Supplementary Information

Low temperature CO oxidation over iron oxide nanoparticles decorating internal structures of a mesoporous alumina

Il Hee Kim¹, Hyun Ook Seo^{1*}, Eun Ji Park¹, Sang Wook Han¹, and Young Dok Kim^{12*}

¹Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea

²Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600, Republic of Korea

Corresponding author

*E-mail: <u>ydkim91@skku.edu</u>(Y. D. Kim), <u>seoho83@skku.edu</u>(H. O. Seo).

Supplementary Figure 1.

(a) N₂ adsorption/desorption isotherm and (b) pore diameter distribution of bare AI_2O_3 , Fe/AI_2O_3 annealed at 450, 600, 750, and 900 °C. After Fe_2O_3 deposition and post-annealing up to 900 °C, the porous structure of the samples did not showed significant changes.

	Surface area (m²/g)	Pore diameter (nm)
Bare Al ₂ O ₃	158.0	12.1
Fe ₂ O ₃ /Al ₂ O ₃ annealed at 450 °C	146.4	11.7
Fe ₂ O ₃ /Al ₂ O ₃ annealed at 600 °C	151.8	11.6
Fe ₂ O ₃ /Al ₂ O ₃ annealed at 750 °C	139.2	12.1
Fe ₂ O ₃ /Al ₂ O ₃ annealed at 900 °C	137.8	12.1

Supplementary Table 1.

Surface area and average pore diameter of bare Al_2O_3 , Fe/ Al_2O_3 annealed at 450, 600, 750, and 900 °C.

Supplementary Figure 2.

Size distribution of Fe_2O_3 nanoparticles on Fe_2O_3/Al_2O_3 catalysts annealed at (a) 450 and (b) 750 °C.

Supplementary Figure 3.

The results of EDS (Energy dispersive spectroscopy) mapping of 750 °C-annealed Fe_2O_3/Al_2O_3 catalyst. The area taken for EDS analysis is marked with white square dot guided by black arrow.

Supplementary Figure 4.

XRD pattern of bare Al_2O_3 , Fe-deposited Al_2O_3 annealed at 450 and 750 °C.

Supplementary Figure 5.

The amount of H_2 uptake of two Fe_2O_3/Al_2O_3 catalyst annealed at 450 and 750 °C during the H_2 -TPR experiments.

: Metal-support interaction

Supplementary Figure 6.

The schematic descriptions of different degree of metalsupport charge transfer and different portion of surface Fe (III) states to bulk Fe (III) states between two Fe_2O_3/Al_2O_3 catalyst annealed at 450 and 750 °C, originating from the 3D growth of Fe_2O_3 nanoparticles with increasing annealing temperature from 450 to 750 °C.

Pre-annealing temperature	Fe/Al
450 °C	0.53
600 °C	0.44
750 °C	0.37

Supplementary Table 2.

Fe/Al ratio on the surface as a function of post-annealing temperature determined by XPS

Supplementary Figure 7.

CO conversion of Fe $_2O_3/Al_2O_3$ with different space velocity of 1 % CO

Supplementary Figure 8.

Catalytic activity of Fe_2O_3/Al_2O_3 (TR-CVD prepared) at 100 °C and NiO/Al_2O_3 (ALD-prepared) at 150 °C. The flow rate of dry air containing 1 % CO was 10 ml/min for both experiments.

Supplementary Figure 9.

Catalytic activity of powdered Fe_2O_3/Al_2O_3 , γ - Fe_2O_3 , and Pt/AC as a function of reaction temperature. The amount of samples were adjusted in order to get equivalent specific area of active metal nanoparticles.

Heating band

Supplementary Figure 10.

A Schematic diagram of the experimental set-up of TR-CVD for sample preparation. The gap between the lid and and the body of the chamber was sealed with polyimide (PI) film from the outside. The system was equipped with a thermocouple and heating jacket, wrapping the outside the chamber, for temperature control.

Conditions of the post-annealing of Fe_2O_3/Al_2O_3 samples.

Prior to the CO oxidation experiments, Fe_2O_3/Al_2O_3 samples were annealed at four different temperatures (450, 600, 750 and 900 °C). Annealing process at 450, 600, and 750 °C were conducted for 2 hrs under dry air conditions (total flow of 30 ml/min) in the reactor. On the other hands, the annealing process at 900 °C were done under ambient conditions (outside of the glove box) for 2 hrs and then transferred into the reactor inside the glove box. Then, the 900 °C-annealed sample was thermally treated again at 750 °C before the CO oxidation experiment in the glove box.

Conditions of CO activity tests of two commercially available catalyst (Pt/Ac, Fe_2O_3 nanopowder).

0.45 g of Pt/AC, 0.041 g of γ -Fe₂O₃, and 0.11 g of ground Fe₂O₃/Al₂O₃ were used for catalytic activity test. The powder catalysts were sandwiched using quartz wool and located in the middle of the quartz tube. Prior to CO oxidation experiment, the Pt/AC sample was annealed at 450 °C for 2 h under dry air condition (total flow of 30 ml/min), while γ -Fe₂O₃, and 0.11 g of ground Fe₂O₃/Al₂O₃ samples were annealed at 750 °C under same conditions (2 hr, 30 ml/min of air flow). After the annealing processes, the reactor was cooled down to 300 °C, then the 1 % CO gas was fed into the reactor with flow rate of 10 ml/min. The temperature of the reactor was kept at 300 °C for 2 h, then cooled down to 50 °C with a constant cooling rate of 1 °C/min, and the CO oxidation activity was measured during the cooling processes.

Calculation of active sites on the surface of Fe_2O_3/AI_2O_3 catalyst (2.0 g) for TOF estimation.

We assumed that the reaction was in thermodynamic controlled regime and TOF values were calculated using the number of consumed CO molecules (mol) averaged over the reaction time. For the calculation of the number of active sites of TR-CVD prepared Fe_2O_3/Al_2O_3 catalyst, we assumed the hemispherical shape of Fe_2O_3 nanoparticles on Al_2O_3 substrate and 2 active sites per (200) plane of Fe_2O_3 . In the below, we summarized the process of the calculation of active sites number together with important parameters used for the calculation.

Value	Estimated number	Determined by	
The weight percent of Fe atoms in Fe_2O_3/Al_2O_3 .	5.39 wt%	ICP-Mass	
The weight of Fe atoms in 2.0 g of Fe_2O_3/Al_2O_3 .	0.108 g	the total weight of Fe_2O_3/Al_2O_3 catalyst multiplied by the weight percent of Fe atoms in Fe_2O_3/Al_2O_3 .	
The radius of Fe ₂ O ₃ nanoparticles	0.5 nm	TEM analysis	
Density of Fe_2O_3	5.242 g/cm ³		
The unit cell area of Fe_2O_3 (200) plane	0.706 nm ²		
The volume of a Fe_2O_3 particle	2.618 x 10 ⁻²² cm ³	the volume of a spherical particle of Fe_2O_3 multiplied by 1/2	
The mass of a Fe_2O_3 particle	1.372 x 10 ⁻²¹ g	the volume of a Fe_2O_3 particle multiplied by density of Fe_2O_3	
The number of Fe_2O_3 particles in 2.0 g of Fe_2O_3/Al_2O_3	1.123 x 10 ²⁰	the weight of Fe atoms in 2.0 g of Fe_2O_3/Al_2O_3 divided by the mass of a Fe_2O_3 particle	
The surface area of a Fe_2O_3 particle	1.571 nm ²	the surface area of a spherical particle of Fe_2O_3 multiplied by 1/2	
The total surface area of Fe_2O_3 particles in 2.0 g of Fe_2O_3/Al_2O_3	1.7641 x 10 ²⁰ nm ²	the surface area of a Fe_2O_3 particle multiplied by the number of Fe_2O_3 particles in 2.0 g of Fe_2O_3/Al_2O_3	
The number of unit cell of Fe_2O_3 (200) plane	2.5 x 10 ²⁰	the total surface area of Fe_2O_3 particles in 2.0 g of Fe_2O_3/Al_2O_3 divided by the unit cell area of a Fe_2O_3 (200) plane	
The number of active sites on the surface of Fe_2O_3/AI_2O_3 (2.0 g)	5.0 x 10 ²⁰	the number of unit cell of Fe_2O_3 (200) plane multiplied by the number of active sites per a unit cell of Fe_2O_3 (200) plane	