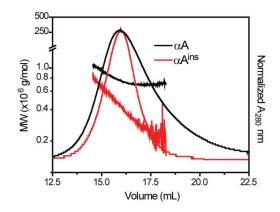
Supporting Information

Species-Specific Structural and Functional Divergence of α -crystallins: Zebrafish α Ba- and rodent αA^{ins} -crystallin encode activated chaperones


Hanane A. Koteiche¹, Derek P. Claxton¹, Sanjay Mishra, Ezelle T. McDonald and Hassane S. Mchaourab*

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States

*Corresponding author. Department of Molecular Physiology and Biophysics 741 Light Hall, 2215 Garland Ave, Nashville, TN 37232 Telephone: (615) 322-3307 Email: hassane.mchaourab@vanderbilt.edu

H	aA	1	MDVTIQHPWFKRTLGPFYPSRLFDQFFGEGLFEYDLLPFLSSTISPYYRQ
Zf	aA	1	MDIAIQHPWFRRTLGYPTRLFDQFFGEGLFDYDLFPFTTSTVSPYYRH
R	aA ^{ins}	1	MDVTIQHPWFKRALGPFYPSRLFDQFFGEGLFEYDLLPFLSSTISPYYRQ
H	aA	51	SLFRTVLDSGISEVRSDRDKFVIF
Zf	aA	49	SLFRNILDSSNSGVSEVRSDREKFTVY
R	aA ^{ins}	51	SLFRTVLDSGISELMTHMWFVMHQPHAGNPKNNPGKVRSDRDKFVIF
H	aA	75	LDVKHFSPEDLTVKVQDDFVEIHGKHNERODDHGYISREFHRRYRLP <mark>S</mark> NV
Zf	aA	76	LDVKHFSPDELSVKVTDDYVEIQGKHGERODDHGYISREFHRRYRLP <mark>S</mark> NV
R	aA ^{ins}	99	LDVKHFSPEDLTVKVLEDFVEIHGKHNERODDHGYISREFHRRYRLP <mark>S</mark> NV
H	aA	125	DQSALSCSLSADGMLTFCGPKIQTGLDATHAERAIPVSREEKPTSAPSS
Zf	aA	126	DQSAITCTLSADGLLTLCGPKT-SGIDAGRGDRTIPVTREDKSNSGSSS
R	aA ^{ins}	149	DQSALSCSLSADGMLTFSGPKVQSGLDAGHSERAIPVSREEKPSSAPSS
H	aB	1	MDIAIHHPWIRRPFFPFHSPSRLFDQFFGEHLLESDLFPTSTSLSPFYLR
Zf	aBa	1	MEISIQHPWYRRPLFPGFFPYRIFDQYFGEHLSDSDPFSPFYTMFYYR
Zf	aBb	1	MDIAINPP-FRRILFPIFFPRRQFGEHITEADVISSLYSQ
H	aB	51	PPSFLRAP <mark>SWFDTGLSEMRLEK</mark> DRFSVNLDVKHFSPEELKVKVLGDVIEV
Zf	aBa	49	-PYLWRFP <mark>SWWDSGMSEMRODRDRFVINLDVKHFSPDELTVKVNEDFIEI</mark>
Zf	aBb	40	RSSFLRSP <mark>SWMESGVSEVKMEKD</mark> QFSLSLDVKHFAPEELSVKIIGDFIEI
H	aB	101	HGKHEERODEHGFISREFHRKYRIPADVDPLTITSSLSSDGVLTVNGPRK
Zf	aBa	99	HGKHDERODDHGIVAREFFRKYKIPAGVDPGAITSSLSSDGVLTINTLRH
Zf	aBb	91	HAKHEDRODGHGFVSREFLRKYRVPVGVDPASITSSLSSDGVLTVTGPLK

Figure S1. Sequence alignments of α A and α B crystallins. Multiple sequence alignments were performed with ClustalW and minor manual adjustment using sequence from the NCBI protein database. Top: human α A (AAB33370.1), zebrafish α A (AAK61363.1) and rat α A^{ins} (NP_001276666.1). Bottom: human α B (ACP18852.1), zebrafish α Ba (NP_571232.1) and zebrafish α Bb (NP_001002670.1). Highlighted red residues indicate consensus sites of phosphorylation in the human α -crystallins. The gray shaded region outlines the approximate boundaries for the α -crystallin domain derived from de Jong and colleagues⁷.

Figure S2. MALS analysis of αA and αA^{ins} . Rat αA^{ins} forms smaller oligomers on average than αA , and is more polydisperse as suggested by the steep slope of molecular weights sampled across the elution peak. The analysis was performed as described in Experimental Procedures.