Supplementary information

Title: Mitotic catastrophe is a putative mechanism underlying the weak correlation between sensitivity to carbon ions and cisplatin

Authors: Daijiro Kobayashi¹, Takahiro Oike^{1,2}*, Atsushi Shibata³, Atsuko Niimi⁴, Yoshiki Kubota⁵, Makoto Sakai⁵, Napapat Amornwhichet^{1,6}, Yuya Yoshimoto¹, Yoshihiko Hagiwara³, Yuka Kimura¹, Yuka Hirota¹, Hiro Sato¹, Mayu Isono⁵, Yukari Yoshida⁵, Takashi Kohno², Tatsuya Ohno⁵, and Takashi Nakano^{1,5}

Affiliations: ¹Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; ²Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; ³Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan; ⁴Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma, Japan; ⁵Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan; ⁶Department of Radiology, Chulalongkorn University, Pathumwan, Bangkok, Thailand.

***Corresponding author:**

Takahiro Oike, MD, PhD Assistant Professor Department of Radiation Oncology, Gunma University Graduate School of Medicine 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan. Tel: +81-027-220-8383 Fax: +81-027-220-8397 E-mail: oiketakahiro@gmail.com

-			
Radiation	Cell line	Synergistic?	References
	AE7	yes	11
	AN3	yes	
	ECC1	yes	
	HEC1A	yes	
	HEC1B	yes	
	SKUT1B	yes	
	HeLa	yes	12
	C33A	yes	
	A549	yes	13
	CaSki	yes	
	SW-1573	yes	14
	WiDr	yes	8
X-rays	А2780ср	yes	15
	A2780	no	
	DU-145	controversial	16
	19 primary tumors	no	17
	HeLa	no	18
	CaSki	no	
	MRI-186	no	
	LX-I	no	
	A549	no	19
	HepG2	no	20
	OV-1063	no	21
	TE-2	no	9
	U87	no	10
	MDA-MB-231	yes	7
Carbon ion	WiDr	no	8
	TE-2	no	9
	U87	no	10

Supplementary Table 1. Summary of the studies on synergistic cell killing effect between X-rays or carbon ions and cisplatin in human cancer cells.

See "Supplementary Methods" for the detailed methods for litereature search.

Cell line	X-rays				Carbon ion						RBE			
		010		α	β		D10		α		β			
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mear	ו SD
H1299	10.9	0.76	0.0024	0.026	0.019	0.0019	3.9	0.12	0.079	0.034	0.13	0.018	2.8	0.075
H157	6.7	0.27	0.051	0.079	0.043	0.010	3.3	0.14	0.63	0.060	0.020	0.022	2.0	0.13
LK2	6.7	0.28	0.066	0.031	0.041	0.0049	3.3	0.075	0.40	0.095	0.094	0.029	2.1	0.042
H1703	9.2	0.66	0.16	0.022	0.010	0.0033	4.3	0.37	0.31	0.12	0.055	0.033	2.1	0.21
HCT15	6.3	0.11	0.13	0.017	0.039	0.0029	2.3	0.061	0.75	0.15	0.10	0.028	2.7	0.17
II-18	7.4	0.78	0.048	0.26	0.036	0.035	4.1	0.56	0.42	0.062	0.035	0.0069	1.8	0.21
A549	6.6	0.67	0.30	0.11	0.0076	0.016	4.0	0.21	0.25	0.079	0.084	0.020	1.7	0.036
WiDr	6.9	0.11	0.0047	0.031	0.048	0.0051	3.3	0.10	0.33	0.25	0.12	0.084	2.1	0.12
HCT116	4.0	0.13	0.39	0.15	0.044	0.035	1.6	0.19	1.3	0.18	0.088	0.048	2.6	0.26
A427	5.3	0.43	0.29	0.049	0.028	0.010	2.1	0.14	1.0	0.21	0.033	0.067	2.6	0.23
KYSE70	6.8	0.26	-0.018	0.085	0.053	0.019	2.5	0.10	-0.33	0.11	0.51	0.055	2.8	0.19
H1975	4.7	0.26	0.44	0.070	0.010	0.0088	2.4	0.26	0.20	0.21	0.32	0.079	2.0	0.15
HCC827	5.5	0.22	0.29	0.071	0.024	0.012	2.6	0.064	0.60	0.10	0.11	0.029	2.1	0.124
H522	6.0	0.29	0.11	0.063	0.046	0.012	2.1	0.08	0.97	0.036	0.076	0.0049	2.9	0.11
TE2	2.1	0.10	0.88	0.13	0.093	0.047	0.94	0.13	1.5	0.56	1.1	0.85	2.3	0.25
H460	4.8	0.20	0.23	0.017	0.052	0.0038	1.8	0.061	0.82	0.11	0.25	0.078	2.6	0.079
HeLa	6.7	0.19	0.19	0.080	0.023	0.014	3.1	0.079	0.26	0.19	0.15	0.065	2.1	0.10
H1650	4.8	1.00	-0.10	0.20	0.12	0.037	2.7	0.16	0.56	0.10	0.10	0.024	1.8	0.17
Ma-24	3.9	0.35	0.22	0.27	0.11	0.089	2.8	0.14	0.34	0.15	0.17	0.056	1.4	0.29
PC9	3.4	0.13	0.64	0.14	0.011	0.026	2.5	0.19	0.32	0.28	0.25	0.12	1.4	0.18

Supplementary Table 2. Parameters for X-ray and carbon ion sensitivity.

RBE, relative biological effectiveness; SD, standard deviation.

Index	X-rays	Cisplatin				
		0.2 μM	1 μM	IC50		
	SF2Gy	0.59	0.63	0.68		
	SF4Gy	0.70	0.76	0.76		
R value	SF6Gy	0.62	0.65	0.61		
	SF8Gy	0.41	0.68	0.60		
	D10	0.70	0.76	0.74		
P value	SF2Gy	6.0E-3	2.7E-3	9.6E-4		
	SF4Gy	4.1E-4	2.0E-7	2.0E-7		
	SF6Gy	4.5E-3	2.8E-3	5.5E-3		
	SF8Gy	0.035	1.4E-3	6.2E-3		
	D10	4.6E-4	2.0E-7	8.1E-5		

Supplementary Table 3. Correlation between X-ray- and cisplatin-sensitivity.

SFXGy indicates the surviving fraction at X Gy.

Index	Carbon ion		Cisplatin		
		0.2 μM	1 μM	IC50	
	SF1Gy	0.44	0.47	0.46	
	SF2Gy	0.35	0.43	0.39	
R value	SF3Gy	0.30	0.55	0.53	
	SF4Gy	0.51	0.53	0.44	
	D10	0.45	0.57	0.49	
	SF1Gy	0.049	0.037	0.042	
	SF2Gy	0.13	0.056	0.089	
P value	SF3Gy	0.23	0.018	0.024	
	SF4Gy	0.031	0.024	0.068	
	D10	0.044	9.2E-3	0.027	

Supplementary Table 4. Correlation between carbon ion- and cisplatin-sensitivity.

SFXGy indicates the surviving fraction at X Gy.

Cell line	Cancer type	Histology	Obtained from
KYSE70	Esophageal cancer	Squamous cell carcinoma	Health Science Research Resources Bank (Osaka, Japan)
TE2	Esophageal cancer	Squamous cell carcinoma	University of Tohoku Cell Bank (Sendai, Japan)
A427	Non-small cell lung carcinoma	Adenocarcinoma	ATCC (Manassas, VA, USA)
A549	Non-small cell lung carcinoma	Adenocarcinoma	ATCC (Manassas, VA, USA)
H522	Non-small cell lung carcinoma	Adenocarcinoma	ATCC (Manassas, VA, USA)
H1650	Non-small cell lung carcinoma	Adenocarcinoma	ATCC (Manassas, VA, USA)
H1703	Non-small cell lung carcinoma	Adenocarcinoma	ATCC (Manassas, VA, USA)
H1975	Non-small cell lung carcinoma	Adenocarcinoma	ATCC (Manassas, VA, USA)
HCC827	Non-small cell lung carcinoma	Adenocarcinoma	ATCC (Manassas, VA, USA)
II-18	Non-small cell lung carcinoma	Adenocarcinoma	JCRB Cell Bank (Osaka, Japan)
Ma-24	Non-small cell lung carcinoma	Adenocarcinoma	Dr. Shimizu (Tokushima University, Tokushima, Japan)
PC9	Non-small cell lung carcinoma	Adenocarcinoma	Dr. Kato (Tokyo Medical Collage, Tokyo, Japan)
H157	Non-small cell lung carcinoma	Squamous cell carcinoma	Dr. Harris (National Institute of Health, MD, USA)
LK2	Non-small cell lung carcinoma	Squamous cell carcinoma	JCRB Cell Bank (Osaka, Japan)
H460	Non-small cell lung carcinoma	Large cell carcinoma	ATCC (Manassas, VA, USA)
H1299	Non-small cell lung carcinoma	Large cell carcinoma	ATCC (Manassas, VA, USA)
HCT15	Colorectal cancer	Adenocarcinoma	ATCC (Manassas, VA, USA)
HCT116	Colorectal cancer	Adenocarcinoma	Dr. Vogelstein (Johns Hopkins University, MD, USA)
WiDr	Colorectal cancer	Adenocarcinoma	ATCC (Manassas, VA, USA)
HeLa	Uterine cervical cancer	Adenocarcinoma	ATCC (Manassas, VA, USA)

Supplementary Figure 1

Supplementary Figure 1. Correlation between the total amount clonogenic cell death (apoptosis, mitotic catastrophe and senescence) as assessed by the DAPI staining assay and the surviving fraction as assessed by the clonogenic survival assays in PC9, Ma-24, H1650, H1299, H157, and LK2 cells, as assessed by Spearman Rank Order test. Note that the data for the clonogenic survival assay and those for the DAPI staining assay are the same as in Figure 1 and 2, and Figure 4b, respectively, but now in the different context.

Supplementary Figure 2. Cell death induced by X-ray or carbon ion irradiation as assessed by flow cytometry or the DAPI staining assay. PC9 cells were treated with X-rays (4 Gy for 72 h), carbon ions (4 Gy for 72 h), or staurosporine (1 μM for 24 h), followed by the staining with AV and PI or DAPI. The AV/PI-stained cells were analyzed by flow cytometry, while the DAPI stained cells were analyzed for nuclear morphologies representing apoptosis and mitotic catastrophe (see "Materials and Methods" for definitions). (a) Representative flow cytometry plots. High AV-positivity in staurosporine-treated cells indicates the robustness of the assay (Supplementary references 1, 2). (b) Percentages of AV-positive and AV-negative/PI-positive cells determined by flow cytometry. (c) Percentages of apoptosis and mitotic catastrophe determined by the DAPI staining assay. Note that the data for the DAPI staining assay are the same as in Figure 4b but now in the different context.

Supplementary Methods

Literature search: synergistic cell killing by X-rays or carbon ions plus cisplatin.

On January 15, 2016, two authors (D. K. and T. Oike) performed independent literature searches in PubMed using the search term "cisplatin AND radiosensitization" and obtained 147 hits. A full text screen for all available papers identified 15 that used clonogenic survival assays to examine the cell killing effects of X-rays and/or carbon ions combined with cisplatin in human cancer cells. The presence or absence of synergistic cell killing effect was analyzed: cell killing effects classified as "supra-additive", "independently toxic", and "radiosensitizing" were considered synergistic, whereas effects described as "additive" were considered non-synergistic. The results are summarized in Supplementary Table 1.

Supplementary References

- 1. Nakagawa, T. *et al.* Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. *Nature* **403**, 98–103 (2000)
- Takayama, S. *et al.* Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. *Cell* 80, 279–284 (1995)