Supporting Information

for

A new paradigm for designing ring construction strategies for green organic synthesis: implications for the discovery of multicomponent reactions to build molecules containing a single ring

John Andraos

Address: CareerChem, 504-1129 Don Mills Road, Toronto, ON M3B 2W4 Canada

Email: John Andraos - c1000@careerchem.com

*Corresponding author

Application of integer partitioning algorithm to monocyclic rings

Contents

Table S1. Ladder pattern for determining the total number of 3-partitions of evenmembered monocyclic rings

Table S2. Ladder pattern for determining the total number of 3-partitions of oddmembered monocyclic rings

Table S3. Ladder pattern for determining the total number of 4-partitions of evenmembered monocyclic rings

Table S4. Ladder pattern for determining the total number of 4-partitions of oddmembered monocyclic rings

Enumeration of 3-partitions of monocyclic rings

Enumeration of 4-partitions of monocyclic rings

Schemes S1 to S3 showing three-component coupling strategies to synthesize cyclohexanone.

Figure S1. Nucleophilic-electrophilic labelling of centres in 3-partition fragments of cyclohexanone.

Figure S2. Nucleophilic-electrophilic labelling of centres in 2-partition fragments of piperdine.

Figure S3. Nucleophilic-electrophilic labelling of centres in 3-partition fragments of piperdine.

Figure S4. Nucleophilic-electrophilic labelling of centres in 2-partition fragments of cyclopentanone.

Figure S5. Nucleophilic-electrophilic labelling of centres in 3-partition fragments of cyclopentanone.

Figure S6. Nucleophilic-electrophilic labelling of centres in 2-partition fragments of pyrrolidine.

Figure S7. Nucleophilic-electrophilic labelling of centres in 3-partition fragments of pyrrolidine.

Schemes S4 to S5 showing new three-component coupling strategies to synthesize the Biginelli adduct.

Schemes S6 to S32 showing superposition of 3-partition templates for various heterocycles.

Table S1. Ladder pattern for determining the total number of 3-partitions of evenmembered monocyclic rings

Generating sequence:

 $1,3,5,7,...,(r-3)$

where *r* is the ring size $(r = 4, 6, 8, 10, ...)$.

Example:

A 16-membered ring has $13 + 7 + 1 = 21$ possible three-partitions.

Table S2. Ladder pattern for determining the total number of 3-partitions of oddmembered monocyclic rings

Generating sequence:

 $2,4,6,8,...,(r-3)$

where *r* is the ring size $(r = 5, 7, 9, 11, ...)$.

Note that for $r = 3$ the sequence term is 1.

Example:

A 15-membered ring has $12 + 6 + 1 = 19$ possible three-partitions.

Table S3. Ladder pattern for determining the total number of 4-partitions of evenmembered monocyclic rings

Generating sequence:

1, 3, 7, 13, 21, ...,
$$
\left(\frac{r^2}{4} - \frac{3}{2}r + 3\right)
$$
,

where *r* is the ring size $(r = 4, 6, 8, 10, ...)$.

Example:

A 12-membered ring has $21 + 7 + 1 = 29$ possible four-partitions.

Table S4. Ladder pattern for determining the total number of 4-partitions of oddmembered monocyclic rings

Number of 4 partitions Ring size 0 | 3 0 1 | 5 <mark>| 1</mark> 4 | 7 | 4 10 9 9 9 1 20 **11 16 16** 4 35 | 13 | 2<mark>5 | 9 | 1</mark> 56 | 15 | 3<mark>6 16 16</mark> 84 | 17 | 49 <mark>25 9 1</mark> 120 19 <mark>64 36 16 4</mark> 165 21 81 49 25 9 1 220 | 23 | 100 | 64 | <mark>36</mark> | 16 | 16 | 4 286 25 121 81 49 25 9 1 364 | 27 | 1144 | 100 | 64 | 3<mark>6 | 16 | 4</mark>

Generating sequence:

0,1,4,9,16,...,
$$
\left(\frac{r^2}{4} - \frac{3}{2}r + \frac{9}{4}\right)
$$
,

where *r* is the ring size $(r = 3, 5, 7, 9, ...)$.

Example:

A 15-membered ring has $36 + 16 + 4 = 56$ possible four-partitions.

Enumeration of 3-partitions of monocyclic rings:

Step 1: For a given ring size begin with a horizontal list of 2-partitions (*n*, *m*), where *n* is always larger than *m*.

Step 2. Under each (n, m) , write out all 2-partitions of *n* in descending order in a column as follows: (k, l) , *m*, where $k > l$.

Step 3: The unique 3-partitions in the array are given by (k, l, m) such that $k > l > m$.

Example 1:

For a ring size of 12 we have the following array.

The 3-partitions highlighted in yellow are the unique 3-partitions of a 12-membered ring.

The 3-partitions highlighted in yellow are the unique 3-partitions of a 12-membered ring
Note that partitions of the form (a,b,c) , (b,c,a) , (c,a,b) , (c,b,a) , (a,c,b) , and (b,a,c) are equivalent due to the inherent cyclic nature of the ring read in clockwise and anticlockwise senses. For example, $(9,2,1)$ is equivalent to $(9,1,2)$.

Example 2:

For a ring size of 11 we have the following array.

The 3-partitions highlighted in yellow are the unique 3-partitions of an 11-membered ring.

Even-membered rings will always terminate in a 2-partition equal to $\left|\frac{1}{2},\right|$ $\left(\frac{r}{2},\frac{r}{2}\right)$.

Odd-membered rings will always terminate in a 2-partition equal to $\left(\frac{r+1}{2}, \frac{r-1}{2}\right)$ $\left(\frac{r+1}{2}, \frac{r-1}{2}\right)$.

If *r* is even and divisible by 3, then

where $\{\}$ denotes the nearest integer.

If *r* is even and not divisible by 3, then

where $\{\}$ denotes the nearest integer.

If *r* is odd and divisible by 3, then

where $\{\}$ denotes the nearest integer.

If *r* is odd and not divisible by 3, then

where $\{\}$ denotes the nearest integer.

Enumeration of 4-partitions of monocyclic rings:

Step 1: For a given ring size begin with a horizontal list of 3-partitions (*n*, *m, l*), where *n* $> m > l$ as determined by the method of enumeration of 3-partitions described above.

Step 2. Under each (n, m, l) , write out all 2-partitions of *n* in descending order in a column as follows: (u, v) , m , l where $u \ge v$.

Step 3: Repeat step 2 for the *m* values.

Step 4: Select unique 4-partitions from array. For 4-partitions containing two identical digits, such as (x, x, y, z) , ensure that the form (x, y, x, z) is also present in the unique set. *Example 1*:

For a ring size of 12 we have the following array.

The 4-partitions highlighted in yellow are the unique 4-partitions of a 12-membered ring.

Example 2:

For a ring size of 11 we have the following array.

The 4-partitions highlighted in yellow are the unique 4-partitions of an 11-membered ring.

Scheme S1a. Three-component coupling sequences to make cyclohexanone via the $[3 + 2 + 1]$ strategy.

Scheme S1b. Three-component coupling sequences to make cyclohexanone via the $[3 + 2 + 1]$ strategy. (continued)

Scheme S2a. Three-component coupling sequences to make cyclohexanone via the $[4 + 1 + 1]$ strategy.

Scheme S2b. Three-component coupling sequences to make cyclohexanone via the $[4 + 1 + 1]$ strategy. (continued)

Scheme S3. Three-component coupling sequence to make cyclohexanone via the $[2 + 2 + 2]$ strategy.

 $[3 + 2 + 1]$

Figure S1. Nucleophilic-electrophilic labelling of centres in 3-partition fragments of cyclohexanone.

e

 \boldsymbol{n}

Figure S2. Nucleophilic-electrophilic labelling of centres in 2-partition fragments of piperidine.

Figure S3. Nucleophilic-electrophilic labelling of centres in 3-partition fragments of piperidine.

 \boldsymbol{n}

 \boldsymbol{n}

 \overline{n}

 \boldsymbol{n}

 \mathfrak{e}

Figure S5. Nucleophilic-electrophilic labelling of centres in 3-partition fragments of cyclopentanone.

Figure S6. Nucleophilic-electrophilic labelling of centres in 2-partition fragments of pyrrolidine.

Figure S7. Nucleophilic-electrophilic labelling of centres in 3-partition fragments of pyrrolidine.

Scheme S4. Conjectured syntheses of the Biginelli adduct via new $[3 + 2 + 1]$ mapping strategies.

Scheme S5. Conjectured syntheses of the Biginelli adduct via new $[4 + 1 + 1]$ mapping strategies.

 $[2 + 2 + 1]$

Schemes S6. Superposition of 3-partition templates for benzimidazole.

Schemes S7a. Superposition of $[4+2+1]$ 3-partition templates for benzodiazepine.

Schemes S7b. Superposition of [3+2+2] 3-partition templates for benzodiazepine.

Schemes S7c. Superposition of [5+1+1] 3-partition templates for benzodiazepine.

Schemes S7d. Superposition of [3+3+1] 3-partition templates for benzodiazepine.

 $[2 + 2 + 1]$

Schemes S8. Superposition of 3-partition templates for benzofuran.

 $[4 + 1 + 1]$

 $[2 + 2 + 2]$

Schemes S9a. Superposition of $[4 + 1 + 1]$ and $[2 + 2 + 2]$ 3-partition templates for benzofuran.

Schemes S9b. Superposition of $[3 + 2 + 1]$ 3-partition templates for benzofuran.

 $[2 + 2 + 2]$

Schemes S10a. Superposition of $[4 + 1 + 1]$ and $[2 + 2 + 2]$ 3-partition templates for chromene-4-one.

Schemes S10b. Superposition of $[3 + 2 + 1]$ 3-partition templates for chromene-4-one.

 $[4 + 1 + 1]$

Schemes S11a. Superposition of $[4 + 1 + 1]$ and $[2 + 2 + 2]$ 3-partition templates for coumarin.

 $3 + 2 + 1$

Schemes S11b. Superposition of $[3 + 2 + 1]$ 3-partition templates for coumarin.

Schemes S12. Superposition of 3-partition templates for cyclopent-2-enone.

Schemes S13. Superposition of 3-partition templates for furan.

Schemes S14a. Superposition of $[4 + 1 + 1]$ and $[2 + 2 + 2]$ 3-partition templates for Hantzsch dihydropyridine.

Schemes S14b. Superposition of $[3 + 2 + 1]$ 3-partition templates for Hantzsch dihydropyridine.

Schemes S15. Superposition of 3-partition templates for hydantoin.

Schemes S16. Superposition of 3-partition templates for imidazole.

 $[3+1+1]$ $[2+2+1]$ Schemes S17. Superposition of 3-partition templates for indole.

Schemes S19. Superposition of 3-partition templates for isoxazole.

 $[3 + 1 + 1]$ Schemes S20. Superposition of 3-partition templates for oxazole.

Schemes S21. Superposition of 3-partition templates for pyran.

Schemes S22a. Superposition of $[2 + 2 + 2]$ and $[3 + 2 + 1]$ 3-partition templates for pyrazine.

Schemes S22b. Superposition of $[4 + 1 + 1]$ 3-partition templates for pyrazine.

Schemes S23a. Superposition of $[4 + 1 + 1]$ 3-partition templates for pyridazine.

Schemes S23b. Superposition of $[2 + 2 + 2]$ and $[3 + 2 + 1]$ 3-partition templates for pyridazine.

Schemes S24a. Superposition of $[2 + 2 + 2]$ and $[4 + 1 + 1]$ 3-partition templates for pyridine.

Schemes S24b. Superposition of $[3 + 2 + 2]$ 3-partition templates for pyridine.

Schemes S25. Superposition of 3-partition templates for pyridinone.

Schemes S26a. Superposition of $[2 + 2 + 2]$ and $[3 + 2 + 1]$ 3-partition templates for pyrimidine.

 $R₃$

Schemes S26b. Superposition of $[4 + 1 + 2]$ 3-partition templates for pyrimidine.

Schemes S27a. Superposition of $[4 + 1 + 2]$ and $[2 + 2 + 2]$ 3-partition templates for pyrimidone.

Schemes S27b. Superposition of $[3 + 2 + 1]$ 3-partition templates for pyrimidone.

Schemes S28. Superposition of 3-partition templates for pyrrole.

Schemes S29a. Superposition of $[2 + 2 + 2]$ and $[4 + 1 + 1]$ 3-partition templates for quinazolin-4-one.

Schemes S29b. Superposition of $[3 + 2 + 1]$ 3-partition templates for quinazolin-4-one.

Schemes S30a. Superposition of $[3 + 2 + 1]$ 3-partition templates for quinoline.

Schemes S30b. Superposition of $[3 + 2 + 1]$ 3-partition templates for quinoline.

Schemes S31a. Superposition of $[4 + 1 + 1]$ 3-partition templates for quinolinone.

Schemes S31b. Superposition of $[3 + 2 + 1]$ and $[2 + 2 + 2]$ 3-partition templates for quinolinone.

Schemes S32. Superposition of 3-partition templates for thiophene.