
Mathematical Appendix 

1. Asymptotics of ergodic distribution of the stochastic BDIM  

The ergodic (or stationary) distribution (1.2) of the stochastic BDIM is completely 

defined by the asymptotic expansion (1.5) of the function χ(i),  

χ(i)=λi-1/δi =isθ (1-γ/i + O(1/i2))                                                                                   

where s and γ are real numbers and θ is positive. The following main assertions describe 

all possible asymptotic behaviors of the stationary probabilities depending on different 

orders of balance in BDIM (as defined in the formulation of the theorem below).  

Theorem 1. (i) if s≠0 (non-balanced BDIM), then pi ~ Γ(i)sθ ii-γ  where Γ(i) is the Γ-

function; 

(ii) if s=0 and θ≠1 (first-order balanced BDIM), then pi ~ θ ii-γ; 

(iii) if s=0; θ=1 and a≠0 (second-order balanced BDIM), then pi ~ i-γ; 

(iv) if s=0; θ=1 and a=0 (high-order balanced BDIM), then pi ~ 1. 

Proof 

The condition (1.5) can be rewritten as λi-1/δi=isθ(1-γ/i+O(1/i2))=isθ (1-γ/i)(1+ O(1/i2)). 

Thus we can choose S in such a way that (1+ O(1/s∏
=Ss

∞

∞

2)) converge, 
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=Ss

2))<∞. It follows that  
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pi ~ (λ∏
=

i

s 2
 s-1/δs) ~Γ(i)sθ i∏ (1-γ/s) =Γ(i)

=

i

s 2

sθ iΓ(i+1-γ)/ Γ(i+1). 

Applying the main asymptotic property of the Γ-function, i.e. Γ(i+c)/Γ(i)~ic at 

large i for any c, we have Γ(i+1-γ)/ Γ(i+1)~ i-γ, and so pi ~ Γ(i)sθ ii-γ. Q.E.D. 

 

Corollary 1. For a non-balanced BDIM with s=-1 and γ=0, the stationary probabilities pi  

follow the (truncated) Poisson distribution with parameter θ, pi ~ θi/i! 

Corollary 2. For a first-order balanced BDIM with θ <1, 

a) if γ <1, the stationary probabilities pi  follow the Pascal distribution with parameters 

(1-γ, θ); 

b)  if γ= 1, the stationary probabilities follow (truncated) logarithmic distribution with 

parameter θ; 

c)   if γ=0, the stationary probabilities follow geometric distribution with parameter θ. 

The following implication of Theorem 1 is of principal interest. 

Corollary 3. The stationary probabilities of a BDIM have a power asymptotic behavior if 

and only if the BDIM is second-order balanced.  

 

The non-balanced BDIM (i) with s<-1 or s>0 and high-order balanced BDIM (iv) are of 

little practical interest because the former results in an extremely sharply dropping (or 

rising) distribution, whereas the latter leads to a uniform distribution of domain family 

sizes. Below we consider exclusively balanced BDIMs because only such models can 

lead to a power asymptotic of the ergodic distribution. 

Transformation of BDIM 

Let g(i), i=0,…N, be a positive function. Consider the new transformed model (1.1) or 

(1.3) under simultaneous transformation of duplication and deletion rates given by the 

relations: 
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λ*i = λi g(i),  δ*i = δi g(i-1). (A.1.1) 

Then it follows from formulas (1.2) or (1.4) that the ergodic distribution for the BDIM 

with transformed birth and death rates, λ*i and δ*i, is the same as in the original model. 

Note that the mean sojourn time in the state i of the modified model is t*i =1/(λig(i)+δig(i-

1)). Thus, t*i can be arbitrarily decreased by choosing the appropriate function g(i). We 

will see that the mean number of trials before first entrance into the state N (i.e., the mean 

number of duplications and deletions before the formation of the largest family) also 

decreases simultaneously. 

Rational stochastic BDIM 

Let us suppose that the birth and death rates are of the form 

λi =λ P(i) =λ ∏ (i+a
=

n

k 1
k)^αk,                                                        

δi =δ Q(i) = δ ∏ (i+b
=

m

k 1
k)^βk  

for i>0, where λ, δ are positive constants, αk, βk are real, and ak, bk are non-negative for 

all k=1,…N.  

The following theorem 2 and proposition 1 (proved in Ref. [1] for the deterministic 

BDIM) describe all possible asymptotic behaviors of the stationary probabilities of a 

rational BDIM. Let us denote 

θ =λ /δ,  s= α∑
=

n

k 1
k - β∑

=

m

k 1
k ,  γ =∑ (b

=

m

k 1
k+1)βk - a∑

=

n

k 1
kαk. 

Theorem 2. The stationary probabilities of a rational BDIM have the following 

asymptotics  

pi ≅ Cλ0 p0 /λ Γ(i)s θi i-γ                                                                                  (A.1.2) 
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where the constant C=∏ (Γ(1+b
=

m

k 1
k))^βk /∏ Γ(1+a

=

n

k 1
k)^αk.                                 

Corollaries 1-3 are valid for a rational BDIM with the values of s and γ specified above. 

The exact expressions for the stationary probabilities pi are given in the following 

proposition. 

Proposition 1. For a balanced (first or higher order) rational BDIM, 

 pi = Cλ0 p0 /λ θi [(Γ(i+a∏
=

n

k 1
k))^αk]/∏  [(Γ(i+1+b

=

m

k 1
k))^βk] for all i=1,2,… (A.1.3) 

p0 =[1+ Cλ0/λ ∑ θ
=

N

j 1

j∏
=

n

k 1

(Γ(j+ak))^αk/∏  (Γ(j+1+b
=

m

k 1
k))^βk)] -1, 

where 

C= [(Γ(1+b∏
=

m

k 1
k))^βk] /∏  [Γ(1+a

=

n

k 1
k)^αk]. 

 

Polynomial stochastic BDIM 

Let λi =λR(i) = λ r∑
=

m

k 0
k im -k, δi = δQ(i)= δ q∑

=

m

k 0
k i m-k               

where rk, qk are constants and r0= q0=1. We suppose that R(i), Q(i) are positive for all 

natural i. Note that, in this case, χ(i) ≡ λi-1/δi = θ(1+( r1 - q1 -m)/i+O(1/i2)), where θ=λ/δ. 

We will suppose that θ≤1. 

According to Theorem 2, the polynomial BDIM has the stationary probabilities with 

power-exponential asymptotics  

pi ~θi iρ-m                                                                                           (A.1.4) 
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where ρ= r1 - q1. 

In particular, if ρ–m>-1, the stationary probabilities pi follow the Pascal distribution with 

parameters (ρ–m+1, θ); 

if ρ –m=-1, the stationary probabilities pi follow the (truncated) logarithmic distribution; 

if ρ –m=0, the stationary probabilities pi follow the geometric distribution; 

if λ=δ, the polynomial BDIM is second-order balanced and the stationary probabilities pi 

follow the power distribution 

pi ~ iρ-m.                                                                                  (A.1.5) 

Note that the degree of the power distribution (A.1.5) is determined only by m, the 

common degree of the polynomials (5.21), and ρ, the difference of the coefficients r1 and 

q1, and does not depend on other coefficients. In particular, if r1=q1, then pi ~ i-m. This 

relation could be interpreted as follows: if the first two coefficients of polynomial rates λi 

and δi  are equal, then the degree of the power distribution (A.1.5) is equal to the “order of 

interactions” of domains.  

Formulas (A.1.4), (A.1.5) can be refined with the help of Proposition 2. 

Proposition 2. Let R(i)= (i+a∏
=

m

k 1
k), Q(i) = (i+b∏

=

m

k 1
k). Then the stationary probabilities 

of the polynomial BDIM are  

pi = Cλ0 p0/δθ i-1∏
=

m

k 1

[Γ(i+ak)/Γ(i+1+bk)]                                             (A.1.6) 

where C=∏ [Γ(1+b
=

m

k 1
k) /Γ(1+ak)], and p0 =[1+C λ0/λ ( θ ∑

=

N

j 1

j∏
=

m

k 1

[Γ(j+ak)/Γ(j+1+bk)]-1. 
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2. Escape probabilities; probabilities of formation and extinction of families of 

different sizes  

 

Let (c,d) be an interval in the space state of the Markov BDIM X(t),  (c,d)={j: c<j<d}, 

c≥0, d≤ N. Let τ be the first instant of exit from the interval (c,d); let us denote p(i;c,d) 

the probability Pi{X(τ) =d}; verbally, p(i;c,d) is the probability that the system, upon 

initiating its motion at the state i, will occupy the state d at the time of its first exit from 

the interval (c,d). Then [2, ch.3 ], for c<i<d 

p(i;c,d)= (1+ δ∑
−

+=

1

1

i

cj
∏

+=

j

ck 1
k/λk)/(1+ δ∑

−

+=

1

1

d

cj
∏

+=

j

ck 1
k/λk)                                         (A.2.1) 

In particular, the probability to reach the state n before 0 starting from the state i is  

P(i;n)= (1+∑ δ
−

=

1

1

i

j
∏
=

j

k 1
k/λk)/(1+ δ∑

−

=

1

1

n

j
∏
=

j

k 1
k/λk)                                               (A.2.2) 

and the probability to reach the state N beginning from the state 1 is  

P(1;N)= 1/(1+∑ δ
−

=

1

1

N

j
∏
=

j

k 1
k/λk).                                                                         (A.2.3) 

For the linear BDIM, 

P(1)(i;n)=(1+
)1(
)1(

+Γ
+Γ

b
a ∑

−

=

1

1

i

j )1(
)1(

++Γ
++Γ

ja
jb )/(1+

)1(
)1(

+Γ
+Γ

b
a ∑

−

=

1

1

n

j )1(
)1(

++Γ
++Γ

ja
jb )       (A.2.4) 

and, after simple algebra, 

P(1)(1,n) = 1/(1+
)1(
)1(

b
a

+Γ
+Γ

γ
(

)(
)1(

na
nb
+Γ
++Γ -

)1(
)2(

a
b

+Γ
+Γ )) .                                     (A.2.5) 

where γ=1+b-a (>0). 

Note that these probabilities have the power asymptotic for large n: 

P(1)(1,n) ≅
)1(
)1(

a
b

+Γ
+Γγ  n-γ  

with the same power γ as the stationary probabilities. 
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For the transformed BDIM, 

P*(i;N)= (1+∑ 1/g(j) δ
−

=

1

1

i

j
∏
=

j

k 1
k/λk)/(1+∑ 1/g(j) δ

−

=

1

1

N

j
∏
=

j

k 1
k/λk)=                                (A.2.6) 

[1+
)1(
)1(

+Γ
+Γ

b
a ∑

−

=

1

1

i

j
(

)(
1

jg )1(
)1(

++Γ
++Γ

ja
jb )] / [1+

)1(
)1(

+Γ
+Γ

b
a ∑

−

=

1

1

n

j
(

)(
1

jg )1(
)1(

++Γ
++Γ

ja
jb )].   

           

3. The mean and variance of the time of extinction  

For birth-and-death process (1.1) let us denote S(i)= inf{t: X(t)=0⎜X(0)=i}, the time to the 

first passage of the state 0 from the initial state i; S(i) is a random variable for each i. We 

will also refer to S(i) as to the time of extinction.  

Let Z(j)= inf{t: X(t)=j-1⎜X(0)=j} denote the time, starting from state j, it takes for the 

process to enter state j-1, and z(j)=E(Z(j)). Then (see, e.g., Ch. 6 in Ref. [3]) 

z(j)=1/(λj+δj)+ λj /(λj+δj)( z(j+1)+ z(j)),  

or δj z(j)=1+λj z(j+1) and z(N)= 1/δN. Hence, 

z(k)= (λ∑
=

N

ki
k…λi-1)/(δk…δi) for k>0,                                                               (A.3.1) 

and the mean time of extinction, E(S(n))= z(k), can be calculated using the formula  ∑
=

n

k 1

E(S(n)) =∑ (λ
=

n

k 1
∑
=

N

ki
k…λi-1)/(δk…δi).                                                           (A.3.2) 

In particular, for the linear 2nd order balanced BDIM  

z(k)= 
λ
1  

)(
)(

ka
kb

+Γ
+Γ ∑

=

N

ki )1(
)(
++Γ

+Γ
ib

ia  

and  

E(S(n))= 
λ
1  E1

n where  

E(1)
n =∑

=

n

k 1 )(
)(

ka
kb

+Γ
+Γ ∑

=

N

ki )1(
)(
++Γ

+Γ
ib

ia .                                                           (A.3.3)   

 For the transformed model,  

z*(k)= 
λ
1  

)1(
1
−kg )(

)(
ka
kb

+Γ
+Γ ∑

=

N

ki )1(
)(
++Γ

+Γ
ib

ia , 
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and  

E(S(n))= 
λ
1  E*

n where  

E*n=∑
=

n

k 1 )1(
1
−kg )(

)(
ka
kb

+Γ
+Γ ∑

=

N

ki
 [

)1(
)(
++Γ

+Γ
ib

ia ] .                                         (A.3.4) 

 

Next, let us denote w(j)=Var(Z(j)), the variance of the time to the first passage of state j-1 

starting from state j. Following (Ch. 6.4 in Ref. [3]), one can get 

w(j) =1/(δj(λj +δj))+ λj/δj w(j+1) + λj/(λj +δj) [z(j+1)+ z(j)]2,                      (A.3.5) 

w(N)= 1/δN
2.                                         

Let us denote  

Bj=1/(δj(λj +δj))+ λj/(λj +δj) [z(j+1)+ z(j)]2,                           

so that  

w(j) =λj/δj w(j+1) + Bj for 0< i<N .                                                                       

The solution of this difference equation is  

w(j)=(1/δ2
N) (λj…λN-1)/(δj…δ N-1)+ B∑

−

=

1N

jk
k(λj…λk-1)/(δj…δk-1) 

Thus the variance of the extinction time from the initial state i is  

Var(S(i))=∑ w(j)= 
=

i

j 1

∑
=

i

j 1
[(1/δ2

N) (λj…λN-1)/(δj…δ N-1)+ B∑
−

=

1N

jk
k(λj…λk-1)/(δj…δk-1)] .                          (A.3.6) 

For the linear 2nd order balanced BDIM,  

w(j)= 2

1
λ

{ 2)(
1
Nb + )(

)(
Nb
Na

+Γ
+Γ

)(
)(

ja
jb

+Γ
+Γ +

)(
)(

ja
jb

+Γ
+Γ ∑

−

=

1N

jk
B1

k )(
)(

kb
ka

+Γ
+Γ } 

and so 

Var(S(i))=1/λ2 W(1)(i) , where  

W(1)(i) = 

2)(
1
Nb + )(

)(
Nb
Na

+Γ
+Γ ∑

=

i

j 1 )(
)(

ja
jb

+Γ
+Γ +∑

=

i

j 1 )(
)(

ja
jb

+Γ
+Γ ∑

−

=

1N

jk
B1

k )(
)(

kb
ka

+Γ
+Γ ,          (A.3.7) 
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B1
j= )2(

1
jba ++

{
)(

1
jb +

+(a+j) [z(j+1)+ z(j)]2λ 2}. 

For the transformed BDIM,  

Var(S(i))=1/λ2 W*(i) , where 

W*(i) = 2))(1(
1

NbNg +−
 

)(
)(

Nb
Na

+Γ
+Γ ∑

=

i

j 1 )(
1

jg )(
)(

ja
jb

+Γ
+Γ  + 

∑
=

i

j 1 )1()(
)(
−+Γ

+Γ
jgja

jb ∑
−

=

1N

jk
B*k )(

)1()(
kb
kgka

+Γ
−+Γ                                              (A.3.8) 

where 

B*j= ))1()()()((
1

−+++ jgjbjgja
{

)1()(
1

−+ jgjb
+ g(j)(a+j) [z*(j+1)+ z*(j)]2λ 2}. 

 

4. The mean time of the first passage for the birth-and-death process  

Let us denote T(i,n)=inf{t: X(t)=n⎜X(0)=i} the time to the first passage of the state n from 

the initial state i; T(i,n) is a random variable for each i, n. The mean time to the first 

passage of the state n starting from the state j<n, m(j;n)=E(T(j,n)), is calculated as 

follows (Ch. 3 in Ref. [2], Ch.6 in Ref. [3]). 

Let U(j)= inf{t: X(t)=j+1⎜X(0)=j} be the time it takes for the process to enter state j+1, 

starting from state j. Then T(j,n)= U(j)+T(j+1,n) for j<n and so T(j,n)=∑ U(k) where 

the random variables U(k) are independent of each other. 

−

=

1n

jk

Let us denote u(j)= E(U(j)), then  

u(j)= 1/λ0(δ1…δ j)/( λ1…λ j) + (δ∑
=

j

i 1
i+1…δj)/(λi…λj) for j>0,                 

m(j;n)= m0(j,n) + m1(j,n), where                                                       (A.4.1) 

 m0(j,n)= 1/λ0∑
−

=

1n

jk
(δ1…δ k)/( λ1…λ k),   

m1(j,n)= (δ∑
−

=

1n

jk
∑
=

k

i 1
i+1…δk)/(λi…λk)  for 0<j<N. 

By the same way, for process (1.3) (no 0-state),  
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u(j)= E(U(j))= ∑ (δ
=

j

i 1
i+1…δj)/(λi…λj)                                                            (A.4.2) 

and the mean time to the first passage of the state n from the state j, M(j,n), is  

M(j;n) =∑ u(j)= (δ
−

=

1n

jk
∑
−

=

1n

jk
∑
=

k

i 1
i+1…δk)/(λi…λk).                                            (A.4.3) 

For the linear BDIM (1.1)  

E(T(j,n))= m(1)(j;n)= 

1/λ0( )1(
)1(

+Γ
+Γ

b
a ∑

−

=

1n

jk )1(
)1(

++Γ
++Γ

ka
kb )+1/λ (∑

−

=

1n

jk )1(
)1(

++Γ
++Γ

ka
kb ∑

=

k

i 1 )1(
)(
++Γ

+Γ
ib

ia ).    (A.4.4) 

For the linear BDIM (1.3) 

E(T(j,n))=M(1)(j;n)= 1/λ ∑
−

=

1n

jk )1(
)1(

++Γ
++Γ

ka
kb ∑

=

k

i 1 )1(
)(
++Γ

+Γ
ib

ia .                        (A.4.5) 

In particular, for j=1 

M(1)(1;n) =1/λ M(1)
n where 

M(1)
n =∑

−

=

1

1

n

k )1(
)1(

++Γ
++Γ

ka
kb ∑

=

k

i 1 )1(
)(
++Γ

+Γ
ib

ia .                                                    (A.4.6) 

For the transformed model (1.1), 

m*(j;n)=1/λ0( )1(
)1(

+Γ
+Γ

b
a ∑

−

=

1n

jk )(
1
kg )1(

)1(
++Γ
++Γ

ka
kb + 

1/λ∑
−

=

1n

jk )(
1
kg )1(

)1(
++Γ
++Γ

ka
kb ∑

=

k

i 1 )1(
)(
++Γ

+Γ
ib

ia .                                                (A.4.7) 

For the transformed model (1.3), 

E(T(j,n))= M*(j;n) where  

M*(j;n) =1/λ∑
−

=

1n

jk )(
1
kg )1(

)1(
++Γ
++Γ

ka
kb ∑

=

k

i 1 )1(
)(
++Γ

+Γ
ib

ia .                                 (A.4.8) 

In particular, for j=1 

M*(1;n) =1/λ  M*
n  where

M*
n =∑

−

=

1

1

n

k )(
1
kg )1(

)1(
++Γ
++Γ

ka
kb ∑

=

k

i 1 )1(
)(
++Γ

+Γ
ib

ia .                                         (A.4.9) 

 

5. The variance of the first passage time for the birth-and-death process  
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The variance of the first passage time is also of interest in many problems (see, e.g., s.7.3 

in Ref. [4]) for finite Markov chains with discrete time and Ch. 6 in Ref. [3] for 

continuous birth-and-death process). Let us denote v(j)= Var(U(j)), the variance of the 

time to the first passage of state j+1 starting from the state j. Then (see Ch. 6 in Ref. [3]): 

v(j)= (1/λ0)2(δ1…δ j)/(λ1…λ j) +∑ A
=

j

i 1
i(δi+1…δj)/(λi+1…λj) for j>0,                       (A.5.1) 

v(0)= (1/λ0)2,         

where  

Aj=1/(λj(λj +δj))+ δj/(λj +δj) [u(j-1)+ u(j)]2, u(j) is given in (A.4.2). So 

Var(T(i,n))= v(j)= ∑
−

=

1n

ij

∑
−

=

1n

ij
 [(1/λ0)2 (δ1…δ j)/(λ1…λ j) + A∑

=

j

k 1
k(δk+1…δj)/(λk+1…λj)].                          (A.5.2) 

Similarly, for model (1.3) (no 0-state), the variance of the time to the first passage of state 

j+1 starting from state j  

V(j)= (1/λ1)2 (δ2…δ j)/(λ2…λ j) +∑ A
=

j

i 2
i(δi+1…δj)/(λi+1…λj) for j>1,  V(1)= 1/λ2

1. 

So for model (1.3) the variance of the time to the first passage of the state n from initial 

state i, is   

Var(T(i,n)) = {(1/λ∑
−

=

1n

ij
1)2 (δ2…δ j)/(λ2…λ j)+ A∑

=

j

k 2
k(δk+1…δj)/(λk+1…λj)}.         (A.5.3) 

The most important specific case is the variance of T(1,n): 

Vn≡ Var(T(1,n)) = [1/λ∑
−

=

1

1

n

j

2
1(δ2…δ j)/(λ2…λ j)+ ∑ A

=

j

k 2
k(δk+1…δj)/(λk+1…λj)].      (A.5.4) 

For the linear BDIM (1.3), (2.1)  

Var(T(1,n)) = 2

1
λ

 V(1)
n where 

V(1)
n= 2)1(

1
a+

 
)2(
)2(

+Γ
+Γ

b
a ∑

−

=

1

1

n

j )1(
)1(

++Γ
++Γ

ja
jb   +                                                  (A.5.5) 

∑
−

=

1

1

n

j )1(
)1(

++Γ
++Γ

ja
jb ∑

=

j

k 2
Ak )1(

)1(
++Γ
++Γ

kb
ka ,               
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A1
j= )2(

1
jba ++

{
ja +

1 + (b+j) λ2 [u(j-1)+ u(j)]2}. 

For the transformed BDIM,  

V*n= 
2)^)1)((1(

1
λag + )2(

)2(
+Γ
+Γ

b
a ∑

−

=

1

1

n

j )(
1

jg )1(
)1(

++Γ
++Γ

ja
jb   +                               (A.5.6) 

∑
−

=

1

1

n

j )(
1

jg )1(
)1(

++Γ
++Γ

ja
jb ∑

=

j

k 2
g(k)A*k )1(

)1(
++Γ
++Γ

kb
ka , 

where  

A*j= )1()()()(
1

−+++ jgjbjgja
{

)()(
1

jgja +
+ )1()( −+ jgjb λ2 [u(j-1)+ u(j)]2}. 

 

6. The average rate of duplication and the mean time of formation of families 

 

By definition, the mean duplication rate per domain is:  

rdu = p∑
−

=

1

1

N

i
iλi/i .                                                                                           (A.6.1) 

Let us introduce the coefficient  

cdu= rdu/λ, 

which connects the empirical value of rdu with the model parameter λ. Then, for the 

rational model (1.1), (3.1) of degree d 

cdu(d,N) = (∑ p
−

=

1

1

N

i
iλi/i)/λ = p1(∑

−

= ++Γ
++Γ

+Γ
+Γ1

1 )1(
)1(

)1(
)2(N

i bi
ai

ai
b (i+1)d-1)= 

∑
−

= ++Γ
++Γ1

1 )1(
)1(N

i bii
ai (i+1)d-1 /∑

=

N

i 1 )1(
)(
++Γ

+Γ
ib

ia   .                                                  (A.6.2) 

According to (A.4.8), the mean time of formation of a family of size n from an essential 

singleton (for which extinction is not allowed) for this BDIM is  

E(T(1,n))=1/λ Md(1;n)=                                                                               (A.6.3) 
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1/λ (∑
−

=

1

1

n

m )1()1(
)1(

1 ++Γ+
++Γ

− mam
mb

d ∑
=

m

k 1 )1(
)(
++Γ

+Γ
kb

ka ).      

Then, excluding the model parameter λ from (A.6.3) using the relation 1/λ= cdu(d,N)/ rdu, 

we obtain the following expression for the mean time of family formation, which is 

expressed through the mean duplication rate rdu

E(T(1,n))= cdu(d,N)M d(1; n)/rdu .                                                           (A.6.4) 

Finally, the mean time of formation of the largest family of the size N in years, T(d)
N, is  

T(d) 
N =E(T(1,N))= R(d)(N)/rdu ,                                                               (A.6.5) 

where  

R(d)(N) =[∑
−

= ++Γ
++Γ1

1 )1(
)1(N

i bii
ai (i+1)d-1 /∑

=

N

i 1 )1(
)(
++Γ

+Γ
ib

ia ] * 

∑
−

=

1

1

N

m
(

)1()1(
)1(

1 ++Γ+
++Γ

− mam
mb

d ∑
=

m

k 1 )1(
)(
++Γ

+Γ
kb

ka ).    

 

7. The mean and variance of the number of events before formation and extinction 

of the largest family  

To calculate the mean number of elementary events of genome evolution, i.e., deletions 

and duplications, we use the so-called embedding birth-and-death chain {Y(n)}instead of 

the initial BDIM. For a given Markov birth-and-death process {X(t)} with continuous 

time, the embedding chain {Yn} is, by definition, the Markov chain with discrete time on 

the same set of states with the transition probabilities {pij}:  

pi,i+1 =βi =λi /(λi +δi ),  pi,i-1 =µi =δi /(λi +δi )  and pij =0 for all other cases.             (A.7.1) 

Many problems bearing on the process X(t) can be solved by analyzing the embedding 

Markov chain {Yn}, e.g., the probability of arriving at one state before another, the 

probability of ever reaching a given state, escape probabilities, the mean number of trials  

before extinction, etc. Let us emphasize that, for the chain Yn, the sojourn time in every 

state is equal to 1 and hence its extinction time is equal to the number of elementary 

events (deletions and duplications) before the extinction of a family of the given size. 

 13



Similarly, the first passage time is equal to the number of elementary events, which are 

necessary for the formation of a family of the given size from a singleton. 

 

The problem of the mean number of transitions from one state to another for birth-and-

death chains is readily solved (see, e.g., Ch. 3 in Ref. [2]). Let us note that all formulas 

for the mean time of extinction or formation for the original BDIM (see sections A3, A4 

of Mathematical Appendix) could be applied for computing the mean number of 

transitions if the intensities of transitions, λi and δi, are replaced by the probabilities of 

transitions for the corresponding embedding chain, βi=λi(λi+δi) and µi=δi(λi+δi). 

 

In more detail, let us denote F(i,n)=inf{k: Y(k)=n⎜Y(0)=i} the number of transitions 

before the first passage of the state n starting from state i. 

Let h(j)= inf{k: X(k)=j+1⎜X(0)=j} be the number of steps it takes for the chain to enter 

state j+1, starting from state j. Then F(j,n)= h(j)+F(j+1,n) for j<n and so F(j,n)=  h(k) 

where the random variables h(k) are independent each other. Using the Markov property, 

we can write: 

∑
−

=

1n

jk

E[h(j)|Ij]=1+(1- Ij)(E[h(j-1)]- E[h(j)]),                                                             (A.7.2) 

where Ij=1 if the first transition from j is to j+1, and Ij=0 otherwise. So,  

E(h(j))=1+βj(E(h(j-1)) + E(h(j))),                                                

and  

E(h(j))=1/αj+βj/αj E(h(j-1)). Hence  

E(h(j)) = (β∑
=

j

i 1
i+1…βj)/( αi…αj)= (1+δ∑

=

j

i 1
i/λi)(δi+1…δj)/(λi+1…λj)                 (A.7.3) 

and the mean number of transitions before the first passage of the state n starting from 

state j is  

EF(j;n) = (1+δ∑
−

=

1n

jk
∑
=

k

i 1
i/λi) (δi+1…δk)/(λi+1…λk).                                        (A.7.4) 

So the mean number of events before the formation of a family of the largest size from an 

essential singleton, fN, is  
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fN ≡ EF(1;n) = (1 +δ∑
−

=

1

1

N

k
∑
=

k

i 1
i/λ i)(δi+1…δk)/(λi+1…λk).                                            (A.7.5) 

For the linear balanced BDIM,  

f(1)
N =∑

−

=

1

1

N

k )1(
)1(

++Γ
++Γ

ka
kb ∑

=

k

i 1
(1+

ai
bi

+
+ )

)1(
)1(

++Γ
++Γ

ib
ia .                                             (A.7.6) 

For the transformed model, 

f*N =∑
−

=

1

1

N

k )1()(
)1(
++Γ

++Γ
kakg

kb ∑
=

k

i 1
(g(i)+

ai
bi

+
+  g(i-1))

)1(
)1(

++Γ
++Γ

ib
ia .                        (A.7.7) 

 

To compute the variance of the number of transitions before the first passage of the state 

n starting from state j (see Ch. 6.4 in Ref. [3]), let us note that it follows from (A.7.2) that 

Var(E[h(j)|Ij]) = (E[h(j-1)] + E[h(j)])2 Var(Ij)= (E[h(j-1)] + E[h(j)])2(λjδj)/(λ j+δj)2.  

Similarly, 

Var(h(j)|Ij)= (1- Ij)[Var(h(j-1))+ Var(h(j))], and so, 

E[Var(h(j)|Ij)]= δj/(λj+δj) [Var(h(j-1))+ Var(h(j))]. 

According to the conditional variance formula, Var(X | I)=Var(E[X|I])+ E[Var(X)|I)],  

the variance of the number of steps before the first passage of the state j+1 from the state 

j is  

Var(h(j))= (E[h(j-1)] + E[h(j)])2(λjδj)/(λ j+δj)2+ δj/(λj+δj) [Var(h(j-1)) + Var(h(j))], or  

 

Var(h(j)) = (E[h(j-1)] + E[h(j)])2δj /(λj +δj)+ δj /λj [Var(h(j-1))                    (A.7.8) 

for j>1, Var(h(1))= 0.                                                                               

So  

Var(h(j)) = Cj+ δj /λj [Var(h(j-1)) where 

 Cj =(E[h(j-1)] + E[h(j)])2δj /(λj +δj),                                                         (A.7.9) 

and hence  

Var(h(j)) = ∑ C
=

j

k 2
k(δk+1…δj)/(λk+1…λj)} for j>1.                     

Finally, the variance of the number of transitions before the first passage of state n from 

the initial state 1 is  
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Var(F(1,n)) =∑ C
−

=

1

1

n

j
∑
=

j

k 2
k(δk+1…δj)/(λk+1…λj)} for n>2,                        (A.7.10) 

Var(F(1,2)) =0. 

 

For the linear BDIM (2.3),  

Var(F(1,n)) =∑
−

=

1

1

n

j )1(
)1(

++Γ
++Γ

ja
jb ∑

=

j

k 2
C1

k )1(
)1(

++Γ
++Γ

kb
ka ,                         (A.7.11) 

where C1
k= kba

kb
2++

+ (E[h(j-1)] + E[h(j)])2, 

E[h(j)] is computed for the linear model by (A.7.3).  

For the transformed BDIM,  

Var(F*(1,n)) =∑ C*
−

=

1

1

n

j
∑
=

j

k 2
k(δk+1…δj)/(λk+1…λj)}= 

∑
−

=

1

1

n

j )1()(
)1(
++Γ

++Γ
jajg

jb ∑
=

j

k 2
C*k )1(

)1()(
++Γ
++Γ

kb
kakg ,                              (A.7.12) 

where  

C*k= (E[h*(k-1)] + E[h*(k)])2

)1()()()(
)1()(

−+++
−+

kgkbkgka
kgkb , 

E[h*(j)] is computed for the transformed model by  (A.7.3).  

 

Similarly, the mean number of events before extinction of a family of size n, en, is  

en = E(S(n)) =∑ (α
=

n

k 1
∑
=

N

ki
k…αi-1)/(βk…βi)= 

∑
=

n

k 1
∑
=

N

ki
(1+λi/δi)∏ ( δ

−

=

1i

kj
j/λj)                                                         (A.7.13) 

(taking into account that βN=1). 

For the linear balanced BDIM,  

e(1)
 n = [∑

=

n

k 1 )()(
)()(

bkaN
akbN

+Γ+Γ
+Γ+Γ + ∑

−

=

1N

ki )()(
)()(

bkai
akbi

+Γ+Γ
+Γ+Γ )1(

bi
ai

+
+

+ ].    (A.7.14) 

For the transformed model, 
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 e*
n =∑ [

=

n

k 1 )1(
)1(

−
−

Ng
kg

)()(
)()(

bkaN
akbN

+Γ+Γ
+Γ+Γ + 

∑
−

=

1N

ki )1(
)1(

−
−

ig
kg

)()(
)()(

bkai
akbi

+Γ+Γ
+Γ+Γ )

)1()(
)()(1(
−+

+
+

igbi
igai ]                             (A.7.15) 
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