Synthesis of Truncated S epi AIP-I Analogues (compounds 12 & 3)	S28
Synthesis of Truncated S epi AIP-II Analogues (compounds 13 & 4)	S39
Synthesis of Truncated S epi AIP-III Analogues (compounds 14 & 5)	S51
Peptide Cyclisation Trials – PS-EDCI with S epi AIP-I (compound 13)	S64
Peptide Cyclisation Trials – PS-DCC with S epi AIP-I (compound 13)	S82
Peptide Cyclisation Trials – PS-CD with S epi AIP-I (compound 13)	S98
De-Protected Cyclisation with HOAt, PS-CD and S epi AIP-I (compound 3)	S116
References	S120

Biology, Quorum-sensing inhibition assay

Figure 1. Dose-response curves and tabulated IC_{50} values for *N*-acetylated truncated analogues (A) and protected *N*-acetylated truncated analogues (B). Analogues based on *S. lugdunensis* and *S. epidermidis* AIP macrocycles are shown in red and blue, respectively. In cases where the data could be fit, the IC_{50} values are listed in the Figure key.

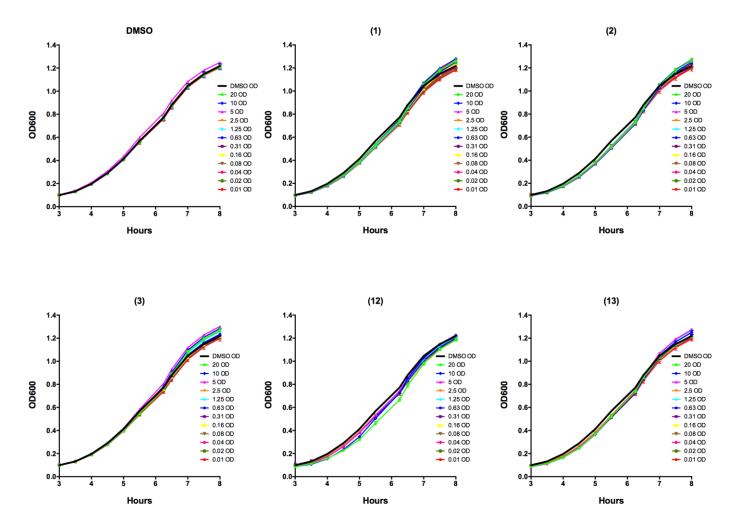
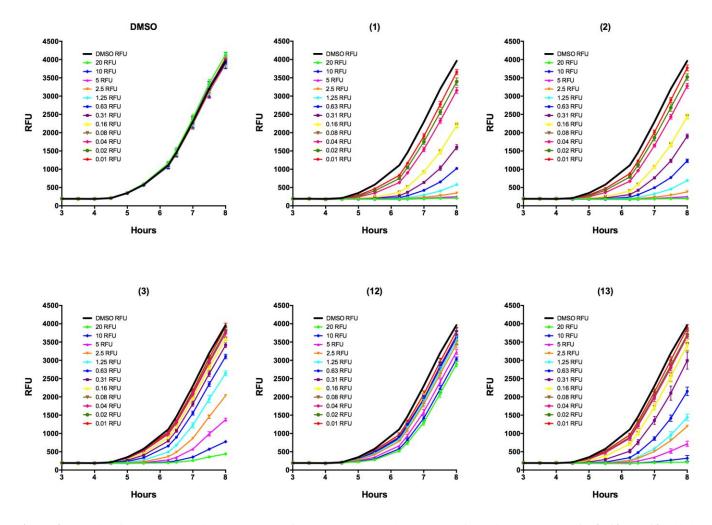



Figure 2. OD600 curve for DMSO control and curves for active compound 1 - 3, 12 and 13 which demonstrate that the compounds do not inhibit bacterial growth over an 8 hour period.

Figure 3: Relative fluorescence units (RFU) curve for a DMSO control and curves for active compound **1** - **3**, **12** and **13** which demonstrate that the compounds do not inhibit bacterial growth over an 8 hour period.

In order to assess the ArgC inhibitory activity of the AIP analogues a *S. lugdunensis* I *agr* reporter strain, AH4031, was constructed by moving *agr*P3sGFP reporter plasmid pCM40¹ into *S. lugdunensis* strain N920143² using the electroporation protocol described by Heilbronner and colleagues.³ Prior to electroporation into *S. lugdunensis* N920143, pCM40 was passaged through *E. coli* strain SL01B,³ which is engineered to express the specificity (HsdS) and methylation (HsdM) subunits of the *S. lugdunensis* N920143 type I restriction system.

Overnight cultures of AH4031, that were grown in Tryptic Soy Broth (TSB) supplemented with Cam at a concentration of 10 μ g/mL, were inoculated at a dilution of 1:500 into fresh TSB containing Cam. 100 μ L aliquots were added to 96-well microtiter plates (Costar 3603) and combined with 100 μ L aliquots of TSB containing Cam and 2-fold serial dilutions (either 10 μ M to 0.004 μ M or 40 μ M to 0.2 μ M) of the AIP analogs (dissolved in DMSO). After mixing, the effective inoculum dilution was 1:1000 and the final AIP concentrations ranged from 5 μ M to 0.002 μ M or 20 μ M to 0.1 μ M, with a final DMSO concentration of 2% (v/v) in all wells. Four dilution series were prepared for each AIP, and 4 mock vehicle (DMSO) dilution series were also prepared. Microtiter plates were incubated at 37°C with shaking (1000 rpm) in a Stuart SI505 incubator (Bibby Scientific, Burlington, NJ) with a humidified chamber. Fluorescence (top reading, 493 nm excitation, 535 nm emission, gain 60) and

optical density (OD) readings at 600 nm were recorded at 30 min increments using a Tecan Systems (San Jose, CA) Infinite M200 plate reader. Data was transformed into units of percent of vehicle, and IC_{50} 's were obtained by subjecting the transformed fluorescent data from 8 hours of growth to four-parameter-logistic fits (4PL) using GraphPad Prism version 6.0g. In cases where the fluorescence at the highest AIP concentration tested was insufficient to fully inhibit quorum-sensing the bottom baseline was fixed at 0%.

Chemistry. General Methods. Chemicals and solvents were purchased from standard suppliers and used without further purification. Fmoc-protected amino acids were purchase for Auspep as was 2-chlorotrityl chloride resin (loading 1.5 mmol/g) and (2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate) (HCTU). Polymer-bound 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide and N-benzyl-N'-cyclohexylcarbodiimide were purchased from Sigma-Aldrich with respective loadings of $\approx 1 - 2$ mmol/g). The PS-carbodiimde was obtained from biotage (loading 1.27 mmol/g). All solvents were used as supplied (analytical, HPLC or peptide grade), without prior purification. Milli-Q water was used for chemical reactions. Deuterated DMSO-d₆ was purchased from Sigma Aldrich. Reactions were monitored by using analytical RP-HPLC and MS. Final compound purity was assessed *via* analytical HPLC will all biologically evaluated peptides of > 95 % purity.

Mass spectra (ES-TOF) were recorded on a Waters 2795 separation module/Micromass LCTTM platform. ¹H and ¹³C spectra were recorded at 25 °C on a Varian mercury 300 operating at 299.8 MHz and 75.4 MHz respectively. Chemical shifts (δ) are reported in parts per million (ppm), referenced to TMS (1H, 0.0 ppm). Coupling constants (*J*) are recorded in Hz and significant multiplicities described by singlet (s), doublet (d), doublet of doublets (dd), doublet of triplets (dt), triplet (t), quadruplet (q), broad (br), multiplet (m). Spectra were assigned using appropriate gCOSY sequences.

Analytical RP-HPLC was performed using a Waters instrument comprised of two 510 pumps, a 486 detector and MilleniumTM software. The systems outlined below were used for purification and to confirm purity. Analytical RP-HPLC was performed using Phenomenex Onyx Monolithic reversed-phase C18 column (4.6 x 100 mm). Solvent A: 0.06% TFA in water and solvent B: 0.06% TFA in CH₃CN:H₂O (90:10), flow rate of 1.0 mL/min, gradient 10-100 (%B), curve = 6, over 15.0 mins, and detection at 216 nm and 254 nm (System 1).

Semi-preparative RP-HPLC was performed using a Waters 2525 binary gradient pump equipped with a water 2487 dual λ absorbance detector and a Chromolith®SemiPrep RP-18e 100-10 mm column. A flow rate of 10 mL/min was used with solvent A: 0.06% TFA in water and solvent B: 0.06% TFA in CH₃CN:H₂O (90:10). Gradient 10-75 (%B) over 15 mins, curve = 6, with UV detection at 216 nm and 254 nm.

General procedure 1: Fmoc-Phe-2-ClTrt resin; 2-Chlorotritylchloide resin (100-200 mesh), 1% DVB (5.00 g, loading = 1.5 mmol/g) (Merck Chemicals Ltd. # 8.55017) was swelled in DCM (50.0 mL) for 0.5 h prior to the addition of 4.0 eq. of Fmoc-Phe-OH (11.62 g, 0.03 mol), and 8.0 eq. of DIPEA (10.45 mL, 0.06 mmol). The resulting suspension was gently stirred at rt for 2 h before MeOH (5.0 mL) was added. After an additional 20 mins of gentle stirring the resin was filtered and sequentially washed with DMF (2×50 mL), acetonitrile (2×50 mL), hexanes (2×50 mL), and DCM (2×50 mL). The resin was dried overnight under high vacuum and standard UV Fmoc quantification revealed a resin loading of 0.83 mmol/g (loading = 86 %).

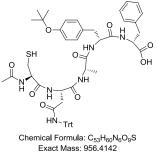
Fmoc Loading Determination; Two samples of pre-loaded dried resin (~10.0 mg each) were each added to a vial containing a freshly prepared solution of 20% piperidine in DMF (3.00 mL). The resulting suspensions were gently agitated at rt for 2 h after which 300 μ L of each resin suspension was transferred to a quartz UV cuvette and an additional 2.70 mL of 20% piperidine in DMF was added. A reference cell containing 3.00 mL of 20% piperidine was placed into a UV spectrophotometer and reference was set at 290 nm. The absorbance of the cuvettes containing the settled resin was then obtained (290 nm). The loading of the resin was then determined using the following equation (final loading = average of the two resin samples):

Loading (mmol/g) = $[(Abs_{sample})/(mg \text{ of sample} \times 1.75)] \times 10$

Theoretical loading was determined using the following equation:

 $A = B \times 1000/[1000 + (B \times (M - X))]$

A = theoretical substitution (mmol/g)

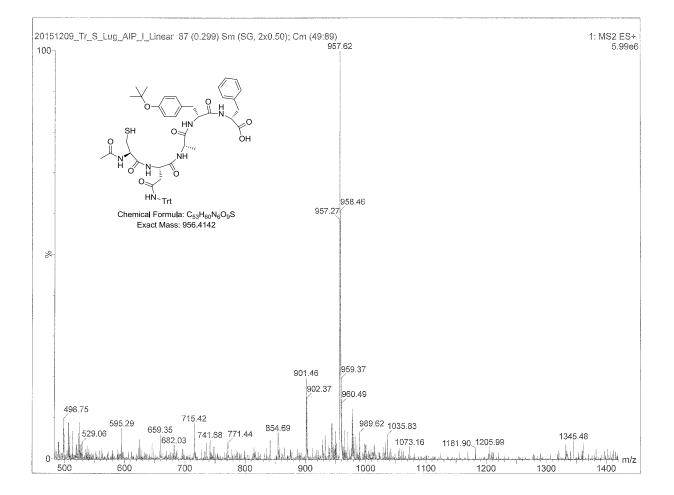

B = substitution of resin (mmol/g)

M = molecular weight of target peptide (with all protecting groups)

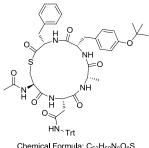
X = 36 (loss of Cl on amino acid loading)

Fmoc-Leu-2-CITrt resin; prepared utilising general procedure 1 with 2-Chlorotritylchloide resin (100-200 mesh), 1% DVB (5.00 g, loading = 1.5 mmol/g), 4.0 eq. of Fmoc-Leu-OH (10.60 g, 0.03 mol), and 8.0 eq. of DIPEA (10.45 mL, 0.06 mmol). Fmoc quantification revealed a resin loading of 1.07 mmol/g (loading = 94 %).

General Procedure 2, Compound 6. Fmoc-Phe-2-Chlorotritylchloide resin (0.14 g, 0.12 mmol, loading = 0.83 mmol/g) was

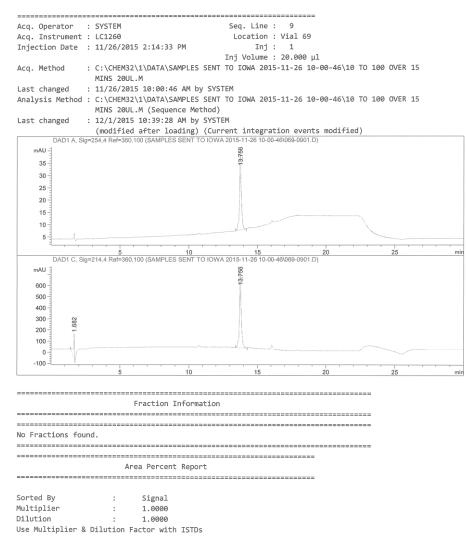

placed in an Omnifit[™] BenchMark[™] column assembly and swelled with DMF (2.5 mL) for 0.5 h. Utilising a NovaSyn[®] manual peptide synthesizer Fmoc-depotection and washing was achieved using 20% piperidine in DMF and DMF (2.8 mL/min) respectively. The column was drained and a solution of 4.0 eq. Fmoc-(tBu)Try-OH (0.22 g, 0.48 mmol), 4.0 eq. HCTU (0.19 g, 0.48 mmol), and 8.0 eq DIPEA (0.16 mL, 3.84 mmol) in DMF (1.5 mL) was added. The column was gently agitated at ~40 °C for 1 hour after which the resin was washed (DMF 2.8 mL/min), Fmoc-deprotected (20% piperidine in DMF 2.8 mL/min), and washed (DMF 2.8

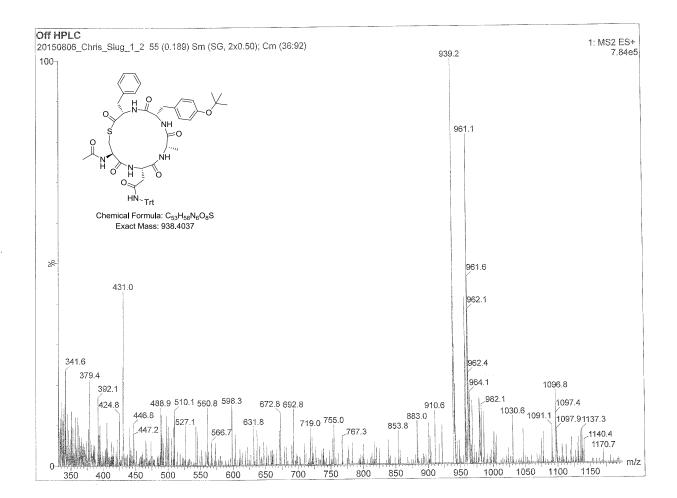
mL/min). The remaining linear peptide sequence was prepared *via* subsequent rounds of acylation, washing (DMF 2.8 mL/min), Fmoc-deprotection (20% piperidine in DMF, 2.8 mL/min), and washing (DMF 2.8 mL/min). Each acylation was achieved using a solution of 4.0 eq. HCTU (0.19 g, 0.48 mmol), 8.0 eq DIPEA (0.16 mL, 3.84 mmol), DMF (1.5 mL) at ~40 °C over 1 hour and 4.0 eq. Fmoc-Ala-OH (0.14 g, 0.48 mmol), and 4.0 eq. Fmoc-(Trt)Asn-OH (0.28 g, 0.48 mmol), and Fmoc-(Mmt)Cys-OH (0.29 g, 0.48), respectively. The *N*-terminal Cys-amine was acetyaled *via* addition of an acetic anhydride (0.27 mL, 2.94 mmol) DIPEA (0.51 mL, 2.94 mmol) solution. After 0.5 h the resin was washed with MeOH (2 × 5.0 mL), acetonitrile (2 × 5.0 mL), hexanes (2 × 5.0 mL), and DCM (2 × 5.0 mL) and dried *in vacuo*. Concurrent cleavage of the linear peptide from the resin and deprotection of the Cys(Mmt) protecting group was achieved *via* flushing the column with a TFA cocktail (10 × 2 mL, DCM:TFA:TIPS 96:2:2). The resulting solution was concerted *in vacuo* and the residual crude material was triturated with ice-cold ether (× 3) to furnish an off-white solid. MS (ESI⁺) m/z 957 (M + 1, 100 %) HRMS (ESI⁺) for C₅₃H₆₁N₆O₉S; calculated 957.4142, found, 957.4146; RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 40-100% B in 15 min, *t*_R 9.5 min.


Data File D:\2014\CH...POUNDS\ALCL3 CPGP135 TEMP VARIATIONS 2015-08-05 10-36-58\053-0301.D Sample Name: Ac-CNAYF-OH uncyclised

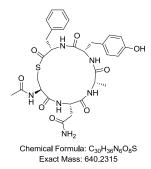
Acq. Operator : SYSTEM Seq. Line : 3 Acq. Instrument : LC1260 Location : Vial 53 Injection Date : 8/5/2015 11:41:17 AM Inj: 1 Inj Volume : 10.000 µl : D:\2014\CHRIS\DATA\DDCOPPERCOMPOUNDS\ALCL3 CPGP135 TEMP VARIATIONS 2015-08-Acq. Method 05 10-36-58\40 TO 100 OVER 15 MINS 10UL.M Last changed : 8/5/2015 10:36:58 AM by SYSTEM Analysis Method : D:\2014\CHRIS\DATA\DDCOPPERCOMPOUNDS\ALCL3 CPGP135 TEMP VARIATIONS 2015-08-05 10-36-58\40 TO 100 OVER 15 MINS 10UL.M (Sequence Method) Last changed : 8/5/2015 12:34:49 PM by SYSTEM (modified after loading) (Current integration events modified) DAD1 A. Sig=254.4 Ref=360.100 (D:2014\CH...ALCL3 CPGP135 TEMP VARIATIONS 2015-08-05 10-36-58\053-0301.D) mAU 3 96 100 -80 60 40 · 20 5 10 15 20 DAD1 C, Sig=214,4 Ref=360,100 (D:\2014\CH...ALCL3 CPGP135 TEMP VARIATIONS 2015-08-05 10-36-58\053-0301.D) 25 mi mAU · 496 2500 2000 1500 6.487 1000 - 9.130 500 0 25 10 15 20 Fraction Information No Fractions found. Area Percent Report Sorted By Signal : Multiplier 1.0000 : Dilution 1.0000 : Use Multiplier & Dilution Factor with ISTDs

LC1260 8/5/2015 12:37:05 PM SYSTEM

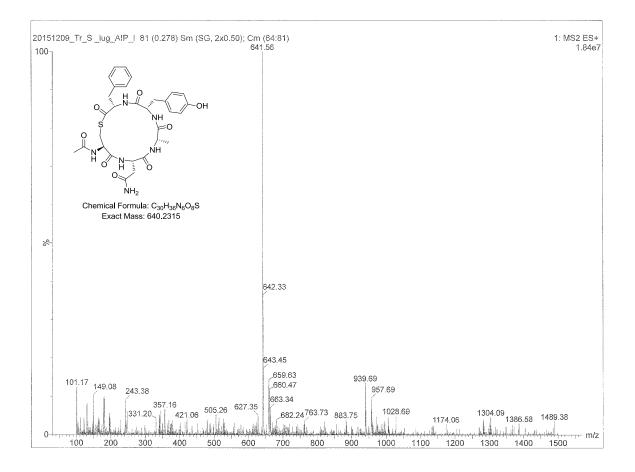

General Procedure 3 Compound 7; A suspension of the crude linear peptide and 3.0 eq. of PS-carbodiimide (0.28g, 0.36

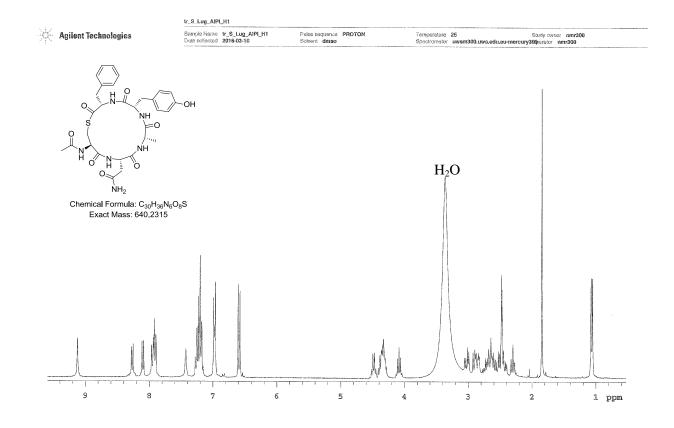

mmol) and CH₃Cl (120 mL, 1.0 mM) was then stirred under an atmosphere of nitrogen for 5 h. After this period the solution was filtered, concentrated *in vacuo*, purified *via* semi-preparative RP-HPLC, and lyophilised to afford **7** (12 mg, 10.6 %). (*Note; 3 mg of this sample was collect for biological analysis*) MS (ESI⁺) for C₅₃H₅₉N₆O₈S; m/z 939.29 (M + 1, 100 %); HRMS (ESI⁺) for C₅₃H₅₉N₆O₈S; calculated 939.4037, found, 939.4042; RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, $t_{\rm R}$ 13.75 min.

Chemical Formula: C₅₃H₅₈N₆O₈S Exact Mass: 938.4037


Data File C:\CHEM32\1\DATA\SAMPLES SENT TO IOWA 2015-11-26 10-00-46\069-0901.D Sample Name: Pro S lug AIP I cyclised

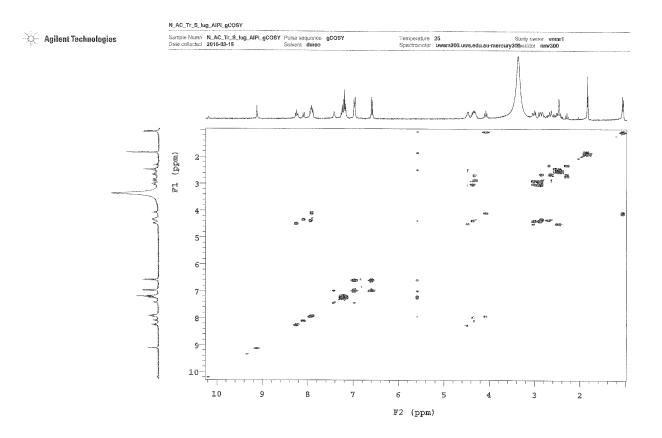
LC1260 12/1/2015 10:39:38 AM SYSTEM

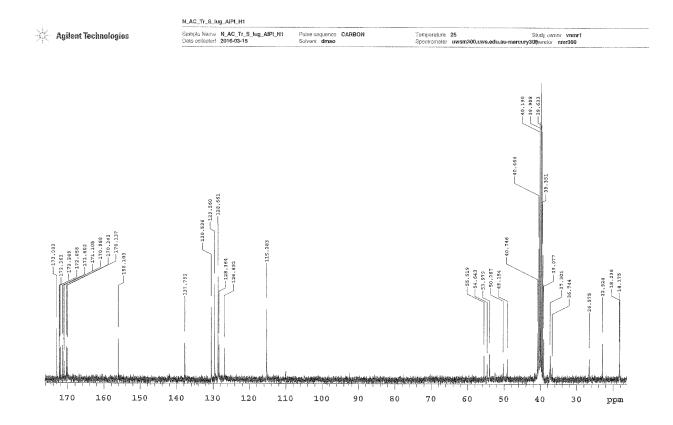

General Procedure 4; Compound 1; A solution of a TFA (10.0 mL), TIPS (0.25 mL), H₂O (0.25 mL), and 7 (9 mg, 0.009



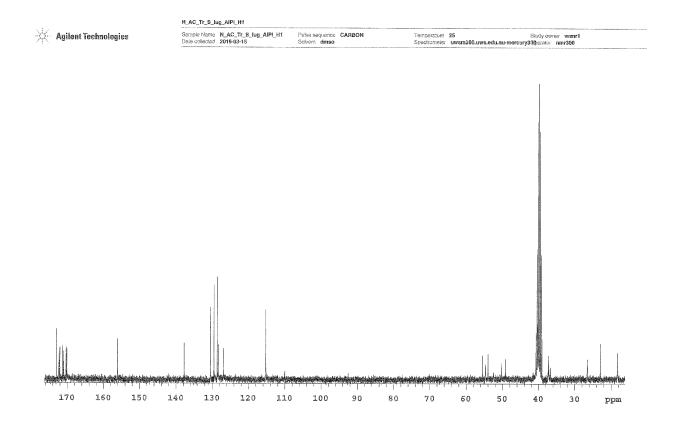
mmol) was stirred at rt for 6 h. The resulting mixture was concentrated *in vacuo* and the residual crude material was triturated with ice-cold ether (× 3) to furnish an off-white solid. The crude material was purified by *via* semi-preparative RP-HPLC to afford compound **1** (5.2 mg, 85%) as a white solid. MS (ESI⁺) for C₃₀H₃₇N₆O₈S *m*/*z* 641.56 (M + 1, 100%); HRMS (ESI⁺); calculated 641.2315, found 641.2309. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 6.08 min. ¹H NMR (300 MHz, DMSO) δ 9.13 (s, 1H), 8.27 (d, *J* = 7.6 Hz, 1H), 8.10 (d, *J* = 7.7 Hz, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.93 – 7.88 (m, 2H), 7.43 (s, 1H), 7.30 – 7.14 (m, 5H),

6.98 (d, J = 8.4 Hz, 3H), 6.60 (d, J = 8.4 Hz, 2H), 4.49 (q, J = 6.7 Hz, 1H), 4.42 – 4.27 (m, 3H), 4.15 – 4.02 (m, 1H), 3.05 (d, J = 5.9 Hz, 1H), 3.00 (d, J = 5.8 Hz, 1H), 2.95 – 2.79 (m, 3H), 2.79 – 2.50 (m, 5H), 2.46 – 2.38 (m, 1H), 2.30 (t, J = 8.4 Hz, 1H), 1.84 (d, J = 3.4 Hz, 3H), 1.07 (d, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, DMSO) δ 172.98, 172.35, 172.23, 172.04, 171.38, 171.09, 170.95, 170.32, 170.12, 156.09, 137.77, 130.52, 129.55, 128.64, 128.35, 126.87, 115.27, 55.51, 54.63, 53.97, 50.26, 49.14, 37.29, 37.19, 36.72, 26.57, 22.92, 18.23.




Data file /home/nmr300/vmnrsys/data/CpgData/N_Ac_tr_S_lug_AIPI_H1.6d

Plot dats 2018-04-05


 $Data \ file \ home/nmr309/nmrsys/data/N_AC_Tr_S_bg_AIPI_gCOSY/M_AC_Tr_S_bg_AIPI_gCOSY_gCOSY_dmea_20160316_01.fide \ file \ home/nmr309/nmrsys/data/N_AC_Tr_S_bg_AIPI_gCOSY_gCOSY_dmea_20160316_01.fide \ home/nmr309/nmrsys/data/N_AC_Tr_S_bg_AIPI_gCOSY_gCOSY_gCOSY_dmea_20160316_01.fide \ home/nmr309/nmrsys/data/N_AC_Tr_S_bg_AIPI_gCOSY_nAC_Tr_S_bg_AIPI_gCOSY_gCOSY_gCOSY_dmea_20160316_01.fide \ home/nmr309/nmrsys/data/N_AC_Tr_S_bg_AIPI_gCOSY_nAC_Tr_S_bg_AIPI_gCOSY_gCOSY_gCOSY_gCOSY_gCOSY_dmea_20160316_01.fide \ home/nmr309/nmrsys/data/N_AC_Tr_S_bg_AIPI_gCOSY_nAC_Tr_S_bg_AIPI_gCOSY_gCOSY_gCOSY_gCOSY_gCOSY_gCOSY_dmea_20160316_01.fide \ home/nmr309/nmrsys/data/N_AC_Tr_S_bg_AIPI_gCOSY_gCOS$

Plot date 2016-03-15

Data file /home/nmr300/vnmrsys/data/CpgData/N_AC_Tr_S_iug_AIPI_C13.fid

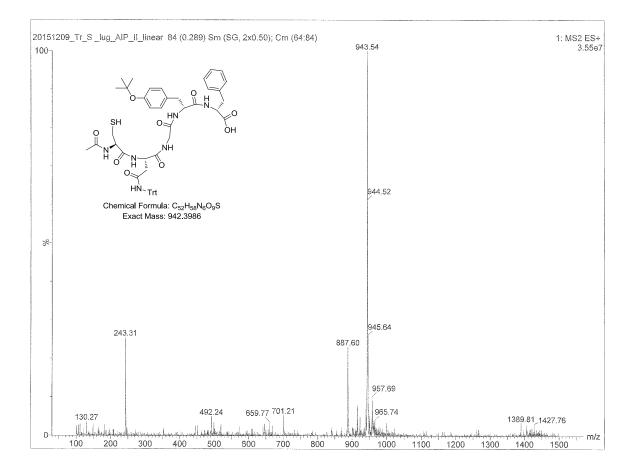
Plot date 2016-04-05

Data file /home/nmr300/vnmrsys/data/CpgData/N_AC_Tr_S_lug_AIPI_C15.fid

Plot date 2016-04-05

Compounds 11 & 2; The linear sequence required for compound 11 was prepared using general procedure 2. The residual

HN 0 òн ŃН Trt Chemical Formula: C52H58N6O9S

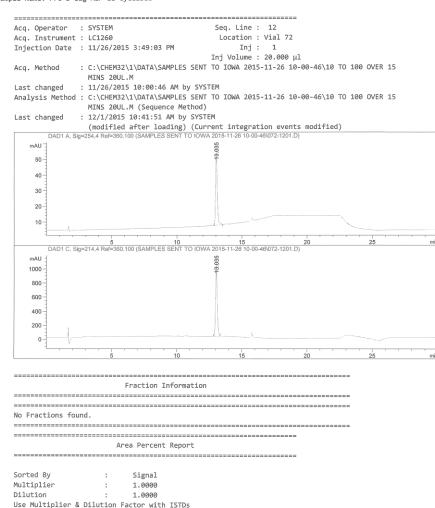

Exact Mass: 942.3986

crude material was triturated with ice-cold ether (× 3) to furnish an off-white solid. MS (ESI⁺) for C₅₂H₅₉N₆O₉S; calculated 943.40, found, 943.51. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 40-100% B in 15 min, $t_{\rm R}$ 9.1 min.

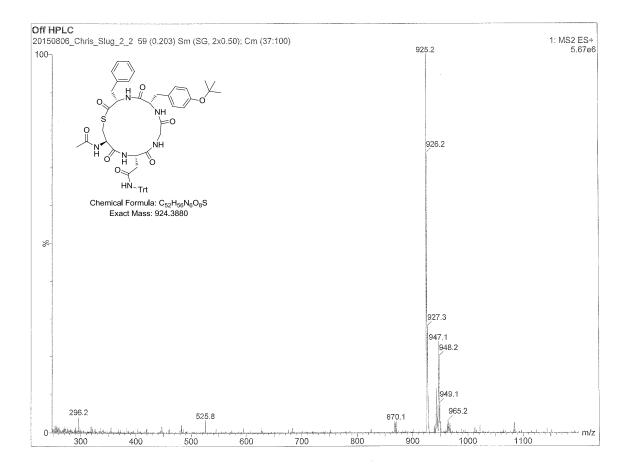
Data File D:\2014\CH...POUNDS\ALCL3 CPGP135 TEMP VARIATIONS 2015-08-05 10-36-58\051-0101.D Sample Name: Ac-CNGYF-OH uncyclised

Acq. Operator	: SYSTEM	Seq. Line : 1
Acq. Instrument	: LC1260	Location : Vial 51
	: 8/5/2015 10:38:23 AM	Inj : 1
		Inj Volume : 10.000 µl
Method	: D:\2014\CHRIS\DATA\DDCO	PPERCOMPOUNDS\ALCL3 CPGP135 TEMP VARIATIONS 2015-08-
	05 10-36-58\40 TO 100 0	VER 15 MINS 10UL.M (Sequence Method)
Last changed	: 8/5/2015 10:36:58 AM by	SYSTEM
) (Current integration events modified)
		CL3 CPGP135 TEMP VARIATIONS 2015-08-05 10-36-58\051-0101.D)
mAU -	.125	
45	ö	
40		
35		
30		
25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
20	6.263	
15	Ň h	
10^	A. M.	
·	5 10	15 20 25 п
	Sig=214,4 Ref=360,100 (D:\2014\CHALC	CL3 CPGP135 TEMP VARIATIONS 2015-08-05 10-36-58\051-0101.D)
mAU _	9.125	
1200	6	
1000		
800		
600		
	~	
400	6.263	
200	1	
0	the state of the s	
· · · · ·	5 10	15 20 25 n
	Fraction Infor	
No Fractions fo	und.	
	Area Percent Repo	ort
Sorted By	: Signal	
Multiplier	: 1.0000	
Dilution	: 1.0000	
	& Dilution Factor with IST	25
obe nareipirer	a principli indecol with ish	
Signal 1: DAD1	A, Sig=254,4 Ref=360,100	
Peak RetTime Ty	pe Width Area He:	ight Area
# [min]		AU] %
1 6.263 BB		
2 9.125 BV	0.1276 55.50295 6	.37214 15.1200 .52258 84.8800

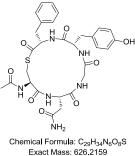
LC1260 8/5/2015 12:33:41 PM SYSTEM


Compound 11; Compound 11 was synthesised utilizing general produce 3. The crude material was purified *via* semi-

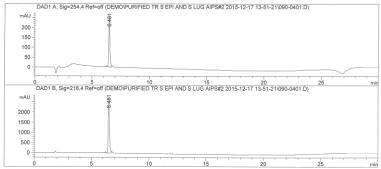
0 ΝH =0 NΗ НŅ Trf Chemical Formula: C52H56N6O8S


Exact Mass: 924.3880

preparative RP-HPLC, and lyophilised to afford **11** (15 mg, 13.5 %). (*Note; 3 mg of this sample was collect for biological analysis*) MS (ESI⁺) for $C_{52}H_{57}N_6O_8S$ m/z 925.2 (M + 1, 100%); HRMS (ESI⁺); calculated 925.3880, found, 925.3497. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 13.03 min.


Data File C:\CHEM32\1\DATA\SAMPLES SENT TO IOWA 2015-11-26 10-00-46\072-1201.D Sample Name: Pro S lug AIP II cyclised

LC1260 12/1/2015 10:42:00 AM SYSTEM


Compound 2; Compound 2 was prepared utilizing general procedure 4 with compound 11. The crude material was purified via

semi-preparative RP-HPLC, and lyophilised to afford 2 (7.2 mg, 88.5 %). MS (ESI⁺) for $C_{52}H_{57}N_6O_8S$, m/z 627.2 (M + 1, 100%); HRMS (ESI⁺); calculated 627.2159, found, 627.2204. RP-HPLC Onyx Monolithic C18 100 \times 4.6 mm, 10-100% B in 15 min, $t_{\rm R}$ 6.48 min. ¹H NMR (300 MHz, DMSO) δ 9.12 (s, 1H), 8.28 (d, J = 7.5 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.97 (t, J = 5.5 Hz, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.39 (s, 1H), 7.28 - 7.16 (m, 5H), 6.98(d, J = 8.5 Hz, 2H), 6.59 (d, J = 8.5 Hz, 2H), 4.47 (dd, J = 13.6, 7.0 Hz, 1H), 4.42 - 4.30 (m, 3H), 4.47 (m, 3H)3.58 (t, J = 5.9 Hz, 2H), 3.06 (d, J = 5.5 Hz, 1H), 3.01 (d, J = 5.4 Hz, 1H), 2.92 (d, J = 8.7 Hz, 1H), 2.89 - 2.52 (m, 7H), 2.43 (d, J = 7.0 Hz, 1H), 2.29 (t, J = 8.5 Hz, 1H), 1.85 (s, 3H). ¹³C NMR (75 MHz, DMSO) δ 173.08, 172.07, 171.57, 171.46, 170.44, 170.15, 168.63, 156.09, 137.84, 130.55, 129.54, 128.65, 128.35, 126.89, 115.28, 55.50, 54.54, 54.51, 54.00, 50.39, 42.41, 37.26, 37.14, 37.04, 26.49, 22.92.

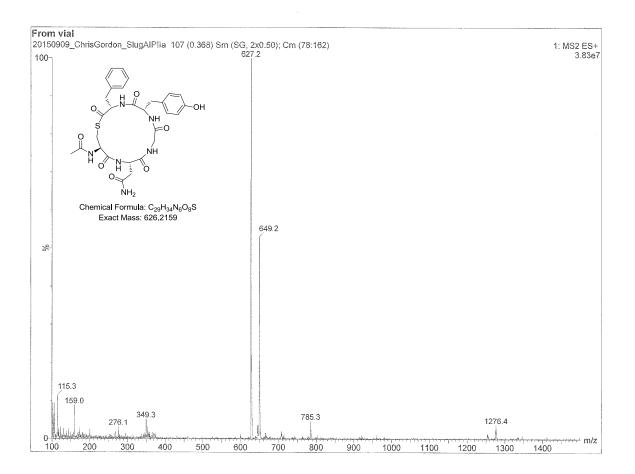
> Data File C:\CHEM32\...O\PURIFIED TR S EPI AND S LUG AIPS#2 2015-12-17 13-51-21\090-0401.D Sample Name: Tr S lug AIP II 6.4 min Acq. Operator : Simil20102015 Seq. Line : Acq. Instrument : LC1260 Location : Vial 90

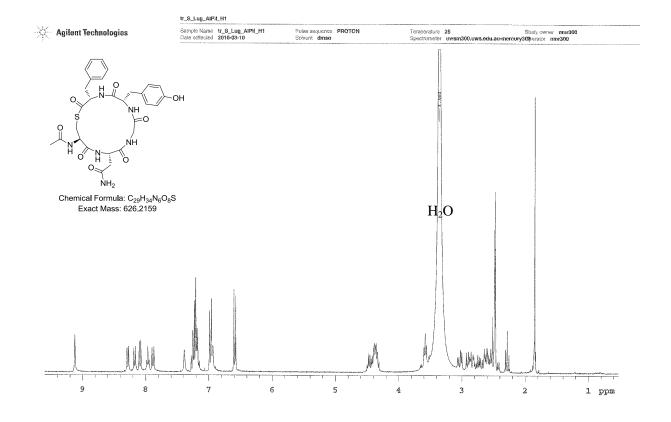
Injection Date	:	12/17/2015 3:28:30 PM Inj : 1	
		Inj Volume : 100.000 µl	
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\PURIFIED TR S EPI AND S LUG AIPS#2 2015-12-17 13	13-
		51-21\10 TO 100 OV 15MIN 100UL.M	
Last changed	:	12/10/2015 4:12:03 PM by Simil20102015	
Analysis Method	:	C:\CHEM32\1\DATA\DEMO\PURIFIED TR S EPI AND S LUG AIPS 2016-01-05 09-	9-
		33-14\10 TO 100 OV 15MIN 20UL.M	
Last changed	:	1/6/2016 1:51:31 PM by Simi120102015	
		(modified after loading) (Current integration events modified)	

Area Percent Report

Sorted By		:	Sigr	nal
Multiplier:			:	1.0000
Dilution:			:	1.0000
Use Multiplier	δε	Dilution	Factor	with ISTDs

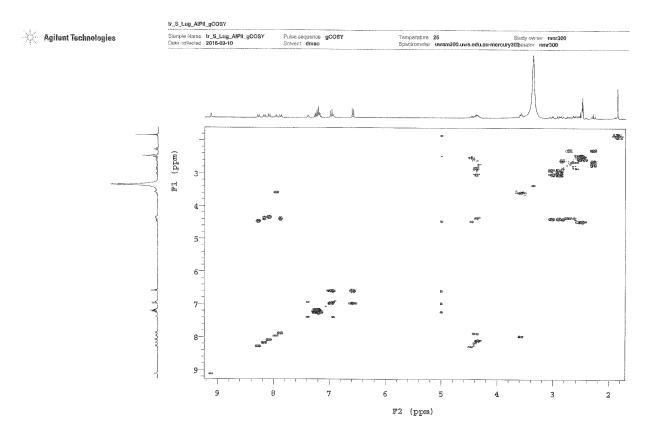
Signal 1: DAD1 A, Sig=254,4 Ref=off

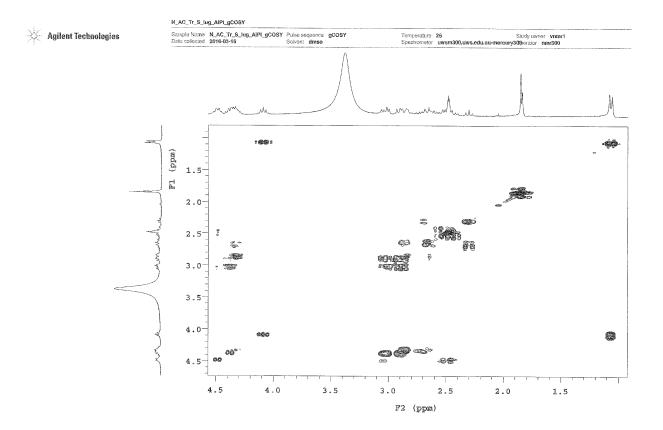

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	6.481	BV	0.1004	1733.96338	257.95151	100.0000	


Totals : 1733.96338 257.95151

Signal 2: DAD1 B, Sig=216.4 Ref=off

	RetTime			Area	Height	Area
	[min]			[mAU*s]	[mAU]	de
1	6.481	vv	0.1084	1.99227e4	2753.27295	100.0000


LC1260 1/6/2016 3:03:38 PM Simi120102015

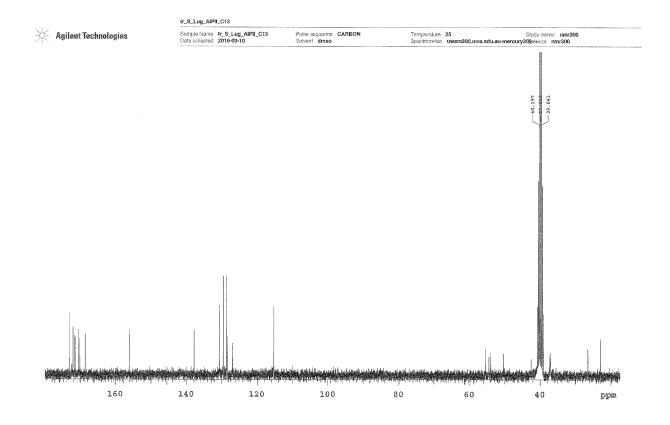


Data file /home/smr300/vnmrsys/date/CpgData/N_Ac_tr_S_lug_A/Pil_H1./id

Plot data 2016-04-05



Plot date 2016-03-10

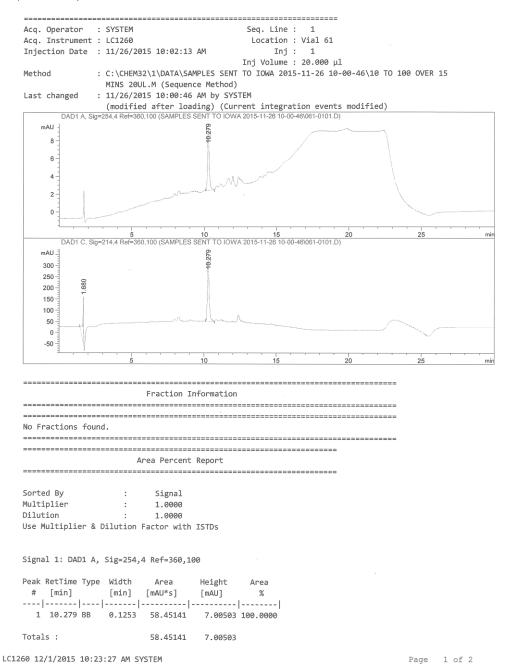

Data file /home/nm/300/vnm/sys/data/N_AC_Tr_S_lug_AIPLgCOSY/N_AC_Tr_S_lug_AIPLgCOSY_gCOSY_dmso_20160315_01.fid

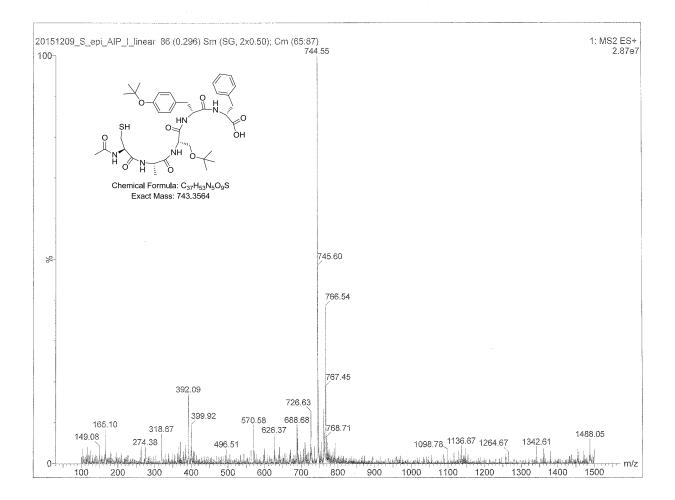
Plot date 2016-03-15

Data file /home/nmr300/vnmrsys/data/CpgData/tr_S_Lug_AIPII_013.fid

Plot date 2016-04-05

Data file /homs/nmr300/vnmrsys/data/CppData/tr_S_Lug_AIFII_C13.lid


Plot date 2016-04-05


Compounds 12 & 3; The linear sequence required for 12 was prepared using general procedure 2. The residual crude material

ΗN 0 òн NH. ò. ő

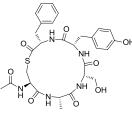
Chemical Formula: C₃₇H₅₃N₅O₉S Exact Mass: 743,3564 was triturated with ice-cold ether (× 3) to furnish an off-white solid. MS (ESI⁺) for $C_{37}H_{54}N_5O_9S$; calculated 744.35, found, 744.55. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 10.28 min.

Data File C:\CHEM32\1\DATA\SAMPLES SENT TO IOWA 2015-11-26 10-00-46\061-0101.D Sample Name: S epi AIP I linear

Compound 12; Compound 12 was synthesised utilizing general produce 3. The crude material was purified via semi-


0 NН =0 ŃН

Chemical Formula: C₃₇H₅₁N₅O₈S Exact Mass: 725.3458 preparative RP-HPLC, and lyophilised to afford **12** (12 mg, 13.8 %). (*Note; 3 mg of this sample was collect for biological analysis*) MS (ESI⁺) for $C_{37}H_{52}N_5O_8S$, *m/z* 726.63 (M + 1, 100%); HRMS (ESI⁺) calculated 726.3458, found, 726.3455. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 11.47 min.


Data File C:\CHEM32\1\DATA\SAMPLES SENT TO IOWA 2015-11-26 10-00-46\062-0201.D Sample Name: Pro S epi AIP I cyclised

Acq. Operator :	SYSTEM	Seq. Line :	2		
Acq. Instrument :	LC1260	Location :	Vial 62		
Injection Date :	11/26/2015 10:33:	47 AM Inj:	1		
		Inj Volume :	20.000 µl		
Acq. Method :	C:\CHEM32\1\DATA\ MINS 20UL.M	SAMPLES SENT TO IOWA 2015-	11-26 10-00-46\10 TC) 100 OVER 15	
Last changed :	11/26/2015 10:00:	46 AM by SYSTEM			
-		SAMPLES SENT TO IOWA 2015-	11-26 10-00-46\10 T() 100 OVER 15	
Last changed :	12/1/2015 10:33:3 (modified after 1	30 AM by SYSTEM Loading) (Current integrati	on events modified)		
DAD1 A, Sig=		ES SENT TO IOWA 2015-11-26 10-00-46			
mAU _		474			
35		÷.			
30					
25					
20					
15					
10				(
5	~~			· · · · · · · · · · · · · · · · · · ·	
0					
DAD1 C Sig-	5	10 15 ES SENT TO IOWA 2015-11-26 10-00-46	20	25	mi
mAU 1	214,4 100-300, 100 (SAMEL		002-0201.0)		
		11:474			
500					
400					
300					
22					
200					
100		1			
0					
-100					
-100	5	10 15	20	25	mi
				:=	
	Fraction	Information			
				:=	
				:=	
No Fractions found	1.				
				:=	
	Area Perce	•			
Sorted By	: Signal				
Multiplier	: 1.0000				
Dilution	: 1.0000				
Use Multiplier & D					
se unrerbarel of r	ATACTON LACCOL MT	CII 10102			

LC1260 12/1/2015 10:33:44 AM SYSTEM

Compound 3; Compound 3 was prepared utilising general procedure 4 with 12. The crude material was purified via semi-

Exact Mass: 613.2206

preparative RP-HPLC, and lyophilised to afford **3** (6.2 mg, 81.5 %). MS (ESI⁺) for $C_{29}H_{36}N_5O_8S$ m/z 614.40; HRMS (ESI⁺) calculated 614.2206, found, 614.2231. RP-HPLC Onyx Monolithic C18 100×4.6 mm, 10-100% B in 15 min, $t_{\rm R}$ 6.82 min. ¹H NMR (300 MHz, DMSO) δ 9.13 (s, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 8.15 (d, *J* = 7.1 Hz, 1H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.29 – 7.17 (m, 5H), 6.95 (d, J = 8.5 Hz, 2H), 6.58 (d, J = 8.5 Hz, Chemical Formula: C29H35N5O8S 2H), 4.45 – 4.30 (m, 3H), 4.30 – 4.16 (m, 2H), 3.05 (d, *J* = 5.5 Hz, 1H), 3.00 (d, *J* = 5.4 Hz, 1H), 2.93 – 2.81 (m, 3H), 2.80 – 2.53 (m, 4H), 2.32 (t, J = 8.4 Hz, 1H), 1.85 (s, 3H), 1.16 (d, J = 7.1 Hz, 3H). 13C NMR (75 MHz, DMSO) § 173.05, 172.52, 171.26, 170.12, 170.00, 169.88, 156.14, 137.79, 130.57, 129.53, 128.66, 127.93, 126.90, 115.23, 62.12, 55.40, 54.31, 54.03, 48.77, 37.20, 36.89, 26.62, 22.92, 18.35.

Data File C:\CHEM32\1\DATA\TR S EPI AIP I 6_8 MIN 2015-12-15 16-19-36\082-0101.D

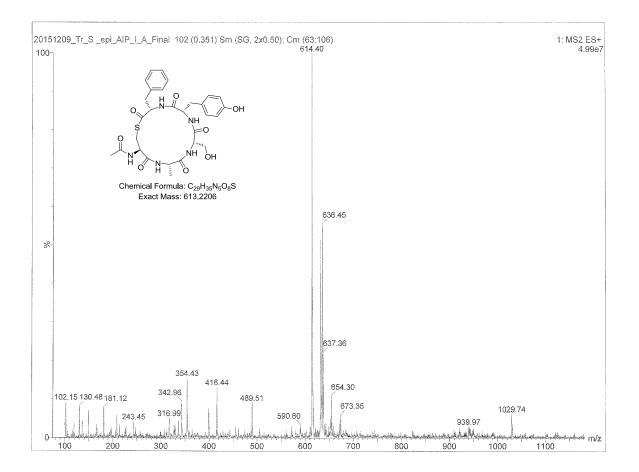
mple Name: Tr S ep	1 AIP I 6.8 mins	
		Seg. Line : 1
Acq. Operator	: Simil20102015	Location : Vial 82
Acq. Instrument	: LC1260	
Acq. inderdictio	10/15/0015 4.01.03 PM	Inj: 1
Injection Date	: 12/15/2015 4:21:23 PM	Inj Volume : 100.000 µl
		Inj volume : 100.000 pr
Ann Mathod	. C.\CHEM32\1\DATA\TR S !	EPI AIP I 6_8 MIN 2015-12-15 16-19-36\10 TO 100
Acq. Method		-
	OV 15MIN 100UL.M	
Last changed	: 12/10/2015 4:12:03 PM]	oy Simil20102015
Dase changed	: C:\CHEM32\1\METHODS\10	TO 100 OV 15MIN 100UL.M
Analysis Method	: C:\CHEM52\I\MBINODD\IIO	
Last changed	: 12/15/2015 5:24:52 PM	by Simil20102015
2000 000000	(modified after loading	g) (Current integration events modified)

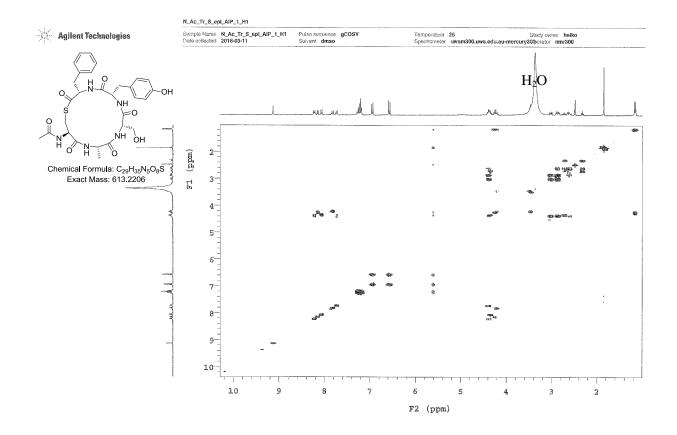
_____ Area Percent Report

Signal Sorted By 1.0000 Multiplier: 1.0000 Dilution: Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

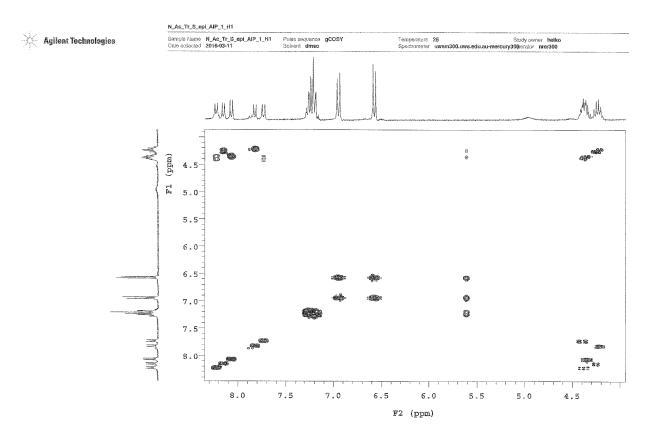
44	RetTime [min]		[min]	[mAU*s]	Height [mAU]	alo
	1.755		0.1350	2235.54028	253.18295	75.1678
2	6.820	VB	0.1317	738.52789	81.55083	24.8322
Total	10.			2974.06818	334.73378	

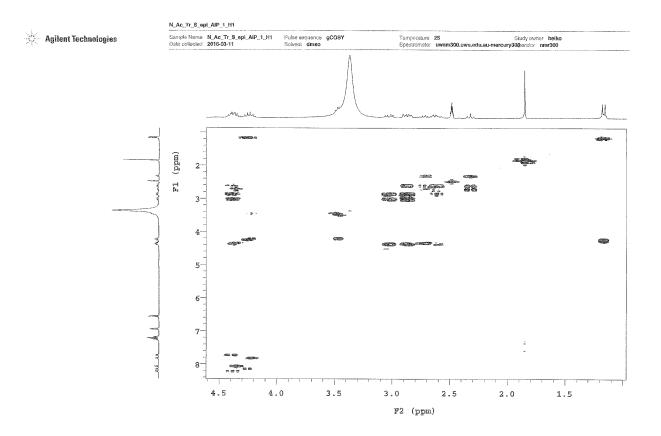

Totals :


Signal 2: DAD1 B, Sig=216,4 Ref=off

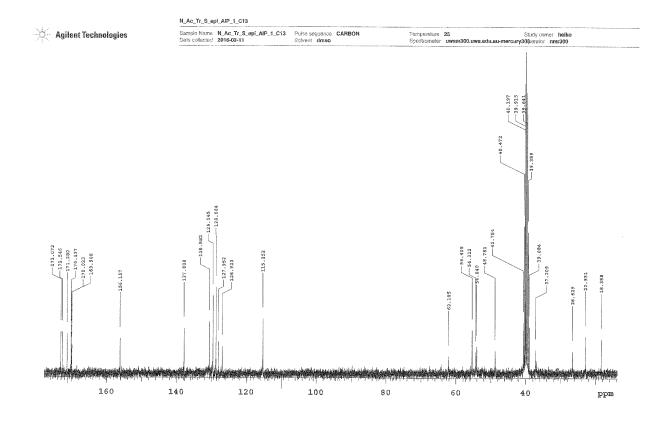
#	RetTime	[min]	Area [mAU*s]	Height [mAU]	
		 		943.21979	100.0000

LC1260 12/15/2015 5:25:08 PM Simi120102015

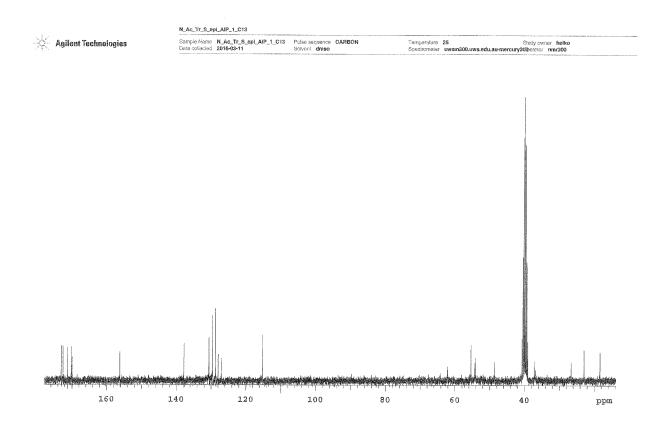

1 of 2 Page


Data file /home/nmr300/rmmrsys/data/N_Ac_Tr_S_epi_AIP_1_H1/N_Ac_Tr_S_epi_AIP_1_H1_gCOSY_01.iid

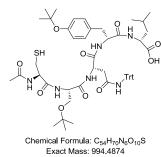
Piot date 2016-02-11



Data file /home/nmr300/vnmrsye/data/N_Ac_Tr_S_epi_AIP_1_H1/N_Ac_Tr_S_epi_AIP_1_H1_gCOSY_01.6d


Plot date 2016-03-11

Data file /home/amr300/mm/sys/data/N_Ac_Tr_S_epi_AIP_1_H1/N_Ac_Tr_S_epi_AIP_1_H1_gCOSY_01.fid

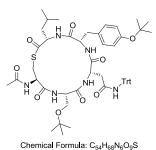


Data file /home/nmr300/vnmrsys/deta/CpgDate/N_Ac_Yr_S_ept_AIP_1_013.fid

Data file /home/nmr300/vnmrsys/data/CpgData/N_Ac_Tr_S_epi_AiP_1_C13.ltd

Compounds 13 & 4; The linear sequence required for 13 was prepared using general procedure 2. The residual crude material

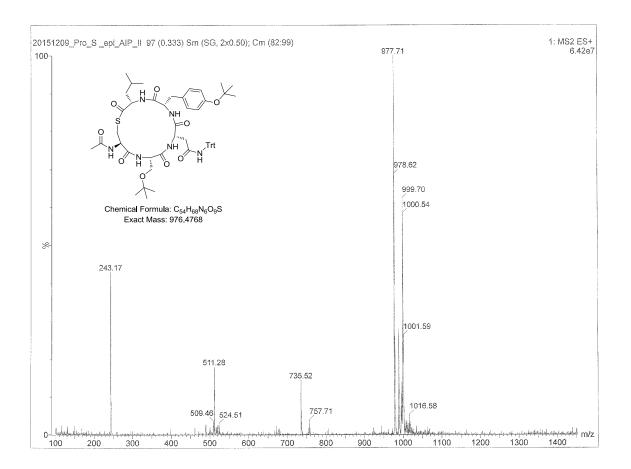
was triturated with ice-cold ether (× 3) to furnish an off-white solid. MS (ESI⁺) for $C_{54}H_{71}N_6O_{10}S$; calculated 995.49, found, 995.71. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 13.91 min.


Data File C:\CHEM32\1\DATA\SAMPLES SENT TO IOWA 2015-11-26 10-00-46\065-0501.D Sample Name: S epi AIP II linear

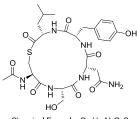
Acq. Operator :	: SYSTEM	Seq. Line : 5
Acq. Instrument :	: LC1260	Location : Vial 65
Injection Date :	: 11/26/2015 12:08:28 PM	Inj: 1
		Inj Volume : 20.000 µl
Acq. Method :	: C:\CHEM32\1\DATA\SAMPLES S MINS 20UL.M	SENT TO IOWA 2015-11-26 10-00-46\10 TO 100 OVER 15
Last changed :	: 11/26/2015 10:00:46 AM by	SYSTEM
Analysis Method :	: C:\CHEM32\1\DATA\SAMPLES S MINS 20UL.M (Sequence Meth	SENT TO IOWA 2015-11-26 10-00-46\10 TO 100 OVER 15 nod)
Last changed	: 12/1/2015 10:35:17 AM by S	SYSTEM (Current integration events modified)
DAD1 A, Sig	=254,4 Ref=360,100 (SAMPLES SENT TO	IOWA 2015-11-26 10-00-46\065-0501.D)
mAU 🗍		
		906-61
40		
30		
20		٨
10	والمحمون والمقاطرين المناوين والمالة المرور والمالية	Andre
0		
DAD1 C Sig	5 10 =214,4 Ref=360,100 (SAMPLES SENT TO	15 20 25 n
mAU :	-214,4 Nel-300,100 (SAMPLES SENT TO	
		900
1400		
1200		
1000		
800		
600		
400		•
200		
0		2 V V - Carrow Marine Marine Supervision V - Constraints / V - Constraints - Constrain
	5 10	15 20 25 m
	Fraction Informat	tion
No Fractions four	ıd.	
	Area Percent Report	
Sorted By	: Signal	
Multiplier	: 1.0000	
Dilution	: 1.0000	
	Dilution Factor with ISTDs	
watapater u	servershi raccor with 15105	

LC1260 12/1/2015 10:36:11 AM SYSTEM

Compound 13; Compound 13 was synthesized utilizing general produce 3. The crude material was purified via semi-

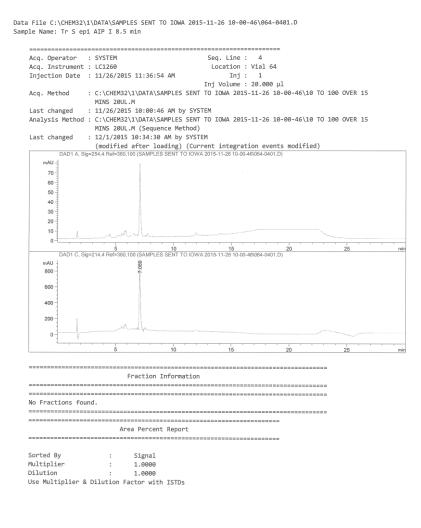

preparative RP-HPLC, and lyophilised to afford **13** (13 mg, 10.9 %). (*Note; 3 mg of this sample was collect for biological analysis*) MS (ESI⁺) for C₅₄H₆₉N₆O₉S, *m/z* 977.71 (M + 1, 100%); HRMS (ESI⁺) calculated 977.4768, found, 977.4719. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, $t_{\rm R}$ 15.38 min.

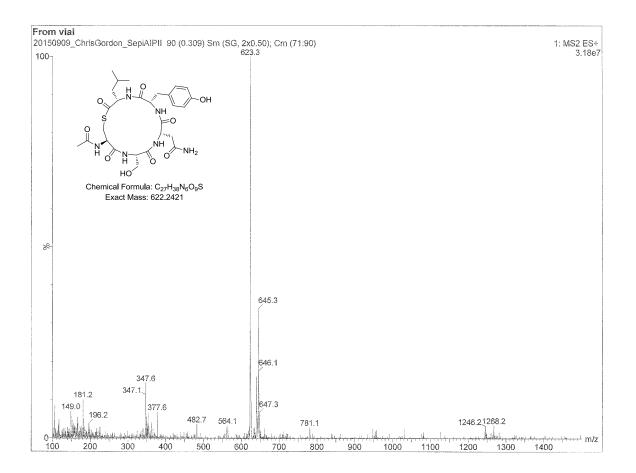
Exact Mass: 976.4768

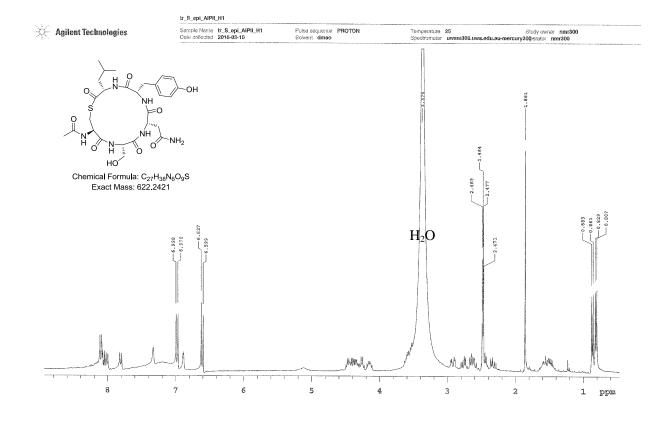

Data File C:\CHEM32\1\DATA\SAMPLES SENT TO IOWA 2015-11-26 10-00-46\066-0601.D Sample Name: Pro S epi AIP II cyclised

Acq. Operator	: SYSTEM	Seq. Line : 6
Acq. Instrument	: LC1260	Location : Vial 66
Injection Date	: 11/26/2015 12:39:59 PM	Inj : 1
•		Inj Volume : 20.000 µl
Acq. Method	: C:\CHEM32\1\DATA\SAMPLE	5 SENT TO IOWA 2015-11-26 10-00-46\10 TO 100 OVER 15
	MINS 20UL.M	
Last changed	: 11/26/2015 10:00:46 AM	DY SYSTEM
Analysis Method	: C:\CHEM32\1\DATA\SAMPLE	5 SENT TO IOWA 2015-11-26 10-00-46\10 TO 100 OVER 15
2	MINS 20UL.M (Sequence M	
Last changed	: 12/1/2015 10:36:05 AM by	/ SYSTEM
U		(Current integration events modified)
DAD1 A, Sig	=254,4 Ref=360,100 (SAMPLES SENT	TO IOWA 2015-11-26 10-00-46\066-0601.D)
mAU _		-5-3 -5-3 -4-6 -4-6
		44 24
60		
50		
40		
30		
-		
20		
10		the second
0-1		
DADI O O	5 10	15 20 25 n
	=214,4 Ret=360,100 (SAMPLES SENT	TO IOWA 2015-11-26 10-00-46\066-0601.D)
mAU		5.0 9.4
-		22
1200		
1000		
800		
600		
400		
200		
o		and the second of the second
·		
	5 10	152025n
	Fraction Inform	
No Fractions four	nd.	
	Area Percent Repo	nt
iorted By	· Signal	
	: Signal	
Sorted By Multiplier Dilution	: Signal : 1.0000 : 1.0000	

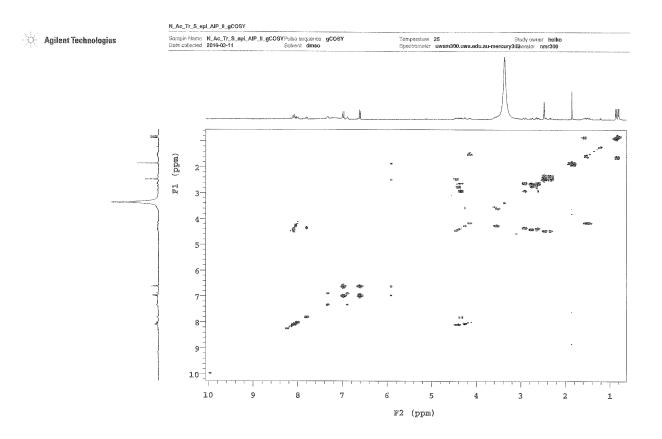
LC1260 12/1/2015 10:37:21 AM SYSTEM


Compound 4; Compound 4 was prepared utilising general procedure 4 with 13. The crude material was purified via semi-

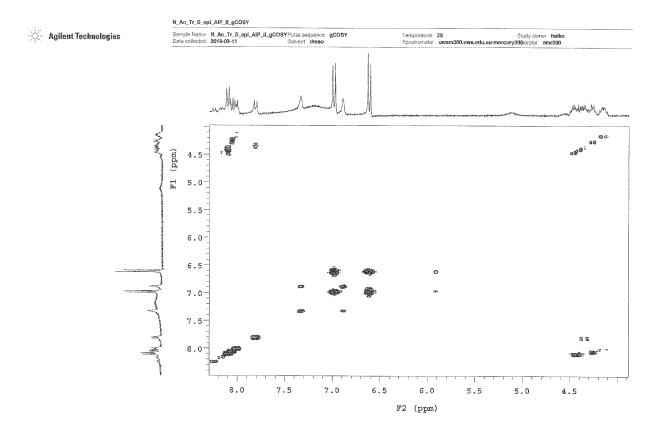

preparative RP-HPLC, and lyophilised to afford **4** (4.7 mg, 75.1 %). MS (ESI⁺) for C₂₇H₃₉N₆O₉S, m/z 623.3 (M + 1, 100%); HRMS (ESI⁺) calculated 623.2421, found, 623.2425. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 7.08 min. ¹H NMR (300 MHz, DMSO) δ 9.16 (s, 1H), 8.10 (d, J = 8.0 Hz, 2H), 8.06 (d, J = 7.4 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.33 (s, 1H), 6.98 (d, J = 8.5 Hz, 2H), 6.89 (s, 1H), 6.61 (d, J = 8.5 Hz, 2H), 4.51 – 4.30 (m, 3H), 4.26 (dd, J = 13.2, 6.0 Hz, 1H), 4.20 – 4.09 (m, 1H), 3.65 – 3.50 (m, 4H), 2.92 (dd, J

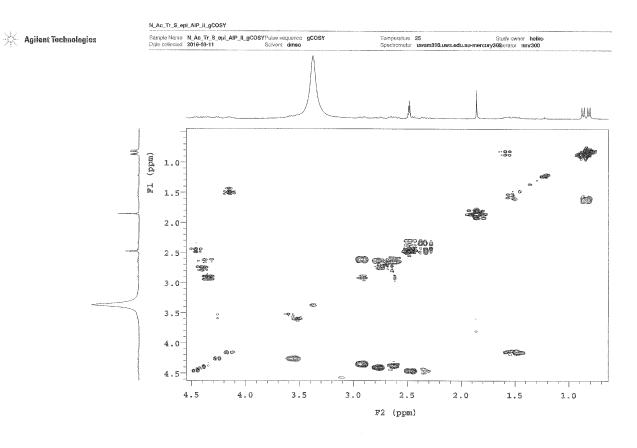

Chemical Formula: C₂₇H₃₈N₆O₉S Exact Mass: 622,2421

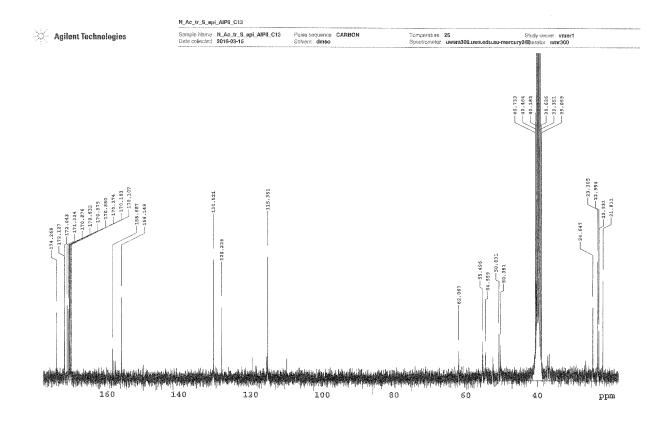
= 14.2, 3.9 Hz, 1H), 2.79 (d, J = 5.3 Hz, 1H), 2.75 (d, J = 5.2 Hz, 1H), 2.69 – 2.56 (m, 2H), 2.44 (d, J = 5.4 Hz, 1H), 2.35 (d, J = 7.5 Hz, 1H), 2.30 (d, J = 7.3 Hz, 1H), 1.85 (d, J = 7.0 Hz, 3H), 1.67 – 1.40 (m, 3H), 0.87 (d, J = 6.3 Hz, 2H), 0.82 (d, J = 6.3 Hz, 3H). ¹³C NMR (75 MHz, DMSO) δ 174.29, 172.96, 172.88, 172.03, 171.29, 170.85, 170.56, 170.26, 170.09, 156.13, 130.51, 128.24, 128.20, 115.34, 115.34, 62.04, 55.49, 53.24, 53.02, 50.84, 50.34, 32.85, 26.62, 26.61, 24.64, 23.30, 22.92, 21.82.

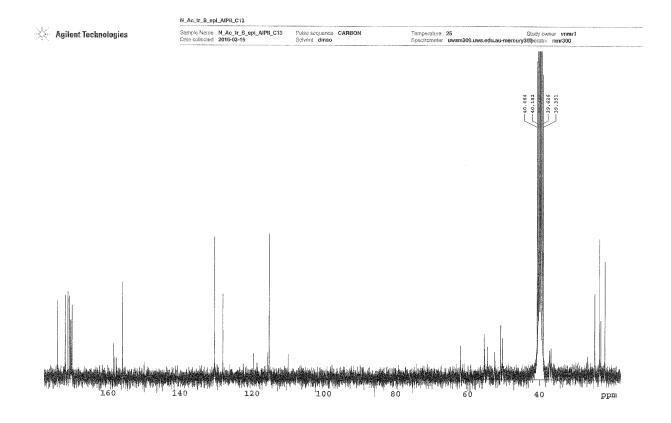


LC1260 12/1/2015 10:35:23 AM SYSTEM

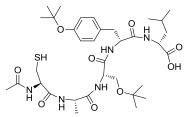



Data file /home/nmr300/vnmreys/data/OpgData/N_Ac_tr_S_ept_AIPIL_H1.fid


Data file /home/nmr300/vmmrsys/data/N_Ac_Tr_S_epi_AIP_1_H1/N_Ac_Tr_S_epi_AIP_II_gCOSY_gCOSY_01.fid


Data file /homs/hmrd00/vnmrsys/data/N_Ac_Tr_S_epi_AiP_1_H1/N_Ac_Tr_S_epi_AiP_IL_gCOSY_gCOSY_01.ild

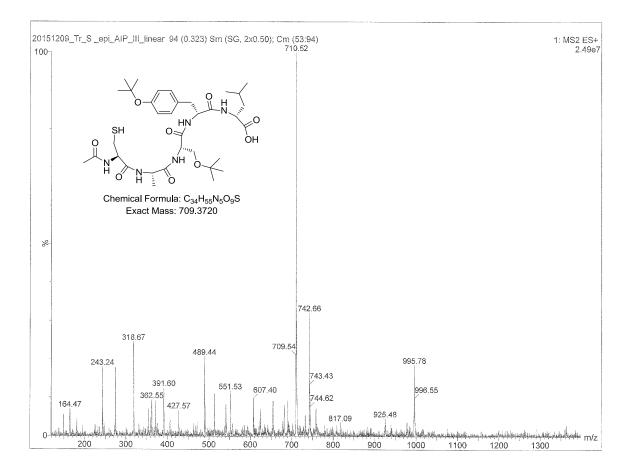
Data file /home/hmr300/vnmreye/data/N_Ac_Tr_S_col_AIP_1_H1/N_Ac_Tr_S_col_AIP_1L_gCOSY_gCOSY_01.iid



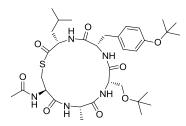
Data file /home/nmr300/vnmrsys/data/CpgData/N_Ac_tr_S_epi_AlPII_C13.fid

Data file /homs/nmr300/vnmrsys/data/CpgDate/N_Ac_tr_S_epi_AiPit_C13.kd

Compounds 14 & 5; The linear sequence required for 14 was prepared using general procedure 2. The residual crude material



was triturated with ice-cold ether (× 3) to furnish an off-white solid. MS (ESI⁺) for $C_{34}H_{56}N_5O_9S$; calculated 710.37, found, 710.52. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 10.03 min.


Chemical Formula: C₃₄H₅₅N₅O₉S Exact Mass: 709.3720

Data File D:\2014\CH...ATA\DDCOPPERCOMPOUNDS\S EPI AIP IIIS 2015-11-11 09-46-50\061-0101.D Sample Name: S epi AIP III linear

Acq. Operator	: SYSTEM		Seq. Line : 1			
Acq. Instrument	: LC1260		Location : Vial	61		
Injection Date	: 11/11/2015 9:4	8:10 AM	Inj : 1			
			Inj Volume : 10.0			
Method	: D:\2014\CHRIS\	DATA\DDCOPPERCO	MPOUNDS\S EPI AIP	IIIS 2015-11	-11 09-46-50\10	
	TO 100 OVER 15	MINS 10UL.M (S	equence Method)			
Last changed	: 11/11/2015 9:4	6:50 AM by SYST	EM			
			rent integration e			
	g=254,4 Ref=360,100 (D:\	2014\CHOPPERCOMI	POUNDS\S EPI AIP IIIS 20	15-11-11 09-46-50\0	61-0101.D)	
mAU _		10.028				
		-01			~	
8-						
6-						
Ŭ						
4-		MA. M				
2-		And WW				
-	and the second se					
0-	and the second					
L						
DAD1 C S	5 a=214.4 Ref=360.100 (D:)	10 2014\CH_OPPERCOM	15 POUNDS\S EPI AIP IIIS 20	20	25 061-0101 D)	
mAU -	g-214,41161-000,100 (D.1		0014001012117411 111020	10-11-11-03-40-0010	01-0101.2)	
350		10:028				
300						
250						
200						
150						
100						
50	and the second	mapp				
1 /						
-50						
-50	5	10	15	20	25	, , ,
		ion Information				
No Fractions fou	ind.					
	=======================================			====		
	Area Pe	rcent Report				
Sorted By	: Sig	nal				
Multiplier	: 1.0	000				
Dilution	: 1.0					
Use Multiplier 8	Dilution Factor					
Signal 1: DAD1 A	, Sig=254,4 Ref=	360,100				
Peak RetTime Typ			Area			
# [min]	[min] [mAU*		%			
	-					
1 10.028 BV	0.1450 83.2	6463 8.16124	100.0000			
Totals :						
	83.2	6463 8.16124				
50 11/11/2015 4:		6463 8.16124				

Compound 14; Compound 14 was synthesised utilising general produce 3. The crude material was purified via semi-

preparative RP-HPLC, and lyophilised to afford **14** (16 mg, 18.8 %). (*Note; 3 mg of this sample was collect for biological analysis*) MS (ESI⁺) for C₃₄H₅₄N₅O₈S m/z 692.46 (M + 1, 100%); HRMS (ESI⁺) calculated 692.3615, found, 692.3620. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, $t_{\rm R}$ 11.43 min.

Chemical Formula: C₃₄H₅₃N₅O₈S Exact Mass: 691.3615

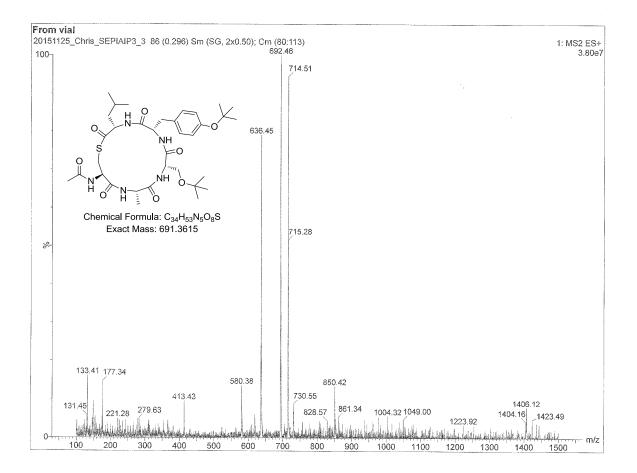
Data File D:\2014\CH...ATA\DDCOPPERCOMPOUNDS\S EPI AIP IIIS 2015-11-11 09-46-50\062-0201.D Sample Name: S epi AIP III cyclised crude

Aca. Method	Inj Volume : 10.000 μl : D:\2014\CHRTS\DATA\DDCOPPERCOMPOUNDS\S EPI AIP IIIS 2015-11-11 09-46-50\10
Acq. Method	: D:\2014\CHRIS\DATA\DDCOPPERCOMPOUNDS\S EPI AIP IIIS 2015-11-11 09-46-50\10
	TO 100 OVER 15 MINS 10UL.M
Last changed	: 11/11/2015 9:46:50 AM by SYSTEM
Analysis Metho	od : D:\2014\CHRIS\DATA\DDCOPPERCOMPOUNDS\S EPI AIP IIIS 2015-11-11 09-46-50\10
	TO 100 OVER 15 MINS 10UL.M (Sequence Method)
Last changed	: 11/11/2015 4:29:12 PM by SYSTEM
	(modified after loading) (Current integration events modified)
	, Sig=254,4 Ref=360,100 (D:\2014\CHOPPERCOMPOUNDS\S EPI AIP IIIS 2015-11-11 09-46-50\062-0201.D)
mAU -	428
16	1
14	
12	
10	
8	
6 -	
4	when have been been been been been been been be
2-0-	
0	· · · · · · · · · · · · · · · · · · ·
DAD1C	5 10 15 20 25 . Sig=214.4 Ref=360.100 (D:\2014\CHOPPERCOMPOUNDS\S EPI AIP IIIS 2015-11-11 09-46-50\\062-0201.D)
	427
mAU	> T
250	
250	
250 200	
250 - 66 200 - 1 150 - 100 - 1	
250 200	
250 - 66 200 - 1 150 - 100 - 1	
250 200 150 100 50	A Martin Andrew An

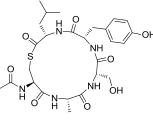
Fraction Information

Fraction Information

Area Percent Report

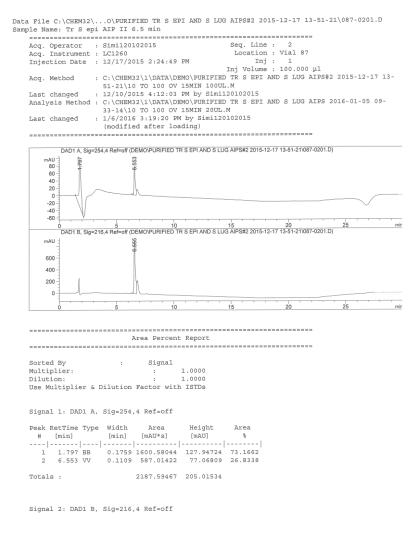

·

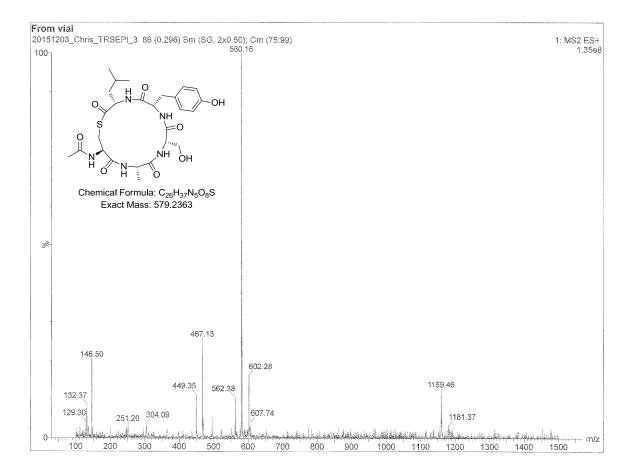
Sorted By		:	Sig	nal	
Multiplier		:	1.00	300	
Dilution		:	1.00	300	
Use Multiplion	Ω.	Dilution	Eacton	ui+b	TETDE

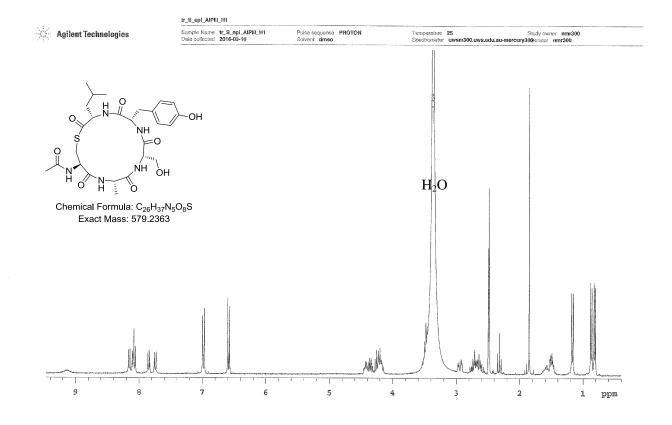

Use Multiplier & Dilution Factor with ISTDs

LC1260 11/11/2015 4:29:31 PM SYSTEM

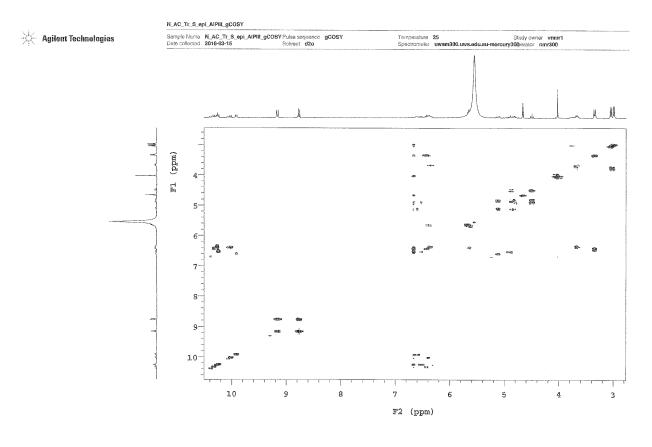
No Fractions found.


Compound 5; Compound 5 was prepared utilising general procedure 4 with 14. The crude material was purified via semi-

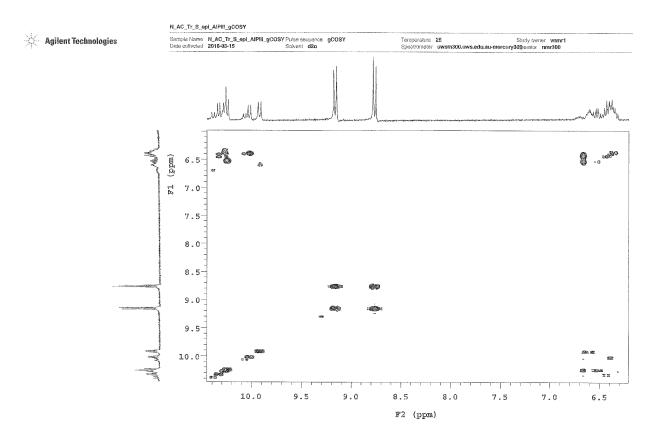

Chemical Formula: C₂₆H₃₇N₅O₈S Exact Mass: 579.2363

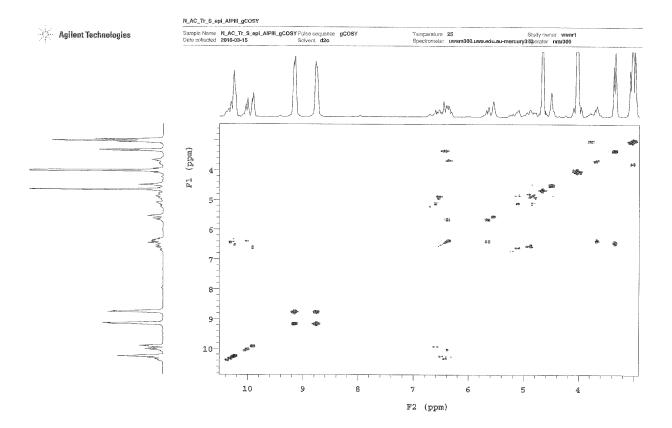

preparative RP-HPLC, and lyophilised to afford **5** (9.1 mg, 71.8 %). MS (ESI⁺) for $C_{27}H_{38}N_5O_8S$, m/z 580.16; HRMS (ESI⁺) calculated 580.2363, found, 580.2367. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 6.55 min. ¹H NMR (300 MHz, DMSO) δ 9.16 (s, 1H), 8.10 (d, J = 8.0 Hz, 2H), 8.06 (d, J = 7.4 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.33 (s, 1H), 6.98 (d, J = 8.5 Hz, 2H), 6.89 (s, 1H), 6.61 (d, J = 8.5 Hz, 2H), 4.51 – 4.30 (m, 3H), 4.26 (dd, J = 13.2, 6.0 Hz, 1H), 4.20 – 4.10 (m, 1H), 3.65 – 3.49 (m, 6H), 2.92 (dd, J = 14.2, 3.9 Hz, 2H), 2.79 (d, J = 5.3 Hz, 1H), 2.75 (d, J = 5.2 Hz,

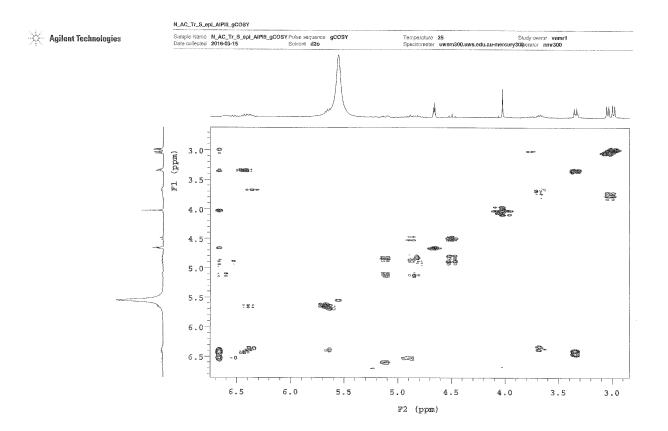
1H), 2.70 - 2.56 (m, 2H), 2.44 (d, J = 5.4 Hz, 1H), 2.35 (d, J = 7.5 Hz, 1H), 2.30 (d, J = 7.3 Hz, 1H), 1.86 (s, 3H), 1.67 - 1.39 (m, 3H), 0.87 (d, J = 6.3 Hz, 3H), 0.82 (d, J = 6.3 Hz, 3H). ¹³C NMR (75 MHz, DMSO) δ 176.39, 174.74, 174.59, 173.46, 172.42, 172.30, 172.18, 172.11, 158.33, 132.76, 130.16, 117.41, 64.30, 57.70, 57.57, 56.42, 52.91, 50.95, 42.51, 38.98, 28.79, 26.80, 25.46, 25.10, 23.93, 20.65, 20.49.

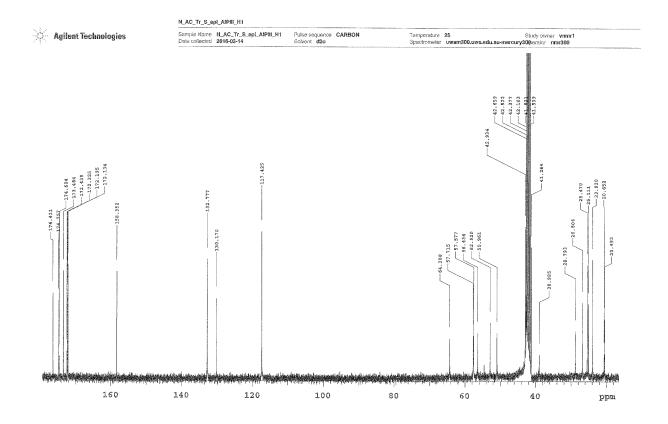


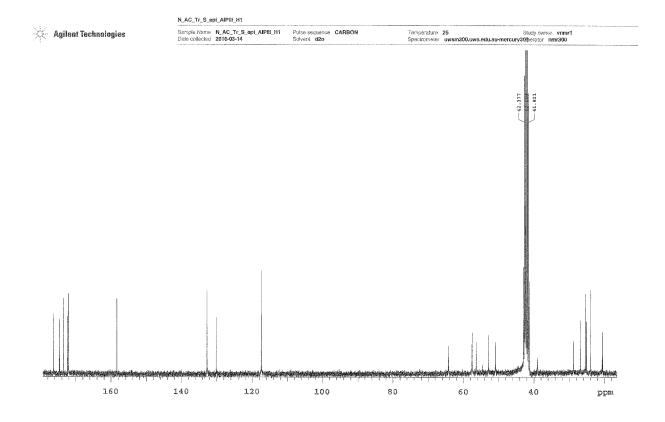
LC1260 1/6/2016 3:19:38 PM Simi120102015




 $Data file \/home/nmr300/vnmrsys/data/CpgData/N_Ac_tr_S_spi_AIPHi_H1.fid$

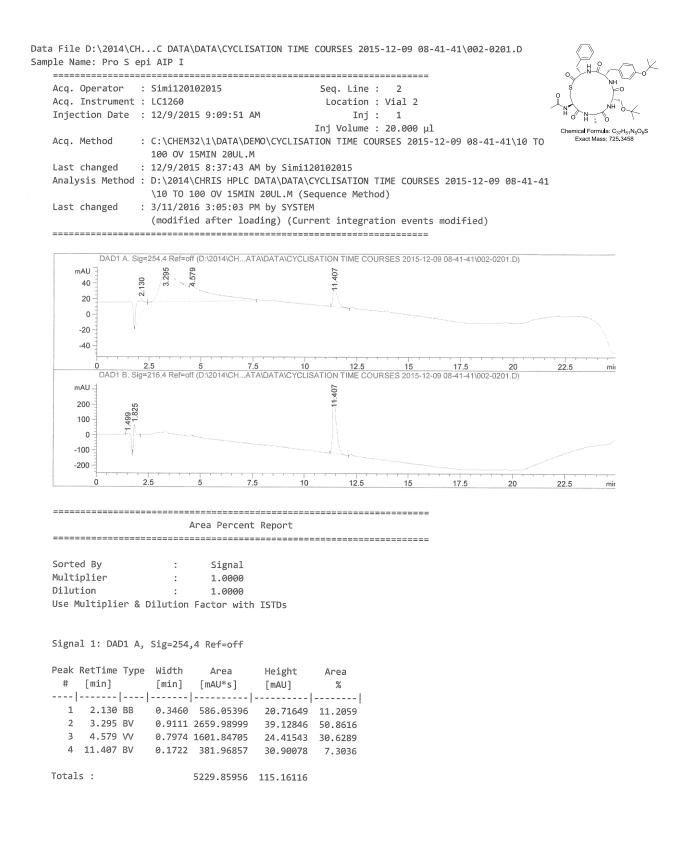

 $\label{eq:def_def_def} Data file \ensuremath{home}/nmi00\ensuremath{/}nmeye/data/N_AC_Tr_S_epi_AlPHi_gCOSY/N_AC_Tr_S_epi_AlPHI_gCOSY_d2o_20160315_01.8dd$


Data file /home/nmr300/vnmrsys/data/N_AC_Tr_S_epi_A(Pill_gCOSY/N_AC_Tr_S_epi_A(Pill_gCOSY_gCOSY_d2e_20160215_01.id


Data file exp

Data file /home/hmt900/vntarsys/data/N_AC_Tr_S_epi_AIPIII_gCOSY/N_AC_Tr_S_epi_AIPIII_gCOSY_gCOSY_d2c_20160315_01.fid

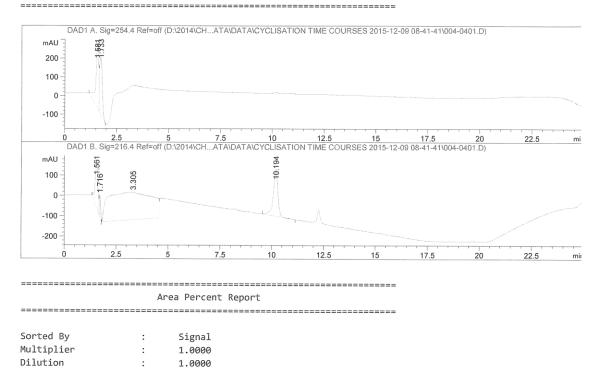
Data file /homo/nmr300/vnmreys/data/OpgData/N_AG_Tr_S_epi_AIPIII_C13.fid


Data file /home/nmr300/vnmrsys/deta/OpgData/N_AC_Tr_S_epi_AIPIII_C13.fid

Acq. Operator Acq. Instrume Injection Dat	ent : LC126	50	3:37 AM	L	eq. Line : ocation : Inj : Volume :	1	L		Chemical Form	
Acq. Method				J	TIME COUR			41-41\10 T	Exact Ma	ss: 743.35
Last changed)V 15MIN 4 2015 8:34	0UL.M 1:25 AM by	Simi12010	2015					
Analysis Meth	iod : D:\20	14\CHRIS	HPLC DATA	DATA\CYCL	ISATION TI		S 2015-12	-09 08-41-	41	
Last changed			15MIN 40U 3:37 PM by		nce Method)				
Last changed			-		integrati	on events.	modified)		
					0					
	A 01- 07- 1-	1 11 JP 100		10000		000.00.0				
	A, Sig=254,4 Ri	ef=off (D:\2014	ICHATAIDAT	A\CYCLISATI	ON TIME COUR	SES 2015-12-	09 08-41-41\LC	DADTEST.D)		
02.70										
200 - 150 -										
100										
50				and a state of the	A card Proceeding and the second second second second					
0	AV -									
-50)									
0	2.5	5	7.5	10	12.5	15	17.5	20	22.5	mi
	5	er=on (D:\2014	ICHATAIDAT		ON TIME COUR	SES 2015-12-	09 08-41-41\LC	DADTEST.D)		
	1 .			10.239						
300										
200 -										
100-	11	an and a second second second second second second second	~	~ //						
0				- Town	and the second day of the seco					
-100 -						1				
0	2.5	5	7.5	10	12.5	15	17.5	20	22.5	mir
			ercent Rep							
Sorted By	:	- Sid	nal							
Multiplier		-	000							
			000							
Dilution										

Peak RetTime	Туре	Width	Area	Height	Area
# [min]					
	-				
1 0.761	BB	0.2168	4873.58838	325.23016	100.0000

Totals : 4873.58838 325.23016


LC1260 3/11/2016 3:03:42 PM SYSTEM

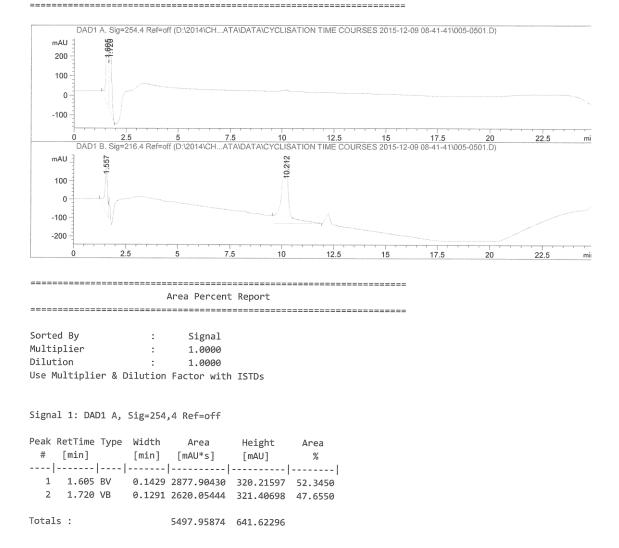
LC1260 3/11/2016 3:05:24 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\004-0401.D Sample Name: Pro S epi AIP I EDCI T=1

	===:				
Acq. Operator	:	Simi120102015	Seq. Line	:	4
Acq. Instrument	:	LC1260	Location	:	Vial 4
Injection Date	:	12/9/2015 10:02:04 AM	Inj	:	1
			Inj Volume	:	50.000 µl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCL	ISATION TIME CO	DUR	RSES 2015-12-09 08-41-41\10 TO
		100 OV 15MIN 50UL.M			
Last changed	:	12/9/2015 8:34:52 AM by Si	mi120102015.		
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DA	TA\CYCLISATION	ΤI	IME COURSES 2015-12-09 08-41-41
		\10 TO 100 OV 15MIN 50UL.M	1 (Sequence Meth	lod	1)
Last changed	:	3/11/2016 3:07:01 PM by SY	STEM		
		(modified after loading) (Current integra	iti	ion events modified)

Signal 1: DAD1 A, Sig=254,4 Ref=off

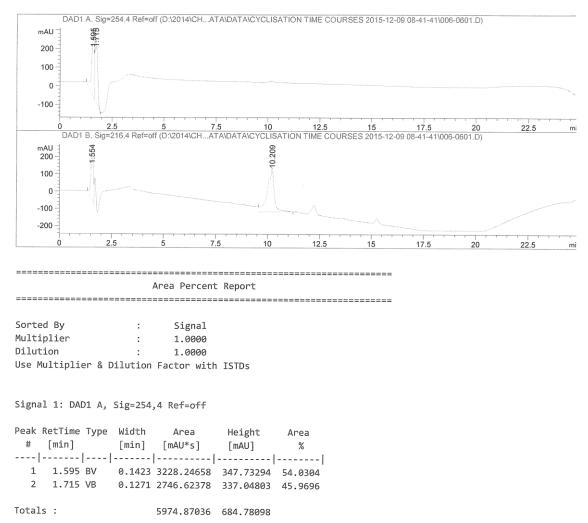
Use Multiplier & Dilution Factor with ISTDs


Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]	L 7	
1	1.581	BV	0.1396	3367.25024	352.04962	54.4977
2	1.733	VB	0.1370	2811.45020	306.56219	45.5023

Totals : 6178.70044 658.61182

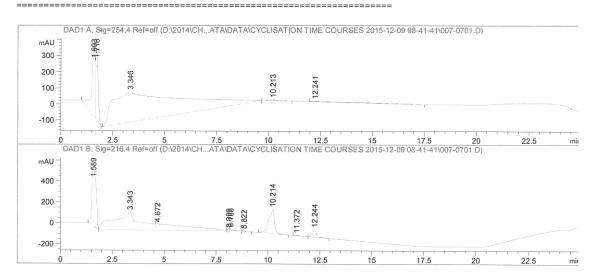
LC1260 3/11/2016 3:07:44 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\005-0501.D Sample Name: Pro S epi AIP I EDCI T=2


Acq. Operator	:	Simi120102015 Seq. Line : 5
Acq. Instrument	:	LC1260 Location : Vial 5
Injection Date	:	12/9/2015 10:28:28 AM Inj: 1
		Inj Volume : 50.000 μl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION TIME COURSES 2015-12-09 08-41-41\10 TO
		100 OV 15MIN 50UL.M
Last changed	:	12/9/2015 8:34:52 AM by Simi120102015
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41
		\10 TO 100 OV 15MIN 50UL.M (Sequence Method)
Last changed	:	3/11/2016 3:08:14 PM by SYSTEM
		(modified after loading) (Current integration events modified)

LC1260 3/11/2016 3:08:27 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\006-0601.D Sample Name: Pro S epi AIP I EDCI T=3


Acq. Operator	Simi120102015 Seq. Line : 6
Acq. Instrument	LC1260 Location : Vial 6
Injection Date	12/9/2015 10:54:51 AM Inj: 1
	Inj Volume : 50.000 µl
Acq. Method	C:\CHEM32\1\DATA\DEMO\CYCLISATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M
Last changed	12/9/2015 8:34:52 AM by Simi120102015
Analysis Method	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50UL.M (Sequence Method)
Last changed	3/11/2016 3:08:17 PM by SYSTEM
	(modified after loading) (Current integration events modified)

LC1260 3/11/2016 3:08:52 PM SYSTEM

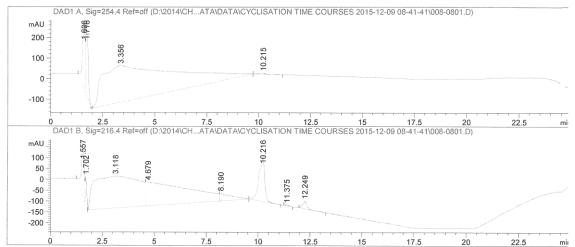
Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\007-0701.D Sample Name: Pro S epi AIP I EDCI T=4

Acq. Operator	: Simi120102015	Seq. Line : 7
Acq. Instrument	: LC1260	Location : Vial 7
Injection Date	: 12/9/2015 11:21:12 AM	Inj : 1
		Inj Volume : 50.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYC	LISATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M	
Last changed	: 12/9/2015 8:34:52 AM by 9	imi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\	ATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50UL	M (Sequence Method)
Last changed	: 12/9/2015 8:34:52 AM by 9	imi120102015

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & DilutionFactor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.603	BV	0.1725	5201.67871	458.07654	10.4150
2	1.716	VB	0.1248	3381.00098	425.11902	6.7696
3	3.346	BB	2.6305	4.09253e4	188.53644	81.9426
4	10.213	BB	0.2607	127.26412	6.43710	0.2548
5	12.241	BB	1.4487	308.64209	2.53808	0.6180
Totals :			4.99439e4	1080.70718		

LC1260 3/11/2016 3:17:17 PM SYSTEM

Data File D:\2014\CHC DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\008-0801.D Sample Name: Pro S epi AIP I EDCI T=5						
: Simi120102015	Seq. Line : 8					
: LC1260	Location : Vial 8					
: 12/9/2015 11:47:34 AM	Inj : 1					

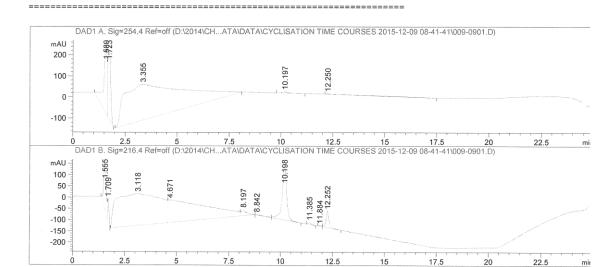
	Inj Volume : 50.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLISATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M
Last changed	: 12/9/2015 8:34:52 AM by Simi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50UL.M (Sequence Method)
Last changed	: 12/9/2015 8:34:52 AM by Simi120102015

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & DilutionFactor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak RetTime Type	Width	Area	Height	Area
# [min]		[mAU*s]		
1 1.606 BV	0.1476	2910.32202	315.53625	6.1846
2 1.716 VB	0.1274	2650.71338	330.95630	5.6329
3 3.356 BB	2.8918	4.13931e4	177.55893	87.9624
4 10.215 BB	0.2443	103.56112	5.58528	0.2201


Totals : 4.70577e4 829.63676

LC1260 3/11/2016 3:17:39 PM SYSTEM

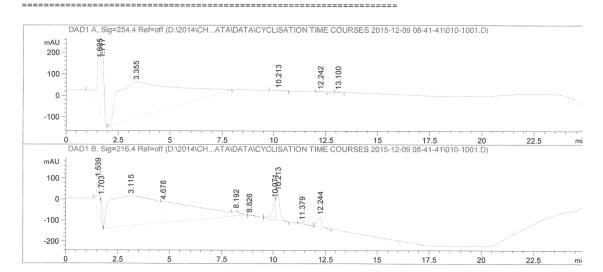
Sample Name: Pro S epi AIP I EDCI T=6				
Acq. Operator	: Simi120102015	Seq. Line : 9		
Acq. Instrument	: LC1260	Location : Vial 9		
Injection Date	: 12/9/2015 12:13:57 PM	Inj: 1		
		Inj Volume : 50.000 μl		
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLISA	TION TIME COURSES 2015-12-09 08-41-41\10 TO		
	100 OV 15MIN 50UL.M			
Last changed	: 12/9/2015 8:34:52 AM by Simil:	20102015		
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA\0	CYCLISATION TIME COURSES 2015-12-09 08-41-41		
	\10 TO 100 OV 15MIN 50UL.M (Se	equence Method)		

Last changed : 12/9/2015 8:34:52 AM by Simi120102015

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\009-0901.D

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & Dilution Factor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.589	BV	0.1806	4022.81079	329.05768	10.1141
2	1.723	VB	0.1354	2870.10156	323.77527	7.2160
3	3.355	BB	2.4141	3.25097e4	169.00912	81.7353
4	10.197	BB	0.2156	93.89954	6.45743	0.2361
5	12.250	BB	1.3976	277.87198	2.37042	0.6986
Totals :			3.97743e4	830.66993		

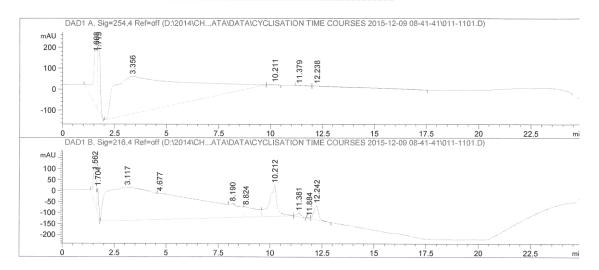
LC1260 3/11/2016 3:18:01 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\010-1001.D Sample Name: Pro S epi AIP I EDCI T=7

Acq. Operator	: Simi120102015	Seq. Line : 10
Acq. Instrument	: LC1260	Location : Vial 10
Injection Date	: 12/9/2015 12:40:21 PM	Inj: 1
		Inj Volume : 50.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLIS	ATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M	
Last changed	: 12/9/2015 8:34:52 AM by Simi	120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA	CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50UL.M (Sequence Method)
Last changed	: 12/9/2015 8:34:52 AM by Simi	120102015

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & Dilution Factor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.605	BV	0.1772	4489.14160	329.06613	11.4893
2	1.717	VB	0.1265	2783.65601	343.53024	7.1244
3	3.355	BB	2.3539	3.16887e4	168.51677	81.1029
4	10.213	BB	0.2389	64.03980	3.57667	0.1639
5	12.242	BB	0.1880	22.24874	1.60204	0.0569
6	13.100	BB	0.2078	24.43504	1.87783	0.0625
Total	s :			3.90722e4	848.16968	

LC1260 3/11/2016 3:18:19 PM SYSTEM

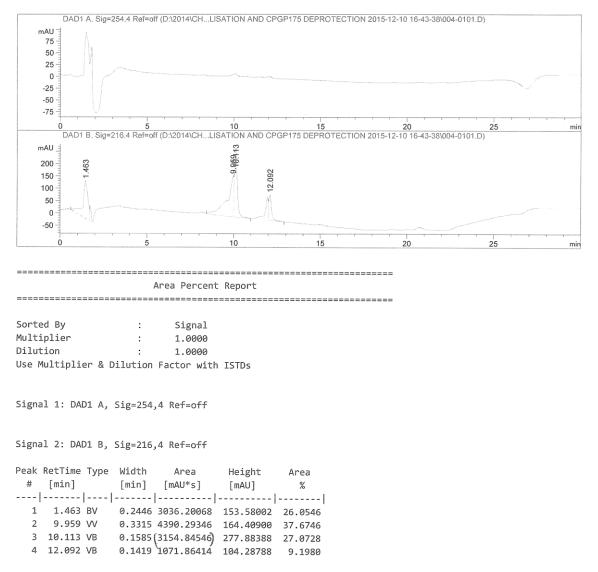
Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\011-1101.D Sample Name: Pro S epi AIP I EDCI T=8

Acq. Operator	: Simi120102015 S	eq. Line : 11
Acq. Instrument	: LC1260	Location : Vial 11
Injection Date	: 12/9/2015 1:06:46 PM	Inj: 1
	In	j Volume : 50.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLISATIO	N TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M	
Last changed	: 12/9/2015 8:34:52 AM by Simi1201	02015
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA\CYC	LISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50UL.M (Sequ	ence Method)
Last changed	: 12/9/2015 8:34:52 AM by Simi1201	02015

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & Dilution Factor with ISTDs

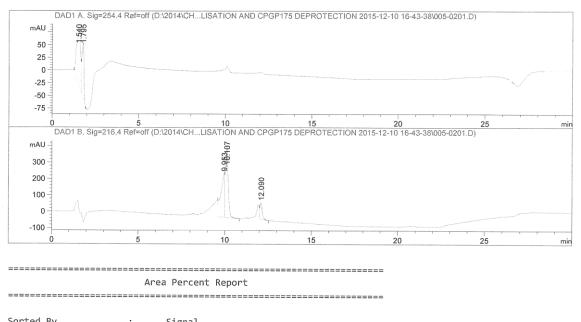
Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.608	BV	0.1869	4166.40869	335.40826	8.4552
2	1.715	VB	0.1096	2818.24805	343.94464	5.7193
3	3.356	BB	2.9109	4.17501e4	177.70731	84.7267
4	10.211	BB	0.2299	58.64925	3.42352	0.1190
5	11.379	BV	0.3491	37.02816	1.39740	0.0751
6	12.238	VB	1.7572	445.76926	3.01096	0.9046
Total	s :			4.92762e4	864.89209	

LC1260 3/11/2016 3:18:42 PM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\004-0101.D Sample Name: Pro S epi AIP I EDCI T=1

Acq. Operator :	Simi120102015	Seq. Line	: 1
Acq. Instrument :	LC1260	Location	: Vial 4
Injection Date :	12/10/2015 4:45:50 PM	Inj	: 1
		Inj Volume	: 100.000 µl
Acq. Method :	C:\CHEM32\1\DATA\DEMO\CYC	LISATION AND CPG	GP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 10	OUL.M	
Last changed :	12/10/2015 4:12:03 PM by	Simi120102015	
Analysis Method :	D:\2014\CHRIS HPLC DATA\D	ATA\CYCLISATION	AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV	15MIN 100UL.M (S	Sequence Method)
Last changed :	12/14/2015 1:10:24 PM by	Simi120102015	
	(modified after loading)	(Current integra	ation events modified)


Totals : 1.16532e4 700.16077

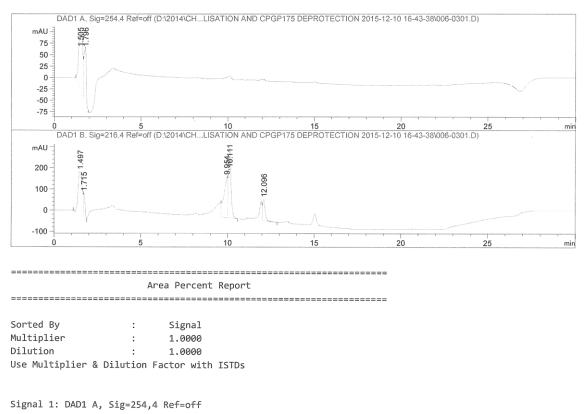
LC1260 3/15/2016 8:52:22 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\005-0201.D Sample Name: Pro S epi AIP I EDCI T=2

Acq. Operator	:	Simi120102015 Seq. Line : 2
Acq. Instrument	:	LC1260 Location : Vial 5
Injection Date	:	12/10/2015 5:17:40 PM Inj: 1
		Inj Volume : 100.000 µl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN 100UL.M
Last changed	:	12/10/2015 4:12:03 PM by Simi120102015
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed	:	3/15/2016 8:54:32 AM by SYSTEM
		(modified after loading) (Current integration events modified)

зопсей ву		•	Sigi	Iat	
Multiplier	:	1.00	900		
Dilution	:	1.00	900		
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

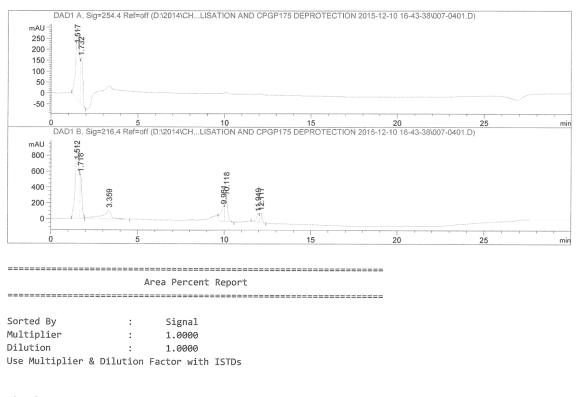

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	1.540	BV	0.1986	1781.25818	112.59834	67.5538
2	1.795	VB	0.1072	855.54169	111.93997	32.4462

Totals : 2636.79987 224.53831

LC1260 3/15/2016 8:54:44 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\006-0301.D Sample Name: Pro S epi AIP I EDCI T=3

Acq. Operator	: Simi120102015 Se	q.Line: 3
Acq. Instrument	: LC1260 L	ocation : Vial 6
Injection Date	: 12/10/2015 5:49:29 PM	Inj: 1
	Inj	Volume : 100.000 µl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLISATION	AND CPGP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 100UL.M	
Last changed	: 12/10/2015 4:12:03 PM by Simi1201	02015
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA\CYCL	ISATION AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV 15MIN 10	0UL.M (Sequence Method)
Last changed	: 3/15/2016 8:54:32 AM by SYSTEM	
	(modified after loading) (Current	integration events modified)



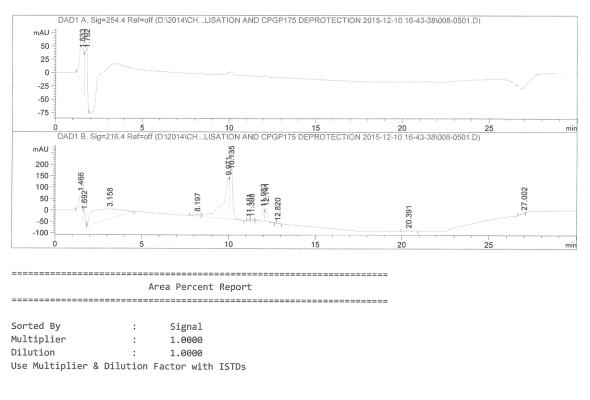
Totals : 3218.96057 252.72318

LC1260 3/15/2016 8:55:26 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\007-0401.D Sample Name: Pro S epi AIP I EDCI T=4

Acq. Operator	: Simi120102015	Seq. Line : 4
Acq. Instrument	: LC1260	Location : Vial 7
Injection Date	: 12/10/2015 6:21:19 PM	Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYC	LISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 10	0UL.M
Last changed	: 12/10/2015 4:12:03 PM by	Simi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\D	ATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV	15MIN 100UL.M (Sequence Method)
Last changed	: 3/15/2016 8:55:17 AM by S	YSTEM
	(modified after loading)	(Current integration events modified)

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.517	BV	0.1917	4909.50439	326.01376	72.3912
2	1.732	VB	0.1158	1872.40393	210.45964	27.6088

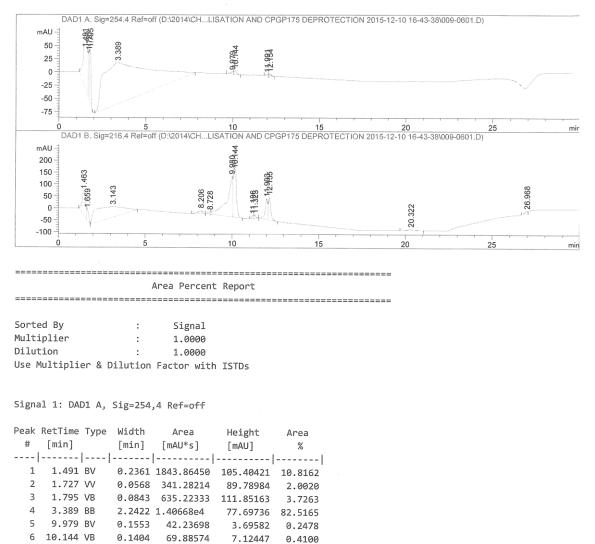
Totals : 6781.90833 536.47340

LC1260 3/15/2016 8:55:47 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\008-0501.D Sample Name: Pro S epi AIP I EDCI T=5

Acq. Operator : Si	imi120102015 Seq. Line	: 5
Acq. Instrument : LC	C1260 Location	: Vial 8
Injection Date : 12	2/10/2015 6:53:08 PM Inj	: 1
	Inj Volume	: 100.000 µl
Acq. Method : C:	:\CHEM32\1\DATA\DEMO\CYCLISATION AND CP	GP175 DEPROTECTION 2015-12-10 16-43
-3	38\10 TO 100 OV 15MIN 100UL.M	
Last changed : 12	2/10/2015 4:12:03 PM by Simi120102015	
Analysis Method : D:	:\2014\CHRIS HPLC DATA\DATA\CYCLISATION	AND CPGP175 DEPROTECTION 2015-12-
10	0 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed : 3/	/15/2016 8:56:26 AM by SYSTEM	
(m	modified after loading) (Current integr	ation events modified)

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.533	BV	0.2171	1665.01831	107.28703	60.6916
2	1.792	VB	0.1301	1078.38867	112.23992	39.3084

Totals : 2743.40698 219.52695

LC1260 3/15/2016 8:56:42 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\009-0601.D Sample Name: Pro S epi AIP I EDCI T=6

Acq. Operator	:	Simi120102015 Seq.	Line	:	б
Acq. Instrument	:	LC1260 Loc	ation	:	Vial 9
Injection Date	:	12/10/2015 7:24:58 PM	Inj	:	1
		Inj V	olume	:	100.000 µl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION A	ND CPG	SP:	175 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN 100UL.M			
Last changed	:	12/10/2015 4:12:03 PM by Simi120102	015		
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLIS	ATION	٨ľ	ND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 OV 15MIN 100U	L.M (S	Sec	quence Method)
Last changed	:	3/15/2016 8:56:35 AM by SYSTEM			
		(modified after loading) (Current i	ntegra	ati	ion events modified)

8 12.154 VB 0.1232 26.67034 3.07549

Totals : 1.70472e4 401.18364

0.1196

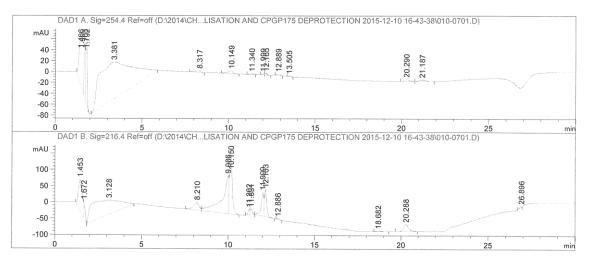
21.28784

LC1260 3/15/2016 8:57:01 AM SYSTEM

7 11.991 BV

Page 1 of 2

2.54482


0.1249

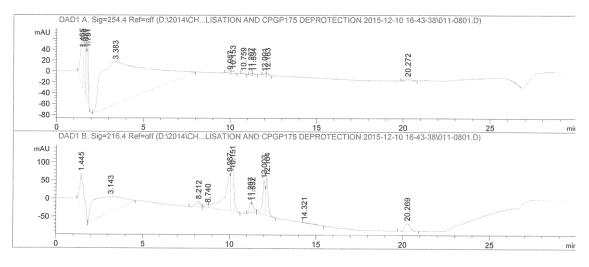
0.1564

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\010-0701.D Sample Name: Pro S epi AIP I EDCI T=7

Acq. Operator	: Simi120102015	Seq. Line : 7			
Acq. Instrument	: LC1260	Location : Vial 10			
Injection Date	: 12/10/2015 7:56:50 PM	Inj: 1			
		Inj Volume : 100.000 μl			
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CY	CLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43			
	-38\10 TO 100 OV 15MIN 1	00UL.M			
Last changed	: 12/10/2015 4:12:03 PM by	Simi120102015			
Analysis Method	: D:\2014\CHRIS HPLC DATA\	DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-			
	10 16-43-38\10 TO 100 OV	15MIN 100UL.M (Sequence Method)			
Last changed	: 3/15/2016 8:56:55 AM by	SYSTEM			
	(modified after loading)	(Current integration events modified)			

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.466	BV	0.2237	1583.25232	94.39129	13.0924
2	1.703	VV	0.0786	556.03668	100.40852	4.5980
3	1.792	VB	0.0808	579.42816	111.17802	4.7915
4	3.381	BB	1.6932	8997.04297	67.75424	74.3994
5	8.317	BB	0.2922	67.80720	3.03977	0.5607
6	10.149	BB	0.2199	86.47871	5.20270	0.7151
7	11.340	BB	0.2114	18.46382	1.17442	0.1527
8	11.999	BV	0.1154	16.60037	2.07312	0.1373
9	12.165	VB	0.1302	26.37010	2.89770	0.2181
10	12.889	BB	0.1486	27.80781	2.64722	0.2300

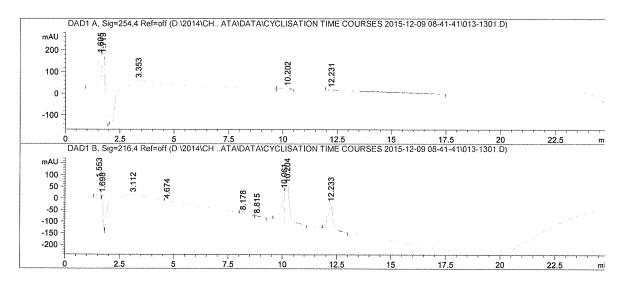
LC1260 3/15/2016 8:57:22 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\011-0801.D Sample Name: Pro S epi AIP I EDCI T=8

	==	
Acq. Operator	:	Simi120102015 Seq. Line : 8
Acq. Instrument	:	LC1260 Location : Vial 11
Injection Date	:	12/10/2015 8:28:43 PM Inj: 1
		Inj Volume : 100.000 µl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN 100UL.M
Last changed	:	12/10/2015 4:12:03 PM by Simi120102015
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed	:	3/15/2016 8:57:13 AM by SYSTEM
		(modified after loading) (Current integration events modified)

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier 8	Dilution	Factor with	ISTDs


```
Signal 1: DAD1 A, Sig=254,4 Ref=off
```

Peak Re	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	1.465	BV	0.1316	937.44293	96.23300	5.3705
2	1.574	VV	0.0891	667.00934	103.61787	3.8212
3	1.677	VV	0.0874	542.16125	93.82185	3.1060
4	1.791	VB	0.0814	608.92010	112.03243	3.4884
5	3.383	BB	2.2716	1.44600e4	78.48016	82.8390
6	9.987	BV	0.1528	25.63412	2.25257	0.1469
7 1	10.153	VB	0.1351	41.03677	4.38950	0.2351
8 1	10.759	BB	0.1353	13.90667	1.51162	0.0797
9 1	L1.207	BV	0.1033	13.99164	2.00774	0.0802
10 1	l1.334	VB	0.1380	20.33339	2.08010	0.1165

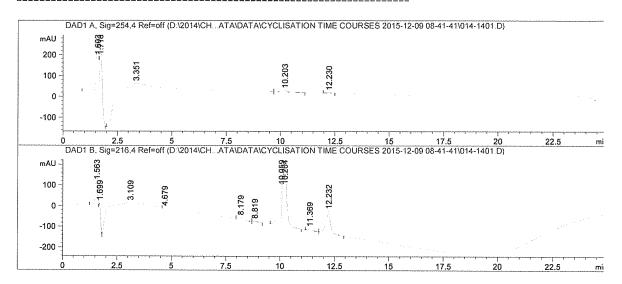
LC1260 3/15/2016 8:57:39 AM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\013-1301.D Sample Name: Pro S epi AIP I DCC T=1

	=======================================	
Acq. Operator	Simi120102015 Seq. Line : 13	
Acq. Instrument	LC1260 Location : Vial 13	
Injection Date	12/9/2015 1:59:28 PM Inj: 1	
	Inj Volume : 50.000 µl	
Acq. Method	C:\CHEM32\1\DATA\DEMO\CYCLISATION TIME COURSES 2015-12-09 08-41-41\10 TO)
	100 OV 15MIN 50UL.M	
Last changed	12/9/2015 8:34:52 AM by Simi120102015	
Analysis Method	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-4	1
	\10 TO 100 OV 15MIN 50UL.M (Sequence Method)	
Last changed	12/9/2015 8:34:52 AM by Simi120102015	


```
Area Percent Report
```

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier 8	Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.605	BV	0.1915	4572.15869	347.44028	9.2912
2	1.713	VB	0.1272	2888.10840	353.98679	5.8690
3	3.353	BB	2.8775	4.13539e4	177.40935	84.0364
4	10.202	BB	0.2351	90.66362	5.15845	0.1842
5	12.231	BB	0.9588	304.67273	3.82686	0.6191
Total	s :			4.92095e4	887.82172	

LC1260 3/11/2016 3:19:25 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\014-1401.D Sample Name: Pro S epi AIP I DCC T=2

Acq. Operator	: Simi120102015	Seq. Line : 14
Acq. Instrument	: LC1260	Location : Vial 14
Injection Date	: 12/9/2015 2:25:50 PM	Inj: 1
		Inj Volume : 50.000 µl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CY	LISATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M	
Last changed	: 12/9/2015 8:34:52 AM by 9	5imi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\	DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50UL	M (Sequence Method)
Last changed	: 12/9/2015 8:34:52 AM by 9	Simi120102015

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.603	BV	0.1872	4779.18799	363.93860	9.7463
2	1.716	VB	0.1259	2873.19458	357.02588	5.8593
3	3.351	BB	2.8653	4.11772e4	177.31512	83.9732
4	10.203	BB	0.2592	161.51819	8.15060	0.3294
5	12.230	BB	0.1792	44.99989	3,51958	0.0918
Total	.s :			4.90361e4	909.94977	

LC1260 3/11/2016 3:19:46 PM SYSTEM

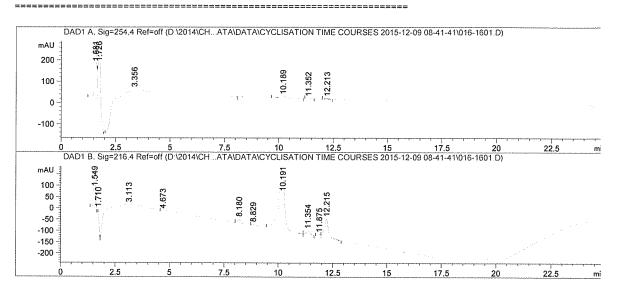
Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\015-1501.D Sample Name: Pro S epi AIP I DCC T=3

Acq. Operator	: Simi120102015	Seq. Line : 15	
Acq. Instrument	: LC1260	Location : Vial 15	
Injection Date	: 12/9/2015 2:52:11 PM	Inj: 1	
	:	Inj Volume : 50.000 μl	
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLISAT	ION TIME COURSES 2015-12-09 08-41-41\10 TO	
	100 OV 15MIN 50UL.M		
Last changed	: 12/9/2015 8:34:52 AM by Simi120	.0102015	
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA\C	YCLISATION TIME COURSES 2015-12-09 08-41-4	1
	\10 TO 100 OV 15MIN 50UL.M (See	quence Method)	
Last changed	: 12/9/2015 8:34:52 AM by Simi120	.0102015	

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.583	BV	0.1199	2985.13208	335.22275	7.7443
2	1.725	VB	0.1354	2756.44702	311.15768	7.1510
3	3.356	BB	2.4180	3.26423e4	169.10605	84.6840
4	10.191	BB	0.2544	122.40668	6.72286	0.3176
5	12.227	BB	0.1463	39.73694	3.98539	0.1031

Totals: 3.85461e4 826.19473

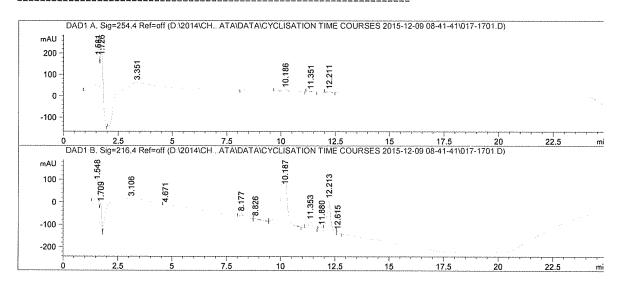
LC1260 3/11/2016 3:20:04 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\016-1601.D Sample Name: Pro S epi AIP I DCC T=4

a=====================================	=======================================	
Acq. Operator	mi120102015 Seq. Line : 16	
Acq. Instrument	1260 Location : Vial 16	
Injection Date	/9/2015 3:18:32 PM Inj: 1	
	Inj Volume : 50.000 μl	
Acq. Method	\CHEM32\1\DATA\DEMO\CYCLISATION TIME COURSES 2015-12-	09 08-41-41\10 TO
	0 OV 15MIN 50UL.M	
Last changed	/9/2015 8:34:52 AM by Simi120102015	
Analysis Method	<pre>\2014\CHRIS HPLC DATA\DATA\CYCLISATION TIME COURSES 2</pre>	015-12-09 08-41-41
	0 TO 100 OV 15MIN 50UL.M (Sequence Method)	
Last changed	/9/2015 8:34:52 AM by Simi120102015	

Area Percent Report

Sorted By	:	Sigr	nal	
Multiplier	:	1.00	900	
Dilution	:	1.00	999	
Use Multiplier &	Dilution	Factor	with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.581	BV	0.1490	3199.37695	324.70987	8.2637
2	1.726	VB	0.1294	2664.96948	312.72717	6.8833
3	3.356	BB	2.4054	3.26748e4	169.76886	84.3956
4	10.189	BB	0.2567	137.00867	7.04991	0.3539
5	11.352	BB	0.1482	10.37941	1.04253	0.0268
6	12.213	BB	0.1620	29.70581	2.75120	0.0767
Total	s :			3.87163e4	818.04955	

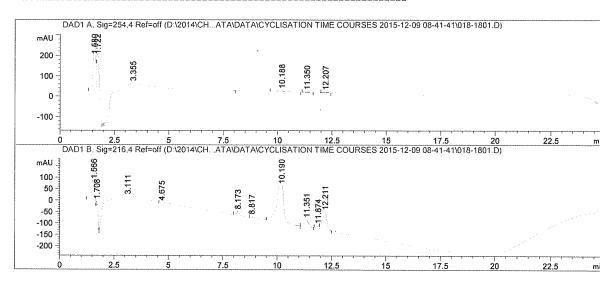
LC1260 3/11/2016 3:20:23 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\017-1701.D Sample Name: Pro S epi AIP I DCC T=5

Acq. Operator	: Simi120102015	Seq. Line : 17	
Acq. Instrument	: LC1260	Location : Vial 17	
Injection Date	: 12/9/2015 3:44:54 PM	Inj : 1	
		Inj Volume : 50.000 μl	
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLISA	TION TIME COURSES 2015-12-09 08-41-41\10 TO	
	100 OV 15MIN 50UL.M		
Last changed	: 12/9/2015 8:34:52 AM by Simi1	20102015	
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA\	CYCLISATION TIME COURSES 2015-12-09 08-41-41	
	\10 TO 100 OV 15MIN 50UL.M (S	equence Method)	
Last changed	: 12/9/2015 8:34:52 AM by Simi1	20102015	

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier 8	Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.581	BV	0.1910	4623.04297	347.97897	11.4510
2	1.726	VB	0.1327	2822.01587	326.90796	6.9899
3	3,351	BB	2.4078	3.27222e4	169.99074	81.0506
4	10.186	BB	0.2514	135.57300	7.07972	0.3358
5	11.351	BB	0.1643	21.82674	1.95492	0.0541
6	12.211	BB	0.1620	47.89104	4.43370	0.1186
Total	5:			4.03726e4	858.34601	

LC1260 3/11/2016 3:20:42 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\018-1801.D Sample Name: Pro S epi AIP I DCC T=6

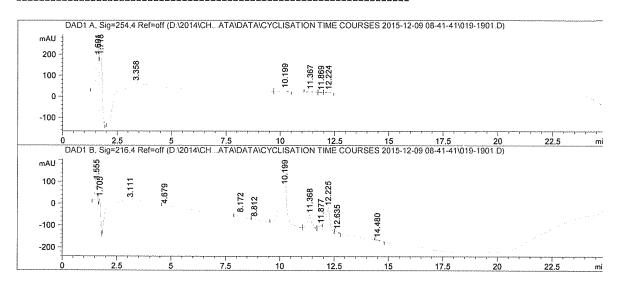
# ################################### ####			
Acq. Operator : Sim	ni120102015 Seq. Li	Line : 18	
Acq. Instrument : LC1	L260 Locati	tion : Vial 18	
Injection Date : 12/	/9/2015 4:11:15 PM J	Inj: 1	
	Inj Volu	lume : 50.000 µl	
Acq. Method : C:\	CHEM32\1\DATA\DEMO\CYCLISATION TIME	ME COURSES 2015-12-09 08-41-41\10 T	0
100	0 OV 15MIN 50UL.M		
Last changed : 12/	/9/2015 8:34:52 AM by Simi120102015	5	
Analysis Method : D:\	2014\CHRIS HPLC DATA\DATA\CYCLISAT	TION TIME COURSES 2015-12-09 08-41-	41
\10	0 TO 100 OV 15MIN 50UL.M (Sequence M	Method)	
Last changed : 12/	/9/2015 8:34:52 AM by Simi120102015	5	
~~~~~~~~~~~~~~~~			



Area Percent Report

****

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor wit	h ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak Ret	Time Typ	e Width	Area	Height	Area
#[m	in]	[min]	[mAU*s]	[mAU]	%
		-			
1 1	.580 BV	0.1184	2893.84497	329.67761	7.5922
21	.722 VB	0.1303	2587.79492	307.17178	6.7892
33	.355 BB	2,4080	3.24771e4	169.45660	85.2058
4 10	.188 BB	0.2570	105.20487	5.35966	0.2760
5 11	.350 BB	0.1753	24.47615	2.04994	0.0642
6 12	.207 BB	0.1749	27.63758	2.35579	0.0725
Totals :			3.81161e4	816.07138	

LC1260 3/11/2016 3:21:00 PM SYSTEM

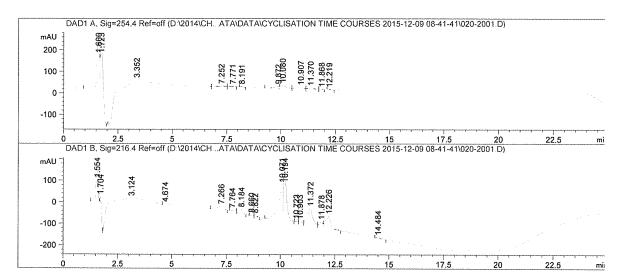
Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\019-1901.D Sample Name: Pro S epi AIP I DCC T=7

Acq. Operator	: Simi120102015	Seq. Line : 19		
Acq. Instrument	: LC1260	Location : Vial 19		
Injection Date	: 12/9/2015 4:37:37 PM	Inj: 1		
		Inj Volume : 50.000 µl		
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYC 100 OV 15MIN 50UL.M	LISATION TIME COURSES 2015-12-09 08-41-41\10 TO		
Last changed	: 12/9/2015 8:34:52 AM by S	imi120102015		
Analysis Method : D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41 \10 TO 100 OV 15MIN 50UL.M (Sequence Method)				
Last changed	: 12/9/2015 8:34:52 AM by S	imi120102015		



# Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs


### Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.601	BV	0.1236	3045.34766	330.10397	6.4429
2	1.718	VB	0.1098	2739.89038	340.63965	5.7967
3	3.358	BB	2.8858	4.12533e4	177.08905	87.2783
4	10.199	BB	0.2294	125.25597	7.25652	0.2650
5	11.367	BB	0.1847	49.42875	3.92963	0.1046
6	11.869	BV	0.1399	10.39240	1.16696	0.0220
7	12.224	VB	0.1741	42.75997	3.41457	0.0905
Tota]	.s :			4.72664e4	863.60035	

LC1260 3/11/2016 3:21:16 PM SYSTEM

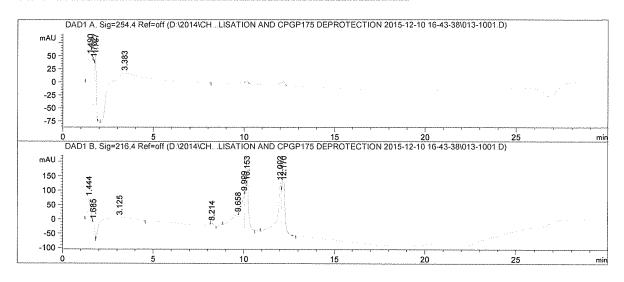
Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\020-2001.D Sample Name: Pro S epi AIP I DCC T=8

=======================================	==			====:	==:		<u> </u>
Acq. Operator	:	Simi120102015	Seq. I	Line	:	20	
Acq. Instrument	:	LC1260	Loca	tion	:	Vial	20
Injection Date	:	12/9/2015 5:04:02 PM		Inj	:	1	
			Inj Vol	lume	:	50.0	00 µl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\C	YCLISATION TI	ME CO	DU	RSES	2015-12-09 08-41-41\10 TO
		100 OV 15MIN 50UL.M					
Last changed	:	12/9/2015 8:34:52 AM by	Simi12010201	5			
Analysis Method	:	D:\2014\CHRIS HPLC DATA	\DATA\CYCLISA	TION	Т:	EME C	OURSES 2015-12-09 08-41-41
		\10 TO 100 OV 15MIN 50U	L.M (Sequence	Meth	100	i)	
Last changed	:	12/9/2015 8:34:52 AM by	Simi120102019	5			



# Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs


### Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.600	BV	0.1977	4705.84521	348.08038	14.1124
2	1,723	VB	0.1287	2841.90308	342.74042	8.5226
3	3.352	BB	1.9856	2.50345e4	158.24918	75.0765
4	7.252	BV	0.2906	59.79783	2.67723	0.1793
5	7.771	VB	0.1862	25.25790	1.86263	0.0757
6	8.191	BB	0.1210	12.33597	1.61699	0.0370
7	9.872	BV	0.1921	122.03799	8.67838	0.3660
8	10.080	vv	0.2573	269.69159	14.61151	0.8088
9	10.907	vv	0.3375	161.59647	6.51323	0.4846
10	11.370	VV	0.2279	92.23831	5.72746	0.2766

LC1260 3/11/2016 3:21:37 PM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\013-1001.D Sample Name: Pro S epi AIP I DCC T=1

Acq. Operator	:	Simi120102015	Seq. Line	:	10
Acq. Instrument	:	LC1260	Location	:	Vial 13
Injection Date	:	12/10/2015 9:32:25 PM	Inj	:	1
			Inj Volume :	:	100.000 µl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\C	YCLISATION AND CPG	Ρ1	75 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN	100UL.M		
Last changed	:	12/10/2015 4:12:03 PM b	y Simi120102015		
Analysis Method	:	D:\2014\CHRIS HPLC DATA	\DATA\CYCLISATION A	AN	ND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 0	V 15MIN 100UL.M (Se	eq	uence Method)
Last changed	:	3/15/2016 8:58:04 AM by	SYSTEM		
-		(modified after loading	) (Current integrat	ti	on events modified)



Area Percent Report

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

=

Peak	RetTime	Туре	Width	Area	Height	Area
#	5		[min]		[mAU]	%
1	1.490	BV	0.2120	1773.21631	111.20480	10.0263
2	1.702	VV	0.0544	349.67706	91.83134	1.9772
3	1.787	VB	0.0826	603.62054	112.52320	3.4130
4	3.383	BB	2.3448	1.49592e4	79.08295	84.5835

Totals : 1.76857e4 394.64230

LC1260 3/15/2016 8:58:36 AM SYSTEM

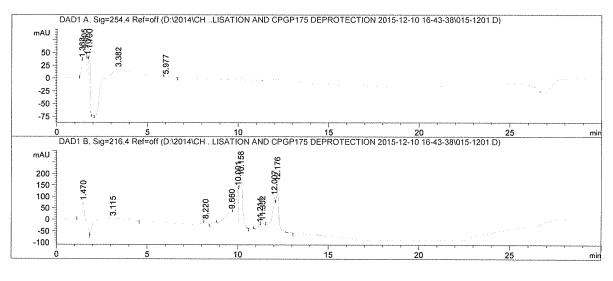
Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\014-1101.D Sample Name: Pro S epi AIP I DCC T=2

	=======================================	
Acq. Operator	: Simi120102015	Seq. Line : 11
Acq. Instrument	: LC1260	Location : Vial 14
Injection Date	: 12/10/2015 10:04:14 PM	Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYC -38\10 TO 100 OV 15MIN 10	LISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43 0UL.M
Last changed	: 12/10/2015 4:12:03 PM by	Simi120102015
Analysis Method		ATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12- 15MIN 100UL.M (Sequence Method)
Last changed	: 3/15/2016 8:58:30 AM by S (modified after loading)	YSTEM (Current integration events modified)

DAD1 A, Sig=254,4 Ref=off (D:\2014\CH...LISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\014-1101 D) --1.69% mAU 3 75 3.386 50 -5.978 25 0 -25 -50 -75 5 10 15 20 DAD1 B. Sig=216.4 Ref=off (D:\2014\CH ..LISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\014-1101 D) 0 25 miı <u>-9,639</u> -10,98,156 7 mAU 300 = 12.002174 200 .472 3.130 100 8.248 0 -100 10 15 20 25 min

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak Re	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.499	BV	0.1532	1512.02771	132.39766	11.0680
2	1.680	VV	0.0858	499.43127	85.90598	3.6558
3	1.791	VB	0.0851	619.86835	111.04037	4.5374
4	3.386	BV	1.8387	1.06876e4	72.97361	78.2331
5	5.978	VB	0.3121	342.30881	13.86132	2.5057
Totals	:			1.36613e4	416.17895	

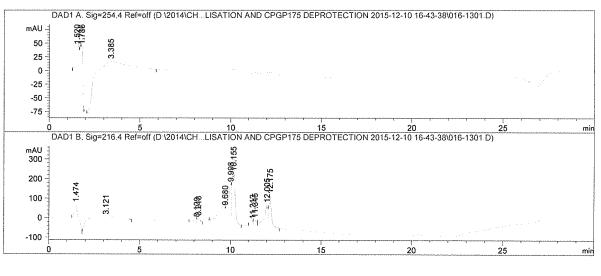
LC1260 3/15/2016 8:58:56 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\015-1201.D Sample Name: Pro S epi AIP I DCC T=3

		*######################################	
Acq. Operator	: Simi120102015	Seq. Line : 12	
Acq. Instrument	: LC1260	Location : Vial 15	
Injection Date	: 12/10/2015 10:36:04 PM	Inj: 1	
		Inj Volume : 100.000 μl	
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLIS	SATION AND CPGP175 DEPROTECTION 2015-12-10 16-43	
	-38\10 TO 100 OV 15MIN 100U	M	
Last changed	: 12/10/2015 4:12:03 PM by Sin	ni120102015	
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA	ACYCLISATION AND CPGP175 DEPROTECTION 2015-12-	
	10 16-43-38\10 TO 100 OV 15	4IN 100UL.M (Sequence Method)	
Last changed	: 3/15/2016 8:58:48 AM by SYS	ſEM	
	(modified after loading) (Cu	urrent integration events modified)	

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	& Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak R	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	1.383	BV	0.0709	244.92012	50.25099	1.7865
2	1.505	VV	0.1665	1396.61377	115.94518	10.1869
3	1.707	VV	0.0675	426.61719	89.64386	3.1118
4	1.790	VB	0.0810	602.15082	111.55718	4.3921
5	3.382	BV	1.8693	1.07003e4	72.69448	78.0483
6	5.977	VB	0.3114	339.23999	13.76942	2.4744
Totals	:			1.37099e4	453.86111	

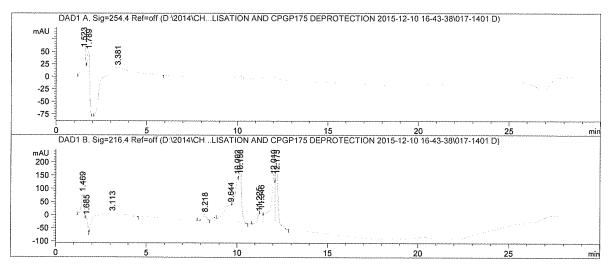
LC1260 3/15/2016 8:59:16 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\016-1301.D Sample Name: Pro S epi AIP I DCC T=4

Acq. Operator	: Simi120102015	Seq. Line : 13
Acq. Instrument	: LC1260	Location : Vial 16
Injection Date	: 12/10/2015 11:07:53 PM	Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCL	SATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 100	JL.M
Last changed	: 12/10/2015 4:12:03 PM by S:	.mi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\DA	A\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV 1	MIN 100UL.M (Sequence Method)
Last changed	: 3/15/2016 8:59:10 AM by SYS	STEM
	(modified after loading) (Current integration events modified)
=======================================		

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.00	300	
Dilution		:	1.00	900	
Use Multiplier &	ß	Dilution	Factor	with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak R	etTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	1.520	BV	0.2333	1617.18909	105.21475	13.8630
2	1.717	VV	0.0656	458.88681	96.35241	3.9337
3	1.786	VB	0.0777	563.38470	110.04817	4.8295
4	3.385	BB	1.6803	9026.07324	67.83665	77.3739
Totals	:			1.16655e4	379.45199	

LC1260 3/15/2016 8:59:36 AM SYSTEM

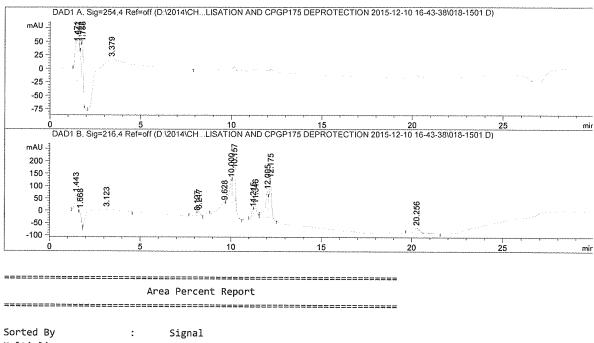
Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\017-1401.D Sample Name: Pro S epi AIP I DCC T=5

Acq. Operator	: Simi120102015	Seq. Line : 14
Acq. Instrument	: LC1260	Location : Vial 17
Injection Date	: 12/10/2015 11:39:43 PM	Inj: 1
		Inj Volume : 100.000 µl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CY	CLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 1	00UL.M
Last changed	: 12/10/2015 4:12:03 PM by	Simi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\	DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV	/ 15MIN 100UL.M (Sequence Method)
Last changed	: 3/15/2016 8:59:30 AM by	SYSTEM
	(modified after loading)	(Current integration events modified)

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.523	BV	0.1989	1762.90051	123.22841	14.6140
2	1.789	VB	0.1296	1054.14795	110.16790	8.7386
3	3.381	BB	1.6919	9246.08301	69.15031	76.6475

Totals : 1.20631e4 302.54662

LC1260 3/15/2016 8:59:54 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\018-1501.D Sample Name: Pro S epi AIP I DCC T=6

=======================================		
Acq. Operator	: Simi120102015	Seq. Line : 15
Acq. Instrument	: LC1260	Location : Vial 18
Injection Date	: 12/11/2015 12:11:32 AM	Inj: 1
		Inj Volume : 100.000 µl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CY	LISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 1	00UL.M
Last changed	: 12/10/2015 4:12:03 PM by	Simi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\	DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV	15MIN 100UL.M (Sequence Method)
Last changed	: 3/15/2016 8:59:49 AM by 1	SYSTEM
	(modified after loading)	(Current integration events modified)

Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak Re	etTime	Type	Width	Area	Height	Area
	[min]		[min]	[mAU*s]	[mAU]	%
1	1.471	BV	0.0993	681.69727	97.83884	4.0274
2	1.547	W	0.1129	899.30505	110.54456	5.3130
3	1.722	VV	0.0726	485.67072	96.73171	2.8693
4	1.785	VB	0.0773	558.99750	109.97053	3.3025
5	3.379	BB	2.2864	1.43009e4	78.24427	84.4879
Totals	:			1.69266e4	493.32991	

LC1260 3/15/2016 9:00:12 AM SYSTEM

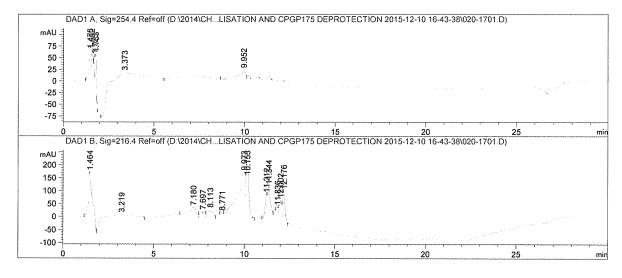
Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\019-1601.D Sample Name: Pro S epi AIP I DCC T=7

Acq. Operator	: Simi120102015	Seq. Line : 16
Acq. Instrument	: LC1260	Location : Vial 19
Injection Date	: 12/11/2015 12:43:22 AM	Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLI	SATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 100U	L.M
ast changed	: 12/10/2015 4:12:03 PM by Si	ni120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA	A\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV 15	MIN 100UL.M (Sequence Method)
ast changed	: 3/15/2016 9:00:07 AM by SYS	TEM
	(modified after loading) (C	urrent integration events modified)

DAD1 A. Sig=254.4 Ref=off (D \2014\CH...LISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\019-1601 D) -1:481 mAU 🗄 3.377 50 -5.747 25 -0 -25 --50 -75 5 10 15 20 DAD1 B. Sig=216.4 Ref=off (D \2014\CH...LISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\019-1601 D) a 25 mir 9,648 12.092.174 mAU 200 -11-2344 1.453 100 3.090 8.126 20.250 0 -100 10 15 20 25 min 0

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & DilutionFactor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak Re	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.481	BV	0.2182	1690.13171	103.69606	10.0486
2	1.713	VV	0.0649	446.71085	98.53292	2.6559
3	1.780	VB	0.0781	570.95282	110.74967	3.3946
4	3.377	BV	1.9284	1.19976e4	78.00579	71.3311
5	5.747	VB	0.7814	2114.18994	32.47945	12.5698
Totals	:			1.68196e4	423.46389	

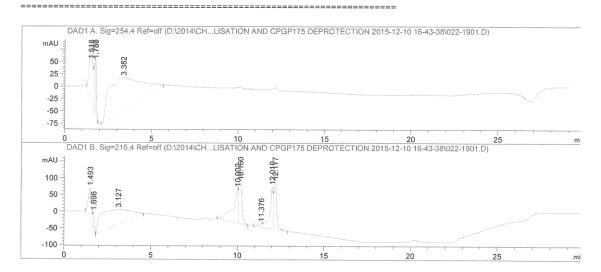
LC1260 3/15/2016 9:00:29 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\020-1701.D Sample Name: Pro S epi AIP I DCC T=8

		120002522202555555555555555555555555555
Acq. Operator	: Simi120102015	Seq. Line : 17
Acq. Instrument	: LC1260	Location : Vial 20
Injection Date	: 12/11/2015 1:15:13 AM	Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CY	CLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 1	00UL.M
Last changed	: 12/10/2015 4:12:03 PM by	Simi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\	DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV	15MIN 100UL.M (Sequence Method)
Last changed	: 3/15/2016 9:00:24 AM by	SYSTEM
	(modified after loading)	(Current integration events modified)
=======================================		

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor wi	th ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak Re	etTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	1.476 BV	0.0982	542.02014	78.81866	5.5760
2	1.562 VB	0.0616	213.40388	52.32769	2.1954
3	1.725 BV	0.0496	125.30008	38.83519	1.2890
4	1.783 VB	0.0742	346.05554	71.82365	3.5600
5	3.373 BB	1.5965	8039.54834	64.57506	82.7063
6	9.952 BV	0.3204	454.26746	18.37459	4.6732
Totals	:		9720.59544	324.75485	

LC1260 3/15/2016 9:00:50 AM SYSTEM

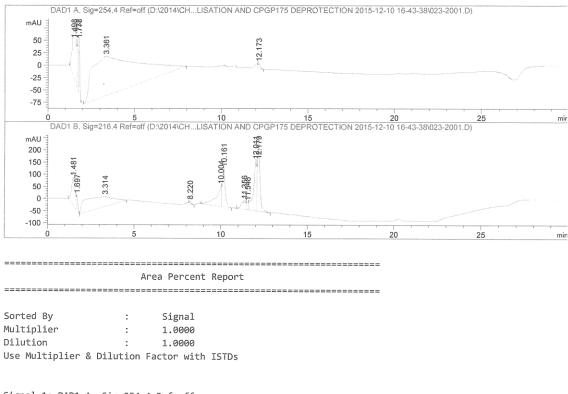
Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\022-1901.D Sample Name: Pro S epi AIP I PS CD T=1

	==	
Acq. Operator	:	Simi120102015 Seq. Line : 19
Acq. Instrument	:	LC1260 Location : Vial 22
Injection Date	:	12/11/2015 2:18:53 AM Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN 100UL.M
Last changed	:	12/10/2015 4:12:03 PM by Simi120102015
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed	:	3/15/2016 9:01:02 AM by SYSTEM
		(modified after loading) (Current integration events modified)

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

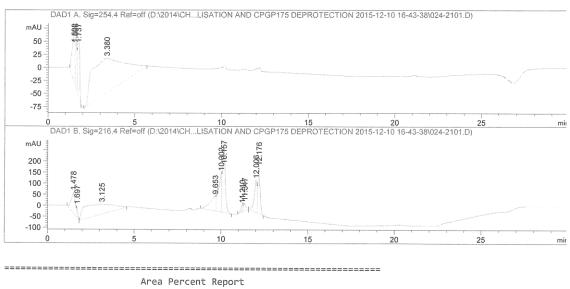

Peak I	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
-						
1	1.518	BV	0.2002	1660.21387	115.15921	14.8509
2	1.737	VV	0.0725	563.58258	108.64600	5.0414
3	1.780	VB	0.0681	481.81845	112.27672	4.3100
4	3.382	BB	1.6321	8473.57813	66.16603	75.7978
T - 4 - 7 -						

Totals : 1.11792e4 402.24796

LC1260 3/15/2016 9:01:29 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\023-2001.D Sample Name: Pro S epi AIP I PS CD T=2

Acq. Operator	: Simi120102015	Seq. Line : 20					
Acq. Instrument	: LC1260	Location : Vial 23					
Injection Date	: 12/11/2015 2:50:43 AM	Inj: 1					
		Inj Volume : 100.000 μl					
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLISAT	ION AND CPGP175 DEPROTECTION 2015-12-10 16-43					
	-38\10 TO 100 OV 15MIN 100UL.M	1					
Last changed	: 12/10/2015 4:12:03 PM by Simi1	20102015					
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA\C	YCLISATION AND CPGP175 DEPROTECTION 2015-12-					
	10 16-43-38\10 TO 100 OV 15MIN	I 100UL.M (Sequence Method)					
Last changed	: 3/15/2016 9:01:22 AM by SYSTEM	1					
	(modified after loading) (Curr	ent integration events modified)					


Signal 1: DAD1 A, Sig=254,4 Ref=off

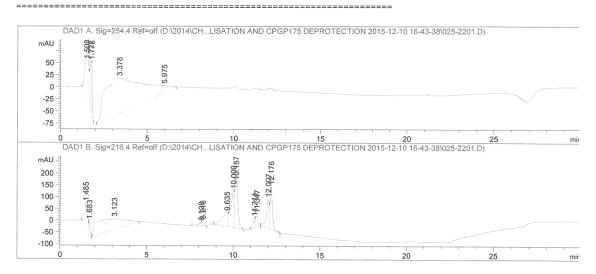
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.498	BV	0.1840	1647.77673	111.78018	9.5032
2	1.737	VV	0.0730	566.62054	108.45362	3.2679
3	1.778	VB	0.0722	527.20453	113.49354	3.0405
4	3.361	BB	2.2568	1.45051e4	79.12041	83.6548
5	12.173	VB	0.1251	92.52731	10.68017	0.5336
Total	.s :			1.73392e4	423.52793	

LC1260 3/15/2016 9:01:47 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\024-2101.D Sample Name: Pro S epi AIP I PS CD T=3

=======================================		
Acq. Operator	:	Simi120102015 Seq. Line : 21
Acq. Instrument	:	LC1260 Location : Vial 24
Injection Date	:	12/11/2015 3:22:32 AM Inj: 1
		Inj Volume : 100.000 µl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN 100UL.M
Last changed	:	12/10/2015 4:12:03 PM by Simi120102015
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed	:	3/15/2016 9:01:42 AM by SYSTEM
		(modified after loading) (Current integration events modified)
	==	

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

#	[min]	2,	Width [min]	[mAU*s]	Height [mAU]	Area %
1	1.502	BV	0.1311	1050.07764	104.61230	9.3340
2	1.566	VV	0.0897	635.97784	100.64491	5.6531
3	1.737	VB	0.1224	1004.64984	108.08659	8.9302
4	3.380	BB	1.6486	8559.33203	66.45619	76.0827
Totals	:			1.12500e4	379.79998	

LC1260 3/15/2016 9:02:05 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\025-2201.D Sample Name: Pro S epi AIP I PS CD T=4

	==:	
Acq. Operator	:	Simi120102015 Seq. Line : 22
Acq. Instrument	:	LC1260 Location : Vial 25
Injection Date	:	12/11/2015 3:54:22 AM Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN 100UL.M
Last changed	:	12/10/2015 4:12:03 PM by Simi120102015
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed	:	3/15/2016 9:02:00 AM by SYSTEM
		(modified after loading) (Current integration events modified)

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak Re	etTime Type	Width	Area	Height	Area
	[min]	[min]	[mAU*s]	[mAU]	%
1	1.508 BV	0.1835	1661.88477	118.54943	12.0587
2	1.727 VV	0.0705	520.62689	103.85775	3.7777
3	1.778 VB	0.0699	504.38531	109.18156	3.6598
4	3.378, BV	1.8522	1.07563e4	73.11949	78.0479
5	5.975 VB	0.3093	338.46811	13.74439	2.4559
Totals	:		1.37816e4	418.45262	

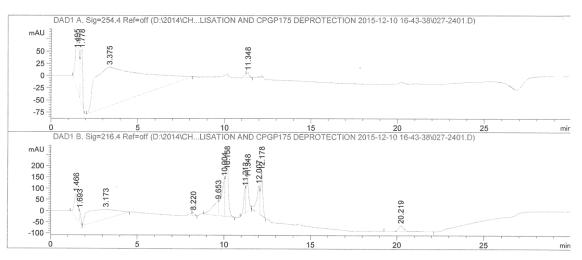
LC1260 3/15/2016 9:02:22 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38 \026-2301.D Sample Name: Pro S epi AIP I PS CD T=5

Acq. Operator : Simi	i120102015 Seq. Line : 23
Acq. Instrument : LC12	260 Location : Vial 26
Injection Date : 12/1	11/2015 4:26:12 AM Inj : 1
	Inj Volume : 100.000 μl
Acq. Method : C:\C	CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
-38\	\10 TO 100 OV 15MIN 100UL.M
Last changed : 12/1	10/2015 4:12:03 PM by Simi120102015
Analysis Method : D:\2	2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
10 1	16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed : 3/15	5/2016 9:02:17 AM by SYSTEM
(moc	dified after loading) (Current integration events modified)
=======================================	

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier 8	Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.506	BV	0.1808	1.02451e4	716.78851	47.5757
2	1.727	VB	0.1219	2299.40771	305.07468	10.6779
3	3.404	BB	1.3687	3721.28955	35.33350	17.2807
4	5.484	BV	0.5729	796.08685	17.83087	3.6968
5	5.900	VV	0.1798	776.93054	58.92851	3.6079
6	6.481	VB	0.1603	2397.76270	208.35289	11.1346
7	8.355	BV	0.2192	260.92456	15.43838	1.2117
8	9.282	VB	0.2590	549.01959	27.49500	2.5495
9	10.179	BB	0.1373	273.00604	27.62776	1.2678
10	11.345	BB	0.2537	214.80388	11.10468	0.9975

LC1260 3/15/2016 9:02:38 AM SYSTEM

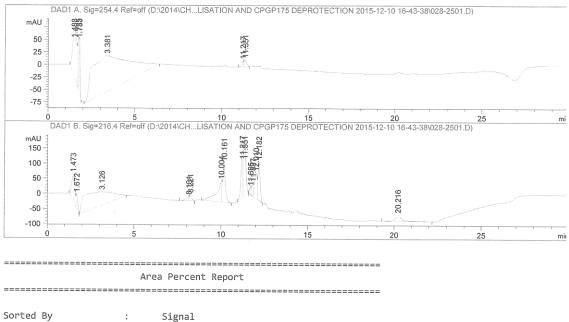
Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\027-2401.D Sample Name: Pro S epi AIP I PS CD T=6

	==	
Acq. Operator	:	Simi120102015 Seq. Line : 24
Acq. Instrument	:	LC1260 Location : Vial 27
Injection Date	:	12/11/2015 4:58:02 AM Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN 100UL.M
Last changed	:	12/10/2015 4:12:03 PM by Simi120102015
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed	:	3/15/2016 9:02:33 AM by SYSTEM
		(modified after loading) (Current integration events modified)

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off


#	RetTime [min]	51	[min]		Height [mAU]	Area %
1	1.495	BV	0.1857	1662.95837	114.31179	9.3171
2	1.778	VB	0.1266	1034.69458	111.17526	5.7971
3	3.375	BB	2.3414	1.50364e4	79.54213	84.2445
4	11.348	VB	0.1491	114.46119	10.84628	0.6413
Total	s:			1.78485e4	315.87546	

1.7646524 51.

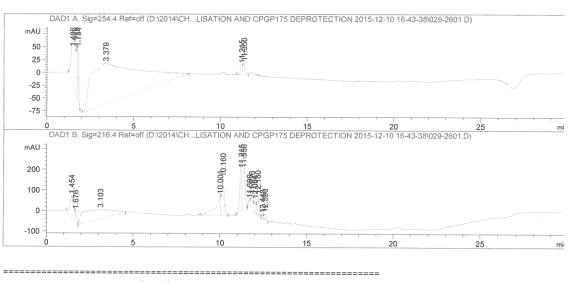
LC1260 3/15/2016 9:02:57 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\028-2501.D Sample Name: Pro S epi AIP I PS CD T=7

Acq. Operator	: Simi120102015	Seq. Line : 25
Acq. Instrument	: LC1260	Location : Vial 28
Injection Date	: 12/11/2015 5:29:51 AM	Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCL	ISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
	-38\10 TO 100 OV 15MIN 100	JL.M
Last changed	: 12/10/2015 4:12:03 PM by S	imi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\DA	FA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
	10 16-43-38\10 TO 100 OV 1	5MIN 100UL.M (Sequence Method)
Last changed	: 3/15/2016 9:02:52 AM by SYS	STEM
	(modified after loading) (Current integration events modified)

Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.488	BV	0.2075	1636.97119	108.82732	12.2968
2	1.735	VV	0.0668	479.67804	102.20838	3.6033
3	1.783	VB	0.0751	540.25592	110.29816	4.0584
4	3.381	BB	1.8424	1.04387e4	71.62056	78.4150
5	11.217	BV	0.1113	83.07583	11.10474	0.6241
6	11.351	VB	0.1407	133.44598	13.57142	1.0024
Total	s :			1.33122e4	417.63059	

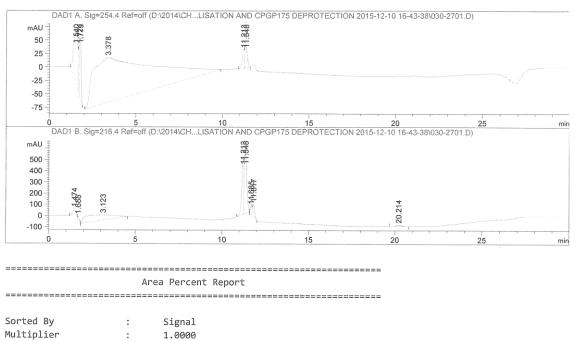
LC1260 3/15/2016 9:03:14 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\029-2601.D Sample Name: Pro S epi AIP I PS CD T=8

	===	
Acq. Operator	:	Simi120102015 Seq. Line : 26
Acq. Instrument	:	LC1260 Location : Vial 29
Injection Date	:	12/11/2015 6:01:45 AM Inj: 1
		Inj Volume : 100.000 μl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43
		-38\10 TO 100 OV 15MIN 100UL.M
Last changed	:	12/10/2015 4:12:03 PM by Simi120102015
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-
		10 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)
Last changed	:	3/15/2016 9:03:09 AM by SYSTEM
		(modified after loading) (Current integration events modified)

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier 8	Dilution	Factor with	ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

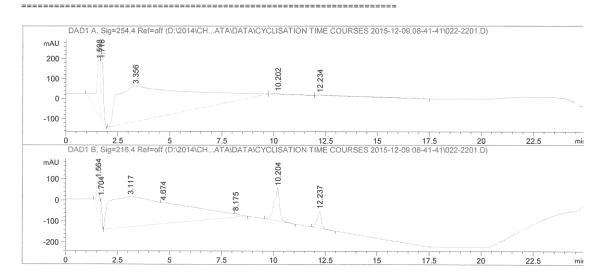
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.486	BV	0.2108	1617.18762	106.70644	8.9874
2	1.719	VV	0.0746	552.19513	102.85656	3.0688
3	1.784	VB	0.0738	525.49359	109.88778	2.9204
4	3.379	BB	2.3545	1.49545e4	78,99718	83.1089
5	11.215	BV	0.1124	133.09993	17.57053	0.7397
6	11.350	VB	0.1385	211.38432	21.54458	1.1748
Total	s :			1.79939e4	437.56308	

LC1260 3/15/2016 9:03:30 AM SYSTEM

Data File D:\2014\CH...CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43-38\030-2701.D Sample Name: Pro S epi AIP I PS CD 2 days

Acq. Operator	:	Simi120102015 Seq. Line : 27						
Acq. Instrument	:	LC1260 Location : Vial 30						
Injection Date	:	12/11/2015 6:33:35 AM Inj: 1						
		Inj Volume : 100.000 µl						
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-10 16-43						
		-38\10 TO 100 OV 15MIN 100UL.M						
Last changed	:	12/10/2015 4:12:03 PM by Simi120102015						
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\CYCLISATION AND CPGP175 DEPROTECTION 2015-12-						
		10 16-43-38\10 TO 100 OV 15MIN 100UL.M (Sequence Method)						
Last changed	:	3/15/2016 9:03:26 AM by SYSTEM						
		(modified after loading) (Current integration events modified)						

Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.540	BV	0.2209	1739.51306	106.29937	7.6243
2	1.724	VV	0.0623	440.05896	102.06106	1.9288
3	1.779	VB	0.0763	559.52161	111.87844	2.4524
4	3.378	BB	2.8608	1.93695e4	83.17658	84.8968
5	11.213	BV	0.1146	276.97739	35.68401	1.2140
6	11.348	VB	0.1390	429.76346	43.58271	1.8837
Total	s:			2.28153e4	482.68216	

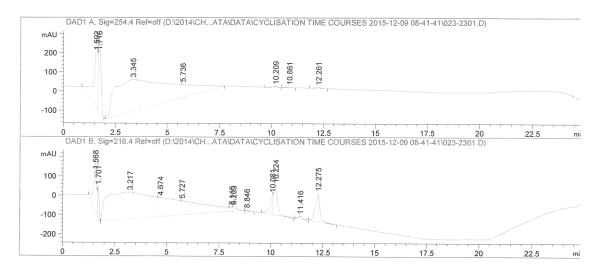
LC1260 3/15/2016 9:03:50 AM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\022-2201.D Sample Name: Pro S epi AIP I PS CD T=1

Acq. Operator	:	Simi120102015	Seq. Line	: :	:	22		
Acq. Instrument	:	LC1260	Location	ı :	:	Vial 22		
Injection Date	:	12/9/2015 5:56:48 PM	Inj	: ;	:	1		
			Inj Volume	: :	:	50.000 µl		
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLISAT	ION TIME C	OL	UF	SES 2015-12-09 08-41-41\10 TO		
		100 OV 15MIN 50UL.M						
Last changed	:	12/9/2015 8:34:52 AM by Simi12	0102015					
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA\C	YCLISATION	ΙT	ΤI	ME COURSES 2015-12-09 08-41-41		
		\10 TO 100 OV 15MIN 50UL.M (Se	quence Met	hc	oc	1)		
Last changed	:	12/9/2015 8:34:52 AM by Simi12	0102015					

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & DilutionFactor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.598	BV	0.1721	4475.40674	357.39114	9.0291
2	1.716	VB	0.1296	2861.49512	349.05670	5.7731
3	3.356	BB	2.8882	4.14808e4	177.38484	83.6873
4	10.202	BV	0.4864	177.58722	4.52004	0.3583
5	12.234	VB	1.5600	571.15106	4.34961	1.1523
Total	s :			4.95664e4	892.70234	

LC1260 3/11/2016 3:22:17 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\023-2301.D Sample Name: Pro S epi AIP I PS CD T=2

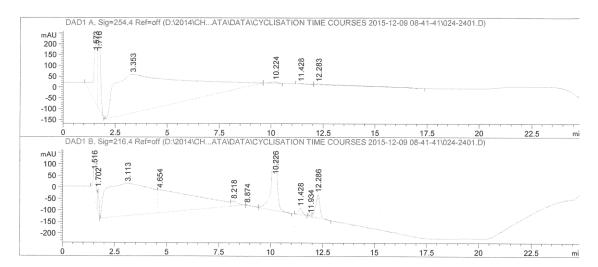
where were were were were were near some were were were were were were were we		
Acq. Operator	: Simi120102015	Seq. Line : 23
Acq. Instrument	: LC1260	Location : Vial 23
Injection Date	: 12/9/2015 6:23:10 PM	Inj : 1
		Inj Volume : 50.000 µl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\C	YCLISATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M	
Last changed	: 12/9/2015 8:34:52 AM by	Simi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA	\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50U	L.M (Sequence Method)
Last changed	: 12/9/2015 8:34:52 AM by	Simi120102015

Area Percent Report

. _____

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.592	BV	0.1710	4785.58105	379.84222	12.4461
2	1.716	VB	0.1278	3116.48901	379.48575	8.1052
3	3.345	BV	1.9716	2.60660e4	166.57294	67.7914
4	5.736	VB	0.7355	4221.63525	68.64129	10.9795
5	10.209	BB	0.2575	86.80096	4.65526	0.2257
6	10.861	BB	0.2216	62.66041	3.98249	0.1630
7	12.261	BB	0.2353	111.13319	6.70899	0.2890

Totals : 3.84503e4 1009.88894

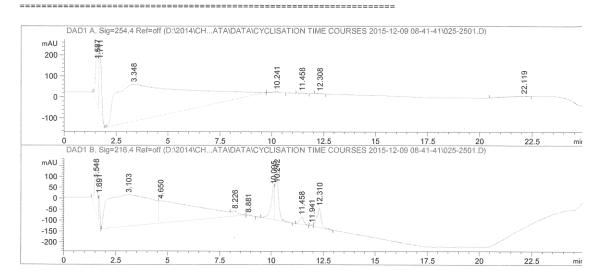
LC1260 3/11/2016 3:22:37 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\024-2401.D Sample Name: Pro S epi AIP I PS CD T=3

Acq. Operator	:	Simi120102015	Seq. Line	:	24	
Acq. Instrument	:	LC1260	Location	:	Vial 24	
Injection Date	:	12/9/2015 6:49:33 PM	Inj	:	1	
			Inj Volume	:	50.000 µl	
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\C	YCLISATION TIME CO	DUF	RSES 2015-12-09 08-41-41\10 TO	
		100 OV 15MIN 50UL.M				
Last changed	:	12/9/2015 8:34:52 AM by	Simi120102015			
Analysis Method	:	D:\2014\CHRIS HPLC DATA	\DATA\CYCLISATION	T1	IME COURSES 2015-12-09 08-41-41	
		\10 TO 100 OV 15MIN 50U	L.M (Sequence Meth	100	d)	
Last changed	:	12/9/2015 8:34:52 AM by	Simi120102015			
=======================================	==					

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & DilutionFactor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.573	BV	0.1631	3866.66553	315.27979	7.9711
2	1.716	VB	0.1345	2936.91284	328.01505	6.0544
3	3.353	BB	2.8744	4.10430e4	176.79466	84.6097
4	10.224	BB	0.2467	117.43279	6.26312	0.2421
5	11.428	BV	0.3077	56.32907	2.43674	0.1161
6	12.283	VB	1.3310	488.26379	4.40569	1.0066
Total	s :			4.85086e4	833.19503	

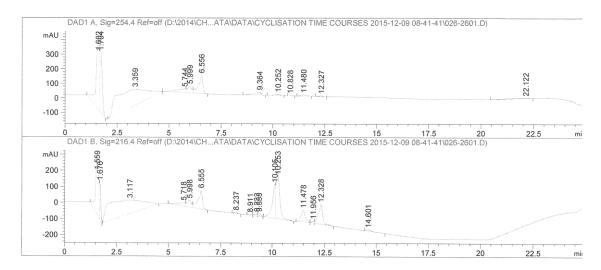
LC1260 3/11/2016 3:22:55 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\025-2501.D Sample Name: Pro S epi AIP I PS CD T=4

Acq. Operator	: Simi120102015	Seq. Line : 25
Acq. Instrument	: LC1260	Location : Vial 25
Injection Date	: 12/9/2015 7:15:55 PM	Inj: 1
		Inj Volume : 50.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CYCLIS	ATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M	
Last changed	: 12/9/2015 8:34:52 AM by Simi:	120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\DATA	CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50UL.M (Sequence Method)
Last changed	: 12/9/2015 8:34:52 AM by Simi	120102015

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & Dilution Factor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.587	BV	0.1370	2517.76270	290.86017	5.3746
2	1.711	VB	0.1231	2619.98633	328.32071	5.5928
3	3.348	BB	2.8989	4.13049e4	176.33109	88.1717
4	10.241	BB	0.2320	101.90182	5.88484	0.2175
5	11.458	BB	0.2007	37.15019	2.69713	0.0793
6	12.308	BB	0.1748	37.44059	2.97651	0.0799
7	22.119	BB	1.1297	226.86057	2.48345	0.4843
Total	s :			4.68460e4	809.55389	

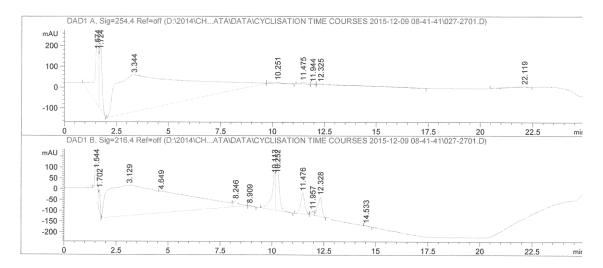
LC1260 3/11/2016 3:23:13 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\026-2601.D Sample Name: Pro S epi AIP I PS CD T=5

Acq. Operator	: Simi120102015	Seq. Line : 26
Acq. Instrument	: LC1260	Location : Vial 26
Injection Date	: 12/9/2015 7:42:17 PM	Inj : 1
		Inj Volume : 50.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\CY	CLISATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M	
Last changed	: 12/9/2015 8:34:52 AM by	5imi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA\	DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50UL	.M (Sequence Method)
Last changed	: 12/9/2015 8:34:52 AM by	5imi120102015

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & Dilution Factor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

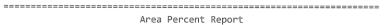
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.602	BV	0.1680	5580.91895	508.85904	21,9606
2	1.704	VB	0.1156	3330.00220	443.56009	13.1034
3	3.359	BB	1.4560	1.22159e4	109.29186	48,0690
4	5.744	BV	0.3984	766.57751	25.52615	3.0164
5	5.999	VV	0.1941	690.55743	47.92941	2.7173
6	6.556	VB	0.1979	1854.15955	127.28959	7.2960
7	9.364	BB	0.2931	421.56686	18.69113	1.6588
8	10.252	BB	0.2312	139.49071	8.08670	0.5489
9	10.828	BB	0.1420	9.70850	1.02928	0.0382
10	11.480	BB	0.2287	122.68991	7.35035	0.4828

LC1260 3/11/2016 3:23:31 PM SYSTEM

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\027-2701.D Sample Name: Pro S epi AIP I PS CD T=6

Acq. Operator	: Simi120102015	Seq. Line : 27
Acq. Instrument	: LC1260	Location : Vial 27
Injection Date	: 12/9/2015 8:08:39 PM	Inj : 1
		Inj Volume : 50.000 μl
Acq. Method	: C:\CHEM32\1\DATA\DEMO\C	(CLISATION TIME COURSES 2015-12-09 08-41-41\10 TO
	100 OV 15MIN 50UL.M	
Last changed	: 12/9/2015 8:34:52 AM by	Simi120102015
Analysis Method	: D:\2014\CHRIS HPLC DATA	DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41
	\10 TO 100 OV 15MIN 50U	M (Sequence Method)
Last changed	: 12/9/2015 8:34:52 AM by	Simi120102015

Area Percent Report


Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.574	BV	0.1851	4707.99365	340.84787	9.4353
2	1.724	VB	0.1276	2849.03564	333.68732	5.7097
3	3.344	BB	2.8834	4.13704e4	177.22363	82.9101
4	10.251	BB	0.2719	118.68468	5.67604	0.2379
5	11.475	BV	0.2220	123.13974	7.89394	0.2468
6	11.944	VV	0.1930	29.98242	2.22746	0.0601
7	12.325	VB	1.3417	460.10406	4.08597	0.9221
8	22.119	BB	1.1310	238.57440	2.63836	0.4781
Total	s :			4.98979e4	874.28059	

LC1260 3/11/2016 3:23:48 PM SYSTEM

Acq. Operator	: Simi120102015	5	Geq. Line : 28	
Acq. Instrume	nt : LC1260		Location : Vial 28	
Injection Dat	e : 12/9/2015 8:35:02 PM		Inj: 1	
a			ij Volume : 50.000 μl	
Acq. Method	: C:\CHEM32\1\DATA\DEMO\C 100 OV 15MIN 50UL.M	YCLISATIC	IN TIME COURSES 2015-12-6	9 08-41-41/10
Last changed	: 12/9/2015 8:34:52 AM by	Simi1201	02015	
0	od : D:\2014\CHRIS HPLC DATA			015-12-09 08-41
2	\10 TO 100 OV 15MIN 50U			
Last changed	: 12/9/2015 8:34:52 AM by	Simi1201	.02015	
DAD1	A. Sig=254,4 Ref=off (D:\2014\CHATA\DA`	TAVOVOLICAT		44 44000 0004 D
mAU d	B 	TAIOTOLIOAT	1014 Hitle 000110E0 2010-12-03 00	-41-41(020-2001.D)
200	<u>*1</u>			
200 -	<u>*1</u>	256	489 357 337	
100	3.340	10.256	11.489 11.957 12.337 12.337	
	<u>*1</u>	10.256	11.489 11.957 12.337	
100	<u>*1</u>	10.256	11.489	
100	3.340			
100		10	12.5 15	17.5 20 14.4 1/028-2801.D)
100	2.5 5 7.5 3, Sig=216.4 Ref=off (D:\2014\CHATA\DA`	10	12.5 15	17.5 20 -41-41\028-2801.D)
100	2.5 5 7.5 3. Sig=216.4 Ref=off (D:\2014\CHATA\DA'	10 TA\CYCLISAT	12.5 15 ION TIME COURSES 2015-12-09 08	17.5 20 -41-41\028-2801.D)
100 -100 -100 DAD1 E mAU 100	2.5 5 7.5 3. Sig=216.4 Ref=off (D:\2014\CHATA\DA' 040 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	10 TAICYCLISAT	12.5 15	17.5 20 -41-41\028-2801.D)
100	2.5 5 7.5 3, Sig=216.4 Ref=off (D:\2014\CHATA\DA`	10 TAICYCLISAT	12.5 15 ION TIME COURSES 2015-12-09 08 47 5 68 74 5 68 75 68 75 68 76 7	17.5 20 -41-41\028-2801.D)
100 0 -100 DAD1 E MAU 100 0	2.5 5 7.5 3. Sig=216.4 Ref=off (D:\2014\CHATA\DA' 040 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	10 TA\CYCLISAT	12.5 15 ION TIME COURSES 2015-12-09 08 47 5 68 74 5 68 75 68 75 68 76 7	17.5 20 -41-41\028-2801.D)
100 -100 -100 DAD1 E mAU 100	2.5 5 7.5 3. Sig=216.4 Ref=off (D:\2014\CHATA\DA' 040 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	10 TAICYCLISAT	12.5 15 ION TIME COURSES 2015-12-09 08	17.5 20 -41-41\028-2801.D)

7.5

·

10

12.5

15

17.5

20

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

2.5

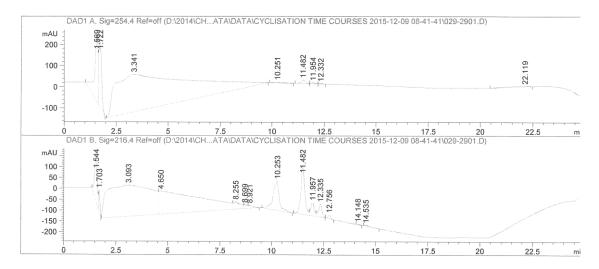
Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 1.580	BV	0.1941	4443.66699	332.10226	8.8077
2 1.710	VB	0.1245	2983.06885	360.52243	5.9127
3 3.340	BB	2.9327	4.20051e4	177.00153	83.2577
4 10.256	BB	0.2146	41.02726	2.56509	0.0813
5 11.489	BV	0.2192	159.67226	10.51505	0.3165
6 11.957	VV	0.1934	46.38908	3.43854	0.0919
7 12.337	VB	1.5655	535.06836	4.06021	1.0606
8 22.124	BB	1.1321	237.91399	2.64833	0.4716
Totals :			5.04519e4	892.85345	

LC1260 3/11/2016 3:24:06 PM SYSTEM

Page 1 of 2

22.124

22.5


22.5

mir

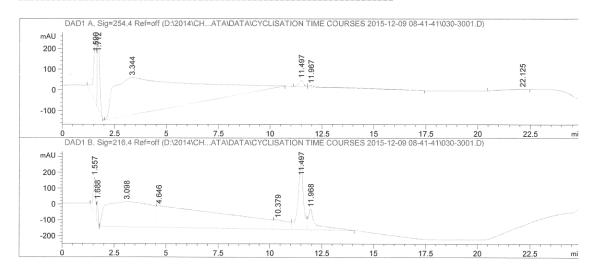
min

Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\029-2901.D Sample Name: Pro S epi AIP I PS CD T=8

Acq. Operator	:	Simi120102015	Seq. Line :		29	
Acq. Instrument	:	LC1260	Location :	1	Vial	29
Injection Date	:	12/9/2015 9:01:23 PM	Inj :		1	
			Inj Volume :	1	50.00	00 μl
Acq. Method	:	C:\CHEM32\1\DATA\DEMO\CYCLIS	ATION TIME COU	R:	SES 2	015-12-09 08-41-41\10 TO
		100 OV 15MIN 50UL.M				
Last changed	:	12/9/2015 8:34:52 AM by Simi	120102015			
Analysis Method	:	D:\2014\CHRIS HPLC DATA\DATA	CYCLISATION T	I	ME CC	URSES 2015-12-09 08-41-41
		\10 TO 100 OV 15MIN 50UL.M (Sequence Metho	d)	
Last changed	:	12/9/2015 8:34:52 AM by Simi	120102015			
						·

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Use Multiplier & DilutionFactor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.569	BV	0.1660	3945.06543	324.15161	8.0010
2	1.722	VB	0.1244	2753.34375	326.33218	5.5841
3	3.341	BB	2.9324	4.19959e4	177.36577	85.1726
4	10.251	BB	0.2612	67.30489	3.36711	0.1365
5	11.482	BV	0.1974	223.53157	16.35609	0.4533
6	11.954	VV	0.1812	62.37595	5.01051	0.1265
7	12.332	VB	0.1537	21.76268	2.08670	0.0441
8	22.119	BB	1.1242	237.54454	2.64390	0.4818
Total	s :			4.93069e4	857.31387	

LC1260 3/11/2016 3:24:24 PM SYSTEM

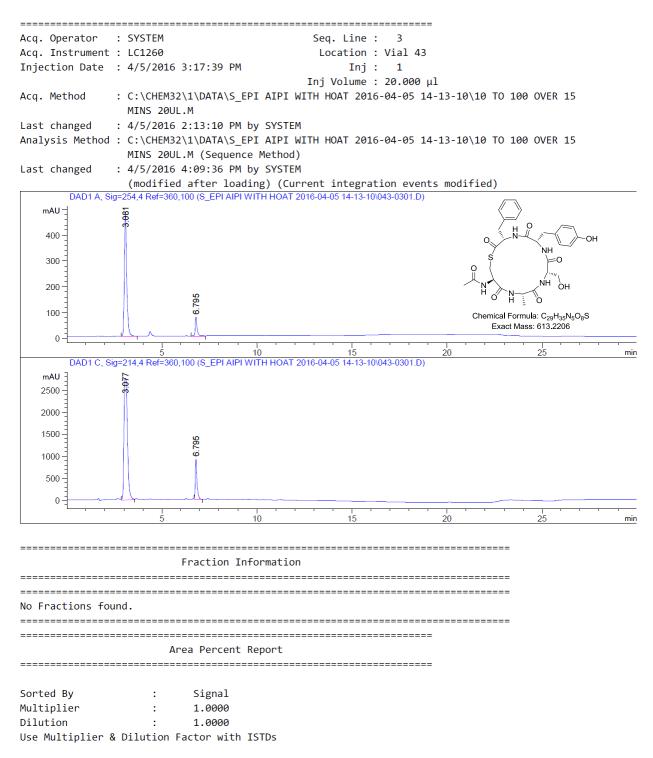
Data File D:\2014\CH...C DATA\DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41\030-3001.D Sample Name: Pro S epi AIP I PS CD 2 days

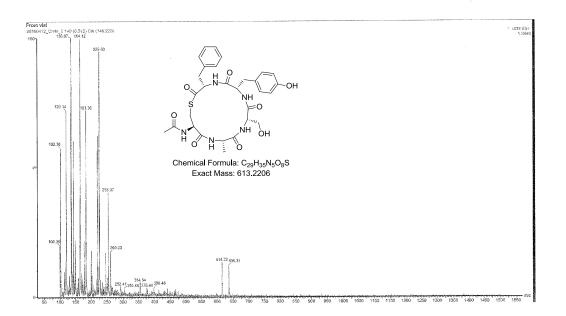
Acq. Operator	: Simi120102015	Seq. Line : 30		
Acq. Instrument	: LC1260	Location : Vial 30		
Injection Date	: 12/9/2015 9:27:46 PM	Inj : 1		
		Inj Volume : 50.000 μl		
Acq. Method	: C:\CHEM32\1\DATA\DEMO\C	CLISATION TIME COURSES 2015-12-09 08-41-41\10 TO		
	100 OV 15MIN 50UL.M			
Last changed	: 12/9/2015 8:34:52 AM by	Simi120102015		
Analysis Method	: D:\2014\CHRIS HPLC DATA	DATA\CYCLISATION TIME COURSES 2015-12-09 08-41-41		
	\10 TO 100 OV 15MIN 50U	M (Sequence Method)		
Last changed	: 12/9/2015 8:34:52 AM by	Simi120102015		

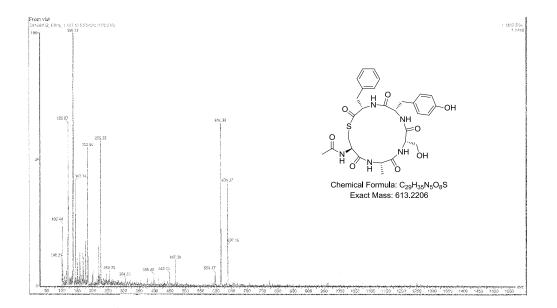
Area Percent Report

Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier &	Dilution	Factor with	ISTDs	

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.590	BV	0.1557	3266.97339	323.89368	6.0611
2	1.712	VB	0.1223	2821.94189	348.96078	5.2354
3	3.344	BB	3.1929	4.65812e4	179.53839	86.4203
4	11.497	BV	0.2117	458.28003	31.50893	0.8502
5	11.967	VB	0.7869	533.45526	8.33246	0.9897
6	22.125	BB	1.1335	238.91240	2.66091	0.4432
Total	s :			5.39007e4	894.89515	


LC1260 3/11/2016 3:24:46 PM SYSTEM


<code>Data File C:\CHEM32\1\DATA\S_EPI AIPI WITH HOAT 2016-04-05 14-13-10\041-0101.D Sample Name: S epi AIP I cyclised with HOAt t = 0</code>

Acq. Operator	 : SYSTEM Seq. Line : 1
Acq. Instrument	: LC1260 Location : Vial 41
	: 4/5/2016 2:14:35 PM Inj : 1
5	Inj Volume : 20.000 μl
Acq. Method	: C:\CHEM32\1\DATA\S EPI AIPI WITH HOAT 2016-04-05 14-13-10\10 TO 100 OVER 15
	MINS 20UL.M
Last changed	: 4/5/2016 2:13:10 PM by SYSTEM
-	: C:\CHEM32\1\DATA\S_EPI AIPI WITH HOAT 2016-04-05 14-13-10\10 TO 100 OVER 15
,, ,	MINS 20UL.M (Sequence Method)
Last changed	: 4/5/2016 4:09:36 PM by SYSTEM
0	(modified after loading)
DAD1 A, Sig	j=254,4 Ref=360,100 (S_EPI AIPI WITH HOAT 2016-04-05 14-13-10\041-0101.D)
mAU <u>-</u>	8 <u>7</u>
160	φ
140	909 9
120	n'
100	
80	
60	2
40	
20	La al Mara
0	
DAD4 0. OF	<u>5 10 15 20 25 mi</u>
	g=214,4 Ref=360,100 (S_EPI AIPI WITH HOAT 2016-04-05 14-13-10\041-0101.D)
mAU	99 9
1200	
1000	0 0
800	φ
600	
400 - 89	
200 -	
0	freed from the second s
	5 10 15 20 25 mi
	Fraction Information
No Fractions fou	nd.
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
use multiplier &	Dilution Factor with ISTDs

Data File C:\CHEM32\1\DATA\S_EPI AIPI WITH HOAT 2016-04-05 14-13-10\043-0301.D
Sample Name: S epi AIP I cyclised with HOAt t = 2

References

- 1. M. E. Olson, D. A. Todd, C. R. Schaeffer, A. E. Paharik, M. J. Van Dyke, H. Buettner, P. M. Dunman, H. Rohde, N. B. Cech, P. D. Fey and A. R. Horswill, *J. Bacteriol.*, 2014, **196**, 3482-3493, 3413 pp.
- 2. S. Heilbronner, M. T. G. Holden, A. van Tonder, J. A. Geoghegan, T. J. Foster, J. Parkhill and S. D. Bentley, *FEMS Microbiol. Lett.*, 2011, **322**, 60-67.
- 3. S. Heilbronner, F. Hanses, I. R. Monk, P. Speziale and T. J. Foster, *Microbiology*, 2013, **159**, 2141-2152.