Supporting Information

for

Supramolecular frameworks based on [60]fullerene hexakisadducts

Andreas Kraft¹, Johannes Stangl², Ana-Maria Krause¹, Klaus Müller-Buschbaum²

and Florian Beuerle^{1*§}

Address: ¹Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität

Würzburg, Am Hubland, 97074 Würzburg, Germany and ²Institut für Anorganische Chemie,

Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Email: Florian Beuerle - <u>florian.beuerle@uni-wuerzburg.de</u>

[§]Tel.: +49 931 31-83603

*Corresponding author

Analytical and crystallographic data; SEM, BET, PXRD and TGA/DTA data

Content

1 Analytical data	S2
2 Crystallographic data	S6
3 Electron microscopy (SEM)	S12
4 Sorption study (BET)	S13
5 Powder X-ray diffraction (PXRD)	S14
6 TGA/DTA study	<u>_</u> S16

1 Analytical data

Figure S2: ¹³C NMR (100 MHz, CDCl₃, rt) for hexakisadduct 2.

Figure S3: MS (MALDI, DCTB, pos) for hexakisadduct 2.

Figure S4: UV–vis (CH₂Cl₂, rt) for hexakisadduct 2.

Figure S6: ¹³C NMR (100 MHz, DMSO- d_6 , rt) for hexakisadduct C4.

Figure S7: MS (MALDI, DCTB, pos) for hexakisadduct C4.

Figure S8: UV-vis (MeOH, rt) for hexakisadduct C4.

2 Crystallographic data

Single crystals were mounted on a 100 μ m MiTeGen MicroLoop using perfluorinated polyalkylether. Single crystal X-ray diffraction data were collected on a Bruker D8 Quest Kappa diffractometer with a Photon100 CMOS detector and multi-layered mirror monochromated CuK_a radiation. The images were processed with the Bruker software packages and equivalent reflections were merged. The data were corrected for absorption effects using semi-empirical methods from equivalents. Corrections for Lorentz and polarization effects were applied. The structures were solved by direct methods, refined with the SHELXTL software package (G. Sheldrick, *Acta Crystallogr. Sect. A*, 2008, **64**, 112) and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to geometrically idealized positions and were included in structure factor calculations.

Crystal data and refinement details for HFF-2:

Suitable crystals for X-ray diffraction have been obtained by slow vapor deposition of Et_2O into a solution of C3 in EtOH. Supplementary crystallographic data for HFF-2 can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (CCDC 1498265).

Crystal data and refinement details for HFF-3:

Suitable crystals for X-ray diffraction have been obtained by slow vapor deposition of Et_2O into a solution of C4 in EtOH. Et_2O molecules in the pores are disordered (main site occupancy 57%). Supplementary crystallographic data for **HFF-3** can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (CCDC 1498266).

Empirical formula	$C_{114}H_{60}O_{48}\cdot4C_4H_{10}O$	
Formula weight	$2494.09 \text{ g mol}^{-1}$	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system, space group	Triclinic, P1 (Nr. 2)	
Unit cell dimensions	$a = 13.1513(5)$ Å, $\alpha = 107.332(3)^{\circ}$ $b = 14.4631(7)$ Å, $\beta = 95.752(3)^{\circ}$ $c = 15.2117(7)$ Å, $\gamma = 94.594(2)^{\circ}$	
Volume	2729.6(2) Å ³	
Z, calculated density	1, 1.517 g cm ^{-1}	
Absorption coefficient	1.010 mm^{-1}	
F(000)	1296	
Crystal size	0.453 x 0.044 x 0.028 mm ³	
Θ range for data collection	3.069 to 74.700°	
Limiting indices	$-16 \le h \le 12, -18 \le k \le 18, -19 \le l \le 19$	
Reflections collected / unique	$42237 / 11068 [R_{int} = 0.0346]$	
Completeness to $\Theta = 67.679$	99.6%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7538 and 0.6426	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	11068 / 0 / 830	
Goodness-of-fit on F^2	1.040	
Final <i>R</i> indices $[I > 2(\sigma(I))]$	$R_1 = 0.0490, wR_2 = 0.1302$	
R indices (all data)	$R_1 = 0.0622, wR_2 = 0.1398$	
Largest diff. peak and hole	0.561 and -0.584 e Å ³	

Table S1: Crystal data and structure refinement for HFF-2.

Figure S9: Single-crystal X-ray structure of **HFF-2**: a) ORTEP representation of single molecule of **C3** (thermal ellipsoids set to 50% probability, carbon grey, oxygen red, hydrogen atoms omitted for clarity); crystal packing with views along the crystallographic b) a, c) b and d) c axis (single molecule of **C3** is highlighted in blue).

Figure S10: Hydrogen bonding motifs for HFF-2: a) top and b) side view of hydrogen bonding interactions for one molecule of C3; c) different types of hydrogen bonds observed in HFF-2; color code: layer A red, layer B blue, layer C green, Et₂O orange, hydrogen bonds yellow; non-participating side arms and non polar hydrogen atoms omitted for clarity.

Empirical formula	$C_{126}H_{84}O_{48}\cdot6C_4H_{10}O$	
Formula weight	$2810.64 \text{ g mol}^{-1}$	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system, space group	Trigonal, <i>R</i> 3 (Nr. 148)	
Unit cell dimensions	$a = 33.8114(9)$ Å, $\alpha = 90^{\circ}$ $b = 33.8114(9)$ Å, $\beta = 90^{\circ}$ $c = 9.8056(3)$ Å, $\gamma = 120^{\circ}$	
Volume	9708.0(6) Å ³	
Z, calculated density	3, 1.442 g cm ^{-1}	
Absorption coefficient	0.927 mm^{-1}	
F(000)	4428	
Crystal size	0.194 x 0.059 x 0.032 mm ³	
Θ range for data collection	2.614 to 75.142°	
Limiting indices	$-40 \le h \le 42, -42 \le k \le 42, -12 \le l \le 12$	
Reflections collected / unique	$44836 / 4438 [R_{int} = 0.0442]$	
Completeness to $\Theta = 67.679$	100%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7538 and 0.6709	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	4438 / 0 / 350	
Goodness-of-fit on F^2	1.066	
Final <i>R</i> indices $[I > 2(\sigma(I))]$	$R_1 = 0.0488, wR_2 = 0.1414$	
<i>R</i> indices (all data)	$R_1 = 0.0556, wR_2 = 0.1471$	
Largest diff. peak and hole	0.419 and -0.424 e Å ³	

Table S2: Crvstal data and structure refinement for HFF-3.

Figure S11: Single-crystal X-ray structure of **HFF-3**: a) ORTEP representation of single molecule of **C4** (thermal ellipsoids set to 50% probability, carbon grey, oxygen red, hydrogen atoms omitted for clarity); crystal packing with views along the crystallographic b) a, c) b and d) c axis (single molecule of **C4** is highlighted in blue).

Figure S12: Thermal behavior of crystalline HFF-3 under ambient conditions.

3 Electron microscopy (SEM)

Morphological investigations were determined on a field emission scanning electron microscope (FE-SEM) ULTRA plus (Zeiss) with a GEMINI e-beam column at 5 kV.

Figure S13: SEM images of **HFF-3** as-synthesized (top) and subsequent to activation (bottom) indicating the strong anisotropic crystal habitus, which does not change upon activation.

4 Sorption study (BET)

All sorption experiments were carried out on a Quantachrome Autosorb AS-1C. N₂ (Linde Gas, purity > 99.999%) and Ar (Linde Gas, purity > 99.999%) physisorption were determined at 77 K with dynamic p₀-determination via a p0-cell at p = 760 mmHg. Analysis and interpretation of data were done with the Quantachrome AS1Win software package, version 2.11. HFF-3 samples were activated at room temperature and at 70 °C with pressures of 2.0×10^{-3} mbar and 1×10^{-6} mbar for 24 h, each. All samples were treated in the outgas station, until outgassing rates were at least below 2 microns/minute in pressure increase and afterwards loaded with He (Linde Gas, purity > 99.999%) before analysis was carried out.

Figure S14: Adsorption and desorption isotherms of **HFF-3** for N₂ (red) and Ar adsorption (black) at 77K.

Measured BET surface areas for HFF-3:	$40\ m^2\ g^{-1}$ for N_2 and $18\ m^2$	g^{-1} for Ar.
solvent accessible pore volume:	394 Å ³ /unit cell (4.1%)	$0.033 \text{ cm}^3 \text{ g}^{-1}$
solvent accessible surface area:	1130 Å ² /unit cell	$958 \text{ m}^2 \text{ g}^{-1}$
Theoretical values calculated with Materials	Studio (Dassault Systèmes	BIOVIA, Materials Studios
2016, San Diego: Dassault Systèmes, 2016) from the crystal structure	e without Et ₂ O molecules.

5 Powder X-ray diffraction (PXRD)

Powder diffraction samples were either grinded and put into Lindemann glass capillaries (\emptyset 0.3 mm) for the as-synthesized product or investigated on a plate with dome sample holder for the activated samples. Diffraction data was collected on a BRUKER AXS D8 Discover powder X-ray diffractometer equipped with Lynx-Eye detector in transmission geometry (as-synthesized) and reflection geometry (activated). The X-ray radiation (Cu-K α 1; λ = 154.06 pm) was focused with a Goebel mirror, Cu-K α 2 radiation was eliminated by the application of a Ni absorber. Diffraction patterns were recorded and analysed using the program package BRUKER AXS Diffrac-Suite.

Figure S15: a) BFDH morphology as calculated from the crystal structure of HFF-3; b) diffraction pattern of HFF-3 as synthesized (red: measured without rotation, orange: measured without rotation) in comparison with a pattern simulated from single-crystal data (black).

Figure S16: Diffraction patterns of HFF-3 as-synthesized (red) in comparison with a pattern simulated with singly crystal data (black) and subsequent to activation treatment at 2×10^{-3} mbar (blue) and 1×10^{-6} mbar (pink).

6 TG/DTA study

Figure S17: TG/DTA study for **HFF-3** a) as synthesized and b) after activation at 70 °C under vacuum.