1	Supplementary Information
2	Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia
3	solanacearum and induce systemic resistance in tobacco against bacterial wilt
4	Hafiz Abdul Samad Tahir, Huijun Wu, Yuedi Niu, Qin Gu, Rong Hu, Xuewen Gao *
5	Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural
6	University, Key Laboratory of Integrated Management of Crop Diseases and Pests,
7	Ministry of Education, Nanjing 210095, PR China
8	
9	* Corresponding author: Xuewen Gao
10	Address: Nanjing Agricultural University, Weigang No.1, Nanjing 210095, PR China
11	Email: gaoxw@njau.edu.cn
12	Telephone/Fax: 86-25-8439526

No	Strain	Antagonistic strain or pathogen	Accession NO
1	Bacillis amyloliquefacians FZB42	Antagonist	NR075005.1
2	Bacillus cereus NMSL88	Antagonist	GU568190.1
3	Bacillus amyloliquefacians NMSX4	Antagonist	GU568185.1
4	Bacillus subtilis FA26	Antagonist	KY003098
5	Bacillus artrophaeus LSSC22	Antagonist	GU568193.1
6	Bacillus pumulis GBSW19	Antagonist	GU568202.1
7	Ralstonia solanacearum TBBS1	Pathogen	KY003096

13 Table S1: Bacteria used in this study

14 15

Table S2: Primers used in the study

No	Oligo Name	Sequence 5' to 3'
1	16sr RNA Rsc TBBS1 (F)	AGTCCACGCCCTAAACGA
2	16sr RNA Rsc TBBS1 (R)	CGAAGGCACCAATCCATC
3	Mot A (F)	GTTTTCCATCATCCAAGC
4	$Mot A(\mathbf{R})$	GTGCCGAACAGACCCATC
5	FliT (F)	GACCAGCGCCCGGACACG
6	FliT(R)	CGCCGCAAGGCAACGACA
7	Chew (F)	CGGCGACCGTCATTGGCT
8	Chew (R)	GCGCTGCGGATCCTTGGA
9	PhcA (F)	GCAACGTCTGCCTTTTCACT
10	PhcA (R)	CGCTGTCATGTGCATCTTCT
11	<i>HrpB</i> (F)	AGACCAAGGTGGAAGTCGTG
12	<i>HrpB</i> (R)	CGTCTTGCATGTAGCTGGTG
13	<i>EpsA</i> (F)	TTCCTCTGACCCAAGGAATG
14	EpsA (R)	ATCAAAGGTGTAGCCGTTGG
15	<i>EpsB</i> (F)	GGCGTTGTCCTAGGTGTCAT
16	EpsB(R)	CGCTTCGATAGATGGGTCAT
17	EpsC(F)	ACGGTGACACTTCAACCACA
18	$EpsC(\mathbf{R})$	GCCATGGGCTGTACAAGTTT

19	<i>EpsD</i> (F)	CAGCCGAGATGTGCAAACTA
20	EpsD (R)	GGGGCAGCATCTACGATAAA
21	<i>EpsE</i> (F)	TACCGGCCACACTAGGAAAC
22	EpSE (R)	TTTCGCCTGCTAGCAAAAAT
23	EpsF(F)	GTTTCTCATCACGGCGTTTT
24	$EpsF(\mathbf{R})$	GGCGAAGGCTATGCTAGATG
25	<i>EpsP</i> (F)	CGTGAGATACAGGCGAGACA
26	$EpsP(\mathbf{R})$	GTCTTCGAACGCCATCATTT
27	Awr1(F)	ACGTTTCCACGCATAACTCC
28	Awr1 (R)	GTCTGGGTGGCAAAAGTGT
29	Awr3 (F)	CTCACGCATTCCTACAAGCA
30	Awr3 (R)	CCAGTCTGCTCAGGTGACAA
31	Awr5 (F)	CACATGGCGGAGAGATTTTT
32	Awr5 (R)	TCGTAGACGTACGCCTGTTG
33	PilQ (F)	CAGGGACAAAACTTGGTCGT
34	$PilQ(\mathbf{R})$	CGGAGTCGGTAGCTCTCATC
35	<i>RRS1</i> (F)	ATGAGAAAGAGGCTCGTCAA
36	<i>RRS1</i> (R)	ACCACAACCCTCAAGCAGTT
37	NPR1(F)	CTGGAGCAAGCAGAAAG
38	<i>NPR1</i> (R)	TCATACGCAAATCATCG
39	<i>EDS1</i> (F)	GAG TAT CAG ACC AAG TGT GAT ATC CG
40	<i>EDS1</i> (R)	GCT GAG GTG GGA GTG TTT TCC ACC

17 Table S3: VOC profile of Bacillus amyloliquefacians FZB42 and Bacillus

18	artroph	aeus	LSSC22
----	---------	------	--------

Bacillus strain	RT (min)	Relative	Compound	Abbreviation	Degree of
	(11111)	area (%)		useu	minipition
Bacillus	4.567	3.829	Silanediol, dimethyl	SDD	_
amyloliquefacians	5.618	3.574	1,2-Benz isothiazol-3(2H)-one	1,2-BIT	+++
FZB42	6.963	1.865	Benzeneacetamide	BAM	++
	7.631	2.573	Oxime, methoxy-phenyl	OMP	NT
	7.787	3.494	(1R)-2,6,6-Trimetyhlbicyclo[3.1.1]hept-2-ene	TMB	+
	8.207	1.557	Benzoic acid, 2-formyl-4,6-dimethoxy-,8,8-d imethoxyoct-2-yl	BA	+
	8.949	1.695	Benzaldehyde	BDH	+++
	9.543	2.277	Sulfurous acid, cyclohexylmethyl isobutyl ester	SCE	_
	10.148	1.406	6-Tridecen, 2,2,4,10,12,12-hexamethyl-7-(3,5,5-trimrthylhexyl)-	6 -THT	NT
	10.304	2.116	2-Undecanethiol, 2-methyl	2-UT,2-M	_
	10.734	6.490	Dodecane, 1-fluoro	DCF	++
	12.262	1.695	Dodecane	DCN	++
	14.421	2.380	Phenol, 2-(1,1-dimethyl)-5-methyl-	PH	_
Bacillus	1.301	1.073	1,3 –Butadiene	1,3-BDN	++
artrophaeus	5.631	5.995	1,2-Benz isothiazol-3(2H)-one	1,2-BIT	+++
LSSC22	7.729	2.245	(1R)-2,6,6-Trimetyhlbicyclo[3.1.1]hept-2-ene	TMB	+
	8.764	3.483	Benzoic acid	BA	+
	10.487	2.204	1-octyn-3ol, 4- ethyl-	1,OTN	++
	10.712	8.354	Dodecane, 1-fluoro	DCF	++
	11.575	1.491	Undecanal, 2-methyl	UDM	++
	12.264	2.768	Dodecane	DCN	++
	14.413	2.694	Phenol, 2-(1,1-dimethylethyl)-6-methyl	PH	_
	16.669	1.213	Cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6- methylene-	CHN	NT

19 Minor air-peaks were excluded from the total analysis representing $\leq 1\%$ of the total

area. Similar compounds found in both inoculated and non-inoculated MS medium were also not included. **RT**, retention time, — no inhibition, $+ \le 10\%$ inhibition rate, + + 10-30 % inhibition rate, + + + More than 30 % inhibition, **NT** Not tested

Fig S1 Effect of the concentration of VOCs The experiment was conducted in three partition plates with completely sealed portions without any air movement except holes in two walls of the partitions. An arrangement was made so that VOCs could move from the first partition, encompassing *Bacillus* or a synthetic chemical, to the second partition and then from the second partition to the third partition. The second and third partition both were inoculated with 10 μ l of *Rsc* (18-24h) culture. The whole experiment was repeated three times, including three replicates per experiment. Letters

above error bars represent significant differences according to Duncan's multiple-range
 test (P=0.05) using SPSS software (SPSS, Chicago, IL).

33

Fig S-2 BDH, 1,2-BITH and 1,3-BDN reduced the virulence of Ralstonia 34 induced systemic resistance I-plates 35 solanacearum and prepared with one-half-strength Murashige and Skoog solid medium, and 5-6-day-old emerging 36 37 tobacco seedlings (seven seedlings/plate) were dipped in the suspension of Rsc (10^7) CFU/mL) cells and transplanted into one compartment. In the non-inoculated control, 38 the roots were dipped in sterile water. Chemicals (10mM and 1mM 1,3-BDN, 1mM and 39 0.1mM 1,2-BITH while 0.1mM and 0.01mM BDH) were used in the other 40 compartment. Wilt symptoms were observed after 7 days of inoculation, and the data 41 were recorded. Error bars indicate standard deviations of the means. Different letters 42 above error bars represent significant differences according to Duncan's multiple-range 43 test (P=0.05) using SPSS software (SPSS, Chicago, IL). 44