
Decision tree

A decision tree is a rule-based model strongly influenced by earlier work of Quinlan [1, 2]. Reviews of 

decision trees can be found at [3-5]. Decision tree, in general, does not have the best predictive accuracy

compared with some other alternatives described below. However, it has the advantage in 

interpretability, with a format consistent with many clinical pathways.

Biomedical applications of decision trees are abundant (for example [6-9]). Common pitfalls of applying 

decision trees include overgrowing a tree with too few observations at leaf nodes. Such mistakes can be 

easily avoided by using a standard software package with sensible default values. We recommend that 

the minimum terminal node size should be at least 20.

Software packages R: tree, rpart

Python scikits-learn: tree.DecisionTreeClassifier 
Primary tuning parameter complexity parameter cp: a percentage defining

the minimum fit improvement at each node 

split

Random Forest

Random forest [10] is a popular predictive model that compared with other methods, generally produces

very accurate prediction even without any tuning. Reviews of random forest can be found at [11, 12]. 

Random forest often can produce very accurate predictions with little feature engineering. It can also 

produce an “importance” ranking among all predictors. However, the models are in general not easily 

interpretable.

Biomedical applications of random forests have become more popular in recent years, especially in areas

with high-dimensional data (e.g., genetic association studies) [13-15].  Common pitfalls of applying 

random forest include not optimizing the number of trees and insufficient randomization during the 

construction of base trees. Such mistakes are less likely to occur when using a standard statistical 

package and selecting the best tuning parameters. We recommend the number of trees in the 

randomForest should be at least 25 and ideally 500 or more. The minimum number of observations in 

each splitting node and leaf node should be 20 or more. 

Software packages R: randomForest



Python scikits-learn: RandomForestClassifier 
Primary tuning parameter mtry: the number of randomly selected 

variables for comparison at each node split (<= 

number of independent variables)

Lasso Regression

Lasso is a regression regularization method introduced by Tibshirani [16]. Reviews of lasso regression can

be found at [17-19]. Lasso regression is often used to fit a linear model when independent variables may 

be highly correlated. Compared to a traditional penalisation method such as ridge regularisation, lasso 

has the advantage of returning a sparse model (with fewer nonzero coefficients), and hence better 

model interpretability. Lasso in general provides a prediction bias towards zero, which may not be 

appropriate in some applications.

Lasso and its variants are popular in biomedical applications where a regression model is desired [20-22].

Common pitfalls of applying lasso regression include not tuning the shrinkage fraction. This can be done 

through cross-validation; most statistical packages provide tools for cross-validation.

Software packages R: elasticnet, lars, glmnet

Python scikits-learn: linear_model.Lasso
Primary tuning parameter fraction: the degree of coefficient shrinkage (0-

1)

Gradient Boosting Machines

Gradient boosting [23] is based on the ensemble idea similar to Random forest. Reviews of gradient 

boosting can be found at [24-26]. Gradient boosting is generally considered to have performance 

comparable to Random forest. Compared to random forest, it has more tuning parameters. However, 

with most statistical packages for gradient boosting, default parameters (with small learning rate) will 

generate very stable results.

Like random forest, gradient boosting is also used many recent applications with high-dimensional data

[27, 28]. One common pitfall of applying gradient boosting is to use a large learning rate without a 

proper stopping criterion, hence causing overfitting. We recommend a learning rate no greater than 0.1.

Software packages R: gbm

Python scikits-learn: 



ensemble.GradientBoostingClassifier
Primary tuning parameter n.trees: number of trees (boosting iterations)

interaction.depth: maximum depth for variable 

interaction (normally 1 to 6)

shrinkage: also known as learning rate 

(normally set to a small number such as 0.1)

n.minobsinnode: minimum number of 

observations in a terminal node (normally fixed 

to a number like 20)

Support vector machines

Support Vector Machines [29, 30] are a family of machine learning techniques based on the concept of 

structural risk minimization that was originally introduced by Vapnik [30]. They can be used for 

classification [31], regression [32] and density estimation [33], among other applications [34-37].

Support vector machines can produce very accurate predictions, have relatively few parameters that 

require tuning, and are largely insensitive to the dimensionality of the data.  However the models 

produced are generally not readily interpretable, and model selection is biased toward "simple" models, 

which may not be appropriate in some applications. Common pitfalls when using SVMs include not 

optimising the tuning parameters appropriately and failing to test appropriate kernel functions.  We 

recommend that at minimum RBF and polynomial kernels (to order 3) should be tested.  Cross-validation

may be used to select tuning parameters.

Software packages R: e1071

Python scikits-learn: svm.SVC, svm.SVR 

Stand-alone Software packages: SVMlight, 

LibSVM, SVMHeavy
Primary tuning parameter C: controls the tradeoff between empirical risk 

minimization and regularisation.  Large C values

will favour empirical risk minimization, which 

may cause over-fitting, while small C values will 



favour regularisation and model simplicity, 

which may lead to under-fitting.

Kernel parameters: depending on the kernel 

selected there may be arbitrarily many 

parameters (or none at all) to select.  For 

standard

kernels:

RBF kernel: single continuous parameter

γ>0  controls the width of the RBF.

Polynomial kernel: single discrete parameter d 

= 1, 2, 3, ... selects the degree of the 

polynomial.
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