

Supplemental Figure 1. Maize V3 LCM-RNAseq Transcriptome Assembly and DE Gene Confirmation

LCM-RNAseq data reported in Yi et al., 2015 (GSE61057 <u>http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61057</u>) was realigned to the Maize V3 reference genome using Tophat2 version 2.1.0 and BEDTools package. (A) MA plots of log₂ fold change in transcript abundance of *nkd1 nkd2* mutant relative to WT plotted against mean normalized read counts in mutant and WT aleurone (BA-NA)

and starchy endosperm (BS-NS). Black dots represent genes detected with ≥1 read

count and red dots represent DE genes (adjusted p-value ≤ 0.01).

(B) Two dimensional scatter plot generated by MDS (Multidimensional scaling) analysis of DE genes in the three biological replicates from WT and *nkd1 nkd2* mutant endosperm analysis.

(C) Bar diagram showing subset of tested genes using qRT-PCR from Figure 1. Error bars represent standard error of the mean of three biological replications. The statistically significant DE genes are indicated by asterisks. *denotes P<0.05, ** for P<0.01.

Supplemental Figure 2. Disrupted Pathways in nkd1 nkd2 Mutant Aleurone

Log₂ fold change heat maps of DE genes functioning in **(A)** Resource reserve metabolism, **(B)** Hormone biosynthesis, signaling and response, and **(C)** Cell division/

growth regulation, defense response, epigenetic and transcriptional regulation of gene expression. See Supplemental Dataset 1 for further details.

Supplemental Figure 3. Disrupted Pathways in nkd1 nkd2 Mutant Starchy Endosperm

Log₂ fold change heat maps of DE genes functioning in **(A)** Resource reserve metabolism, **(B)** Hormone biosynthesis, signaling and response, and **(C)** Cell division/ growth regulation, defense response, nutrient transport, epigenetic and transcriptional regulation of gene expression. See Supplemental Dataset 2 for further details.

Supplemental Figure 4. BETL qRT-PCR

qRT-PCR on independent RNA samples from the lower quarter of segregating wildtype (WT) and *nkd1 nkd2* mutant (*nkd*) endosperms at 12DAP. Differential expression was determined by comparing WT to *nkd1 nkd2* mutant BETL marker gene expression using standard delta CT methodology relative to *ubiquitin* gene. * denotes significant differential expression. Error bars represent the standard deviation from the mean of three biological replicates each with three technical replicates.

Supplemental Figure 5. nkd1 nkd2 Mutant Starch Granule SEM

(A and B) Mature WT kernels from a segregating F2 ear described in Figure 3 C to F. (C to E) Mutant *nkd1-Ds;nkd2-Ds0297* starch granules.

(A and C) Black boxes show position of images in panels (B) and (D), respectively.

(E) nkd1 nkd2 mutant starch granules were sometimes faceted.

Supplemental Figure 6. Principal Component Analysis (PCA) of Wildtype and *nkd1-Ds nkd2-Ds0297* Mutant Resource Reserve Datasets

(A) PCA of WT and *nkd1 nkd2* mutant kernel weights and total protein datasets from independent segregating cobs (cob1-3).

(B) PCA of starch branch chain length and total starch content datasets from WT and *nkd1 nkd2* mutant kernels (k1-5).

(A and B) The first principal component is graphed on the x-axis and the second principal component is graphed on the y-axis. A third principal component was not generated for either analysis.

3								
Observed	Mr(expt)	Mr(calc)	ppm	Miss	Score	Expect	Peptide	
1007.56	1006.56	1006.55	11.0	1	30	39	R.RGHNLPWK.L	
1115.48	1114.47	1114.45	13.7	0	30	15	R.CDCGTLFSR.R	
1193.66	1192.65	1192.64	9.3	1	38	5	R.EQNLQLHRR.G	
1338.63	1337.63	1337.60	17.1	0	42	1.8	R.AFCDALAQESARL.L	

Matched peptides shown in red

1 MASNSSAAAV AAMFGIRDAD HQDQMKPLLA QQHQHQHQHQ MPPAPLLNAA 51 SSSAGPGQAA GATPPAVKKK RNLPDPDAEV IALSPKTLLA TNRFVCEVCN 101 KGFQREQNLQ LHRRGHNLPW KLKQKDPSQA QRRRVYLCPE PTCAHHDPSR 151 ALGDLTGIKK HFCRKHGEKK WKCDKCSKRY AVQSDWKAHS KVCGTREYRC 201 DCGTLFSRRD SFITHRAFCD ALAQESARLP PP

Observed Mr(expt)		Mr(calc)	ppm	Miss	Score	Expect	Peptide	
1007.52	1006.51	1006.55	-31.34	1	34	17	R.RGHNLPWK.L	
1338.57	1337.57	1337.60	-28.01	0	48	0.38	R.AFCDALAQESAR.L	

Matched peptides shown in red

1 MASNSSAAFF GVRDGDQQDQ IKPLISPQQQ LAAALPGVAG GVPAASGQGA 51 PPAQPPPKKK RTMPDPDAEV IALSPKTLMA TNRFVCEVCN KGFQREQNLQ 101 LHRRGHNLPW KLKQKNPLQA QRRRVYLCPE PTCVHHDPAR ALGDLTGIKK 151 HFCRKHGEKK WKCDKCSKRY AVQSDWKAHS KICGTREYRC DCGTLFSRRD 201 SFITHRAFCD ALAQESARLP PT

Supplemental Figure 7. Verification of NKD-ID GST Fusion Proteins

C

(A) SDS-PAGE gel stained with Coomassie stain of IPTG un-induced, induced and purified NKD1ID and NKD2ID GST fusion proteins. Protein concentrations were determined via Bradford Protein Assay (Bio-Rad) and equivalent protein concentrations were loaded for each sample. "L" represents protein size ladder (Precision Plus Protein[™] Dual Color Standards #1610374), "Un" represents total soluble un-induced protein, "In" represents IPTG induced total soluble protein, and "Pur" represents purified GST fusion proteins purified with Glutathione Sepharose 4B (GE Healthcare). Purified protein bands were cut out of the gel and were verified by trypsin digest QSTAR MS/MS. QSTAR MS/MS data and aligned fragments for NKD1-ID GST fusion protein (B) and NKD2-ID GST fusion protein (C) indicated by bold red lettering.

Supplemental Figure 8. EMSA Controls and Additional Tested Mutant Probes

(A and B) Positional base Frequency of MEME selected SAAB sequences for NKD1ID (A) and NKD2ID (B).

(C and D) EMSA controls show the GST tag does not bind probes.

(**D** and **E**) Binding affinity of NKD1ID and NKD2ID GST fusion proteins for additional point mutated variants of the BCS probe. Sequences of probes used in (**D**) are shown, while for (**C** and **E**), probes are as indicated in Figure 5C. The NKD/DNA complex is indicated by an arrowhead. + indicates protein used and '-' indicating protein not used for each lane.

Supplemental Figure 9. Scanning Mutagenesis EMSA Overexposure

Over exposure of EMSAs described in Figure 5 for **(A)** NKD1ID and **(B)** NKD2ID GST fusion proteins. Note that no shift was detected for NKD1ID GST with point mutant probe variant M8 nor for NKD2ID GST with M2 and M4 point mutant probe variants.

489 95 498 n⁴C² 554 561 434 262

Direct Target Genes

Supplemental Figure 10. Overlap in NKD Motifs and Predicted Direct Target Genes

(A and B) RNAseq detected genes with NKD1, NKD2, and/or NKDCore binding motif in proximal promoter region in (A) aleurone and (B) starchy endosperm.
(C) Shared and unique NKD1, NKD2 and NKDCore direct target genes in aleurone and starchy endosperm.

A					
	Мо	tif	DE Al Genes ≥ 1 Motif in P.P.	Al Transcriptome ≥ 1 Motif in P.P.	Enrichment
	NKD1 Control1	[ၨ] ၟ <mark>ႝၞၟၛၟၜၟၛၟၛၟၜၟၛၟ</mark>	241	3614	(241 /2135) vs (3614/32621) p-value=0.778
	NKD1 Control2		168	2903	(168/2135) vs (2903/32621) p-value=0.145
	NKD1 Control3	ؠؚؖ <mark>ؘ</mark>	277	3972	(277/2135) vs (3972/32621) p-value=0.345
	NKD2 Control1		1364	20742	(1364 /2135) vs (20742/32621) p-value=0.900
	NKD2 Control2	[*] <mark>IGA چې</mark> ټ	1102	16538	(1102/2135) vs (16538/32621) p-value=0.645
	NKD2 Control3		1040	16320	(1040/2135) vs (16320/32621) p-value=0.509

В

Motif	DE S.E. Genes ≥ 1 Motif in P.P.	S.E. Transcriptome ≥ 1 Motif in P.P.	Enrichment
	243	3473	(243 /2192) vs (3473/31389) p-value=0.972
	192	2799	(192/2192) vs (2799/31389) p-value=0.847
	260	3848	(260/2192) vs (3848/31389) p-value=0.663
NKD2 Control1	1366	19932	(1366 /2192) vs (19932/31389) p-value=0.606
NKD2 Control2	1060	15889	(1060/2192) vs (15889/31389) p-value=0.242
NKD2 Control3	1044	15647	(1044/2192) vs (15647/31389) p-value=0.247

Supplemental Figure 11. NKD Motif Enrichment Shuffled Controls

(A) Enrichment analysis for NKD1ID and NKD2ID shuffle control BCS occurrence in aleurone differentially expressed (DE) genes.

(B) BCS shuffle controls for starchy endosperm DE genes. Enrichment was determined relative to all genes detected in each RNAseq transcriptome.

Supplemental Data. Gontarek et al. (2016). Plant Cell 10.1105/tpc.16.00609

Supplemental Figure 12. BiFC Controls and NKD ID domain interactions.

(A) Control bombardments consisting of combinations of empty vector CYFP + empty vector NYFP, NKD1 and NKD2 NYFP + empty vector CYFP or NKD1 and NKD2 CYFP + empty vector NYFP did not produce YFP fluorescence. Bombardments of NKD1ID-CYFP + NKD1ID-NYFP without mCherry was visualized with the mCherry filter to verify

specificity of each florescent filter set for the respective fluorophore. Constructs used in each control assay are listed at the left of each row.

(B) BiFC NKD1ID and NKD2ID proteins. Vectors used for each BiFC assay are listed to the left of each row. Arrows designate nuclei viewed under differential interference contrast (DIC). mCherry florescence marks transient cells transformation and YFP florescence indicates a positive protein-protein interaction.

(A and B) size bars = 100μ m.

А

Glutathione Co Proteins	olum	n; An	ti-6xH	is Ab								
NKD1ID-6xHis	+	Inp	-	_	-	+		_		-		
NKD2ID-6xHis	+	-	inp	_	-	-		+		+		
NKD1ID-GST	-	-	-	inp	-	+		-		+		
NKD2ID-GST	-	-	_	_	inp	-	wash	+	wash	_	wash	
[1						-	-	-		-30 kD -37 kD
В												
Nickel Columr Proteins	n; An	ti-GS1	۲ Ab									
NKD1-6xHis	-	Inp	-	-	-	+		-		+		
NKD2-6xHis	-	-	inp	-	-	-		+		-		
NKD1-GST	+	-	-	inp	-	+		-		_		
NKD2-GST	+	_	_	_	inp	-		+		+		
6xHis	+	-	_	_	-	_	wash	-	wash	_	wash	10015
					-	-	and a	-	-		-	-100 kD -75 kD

Supplemental Figure 13. Reciprocal Tag Co-Pull Downs

(A) Reciprocal Co-pull downs described in Figure 6 for NKD1ID and NKD2ID 6xHis and GST tagged proteins.

(B) Reciprocal Co-pull downs with NKD1 and NKD2 full length fusion proteins.

Supplemental Tables:

Sampla	No. Rooda $(x, 10^6)$	% Uniquely	% paired &	
Sample	No. Reads (x 10°)	mapped	mapped	
WT AL	281	87.44	72.26	
nkd1 nkd2 AL	310	75.65	59.09	
WT SE	292	56.87	40.71	
nkd1 nkd2 SE	256	72.07	54.07	

Supplemental Table 1: Summary of aleurone (AL) and starchy endosperm (SE) RNA sequencing reads from Yi et al., 2015 re-aligned and mapped to the maize reference genome (B73 RefGen-V3, GSE61057).

Cell type	Expressed genes	Common genes	DE genes	Common DE genes	Higher in nkd1 nkd2	Lower in nkd1 nkd2
AL	34014	31792	2188	935	799	1389
SE	32629	31792	2193	935	915	1278

Supplemental Table 2: Summary of gene expression analysis in endosperm cell types

	NKD1 SAAB Selected	Sequences	
1		TTTGTCGT	tttgtgtgaacc
2	accgtgtatt	TTTGTCGT	a
3	tattcggtgt	TTTGTCGT	a
4	ccgt	TTTGTGGT	ttatgtgc
5	tttttaagtt	TGTGTCGT	
6	acact	ATCGTCGT	atcacca
7	tcgcagttac	TTGGTGGT	
8	cgc	ATGGTCGT	aacgtaagt
9	gatc	ATTGTAGT	acatactc
10	tgcagcatg	TTCGCCGT	caa
11	a	TTGGCCGT	atttgtcgaa
12	attggccgta	TTTGTCGA	ac
13	ggtttacgca	GTGGTCGT	
14	C	TTCGCAGT	tacttggtgg
15	tgcatgaac	ATTGCAGT	aca
16	ac	GTCGTAGT	gctgtatca
17	gcgcgcga	TTTGTACT	cgca
18	g	ATTATCGT	gatcatcctg
19	attggc	AGCGTGGT	acgtga
20	tacttat	TTGGTGGA	tcctt
21	gtacc	GTTGTTGT	gattgac
22	ttagtcccta	TTCATGGT	gc
23	tgga	TTGGCTGT	attacatg
24	gtacgaac	AGTGTCGA	tgct
25	ctggtctttc	ACTGTAGT	a
26	tcta	TGTGTGCT	atcttcga
27		TGCGTCAT	caaacaggcg

Supplemental Table 3: NKD1 SAAB Selected Sequences

	NKD2 SAAB Sele	ected Seq	uences
1	gaacccattttt	TGTCGT	ta
2		TGTCGG	cctaaccgttaga
3	cccgtctctggcg	TGTCGG	С
4	gccgt	TGTCGG	tatcaaccc
5	gtct	TGCCGT	ttggtgcgtg
6	cgttcaac	TGTTGT	ctcc
7	caagt	TGCCGT	ctatgtgcc
8	acagtggtacgc	TGTTGT	са
9		TGTGGT	agtaaagttactga
10	ttgtta	TGTGGT	tacatata
11	tctgcta	TGTTGG	agttagt
12	tatagat	TCTCGG	ctcggtg
13	tatggttcagcc	TCTCGG	CC
14	cagtactattt	TGTCGC	ta
15	g	TGCTGT	tcaattgaataaa
16	atg	CGTTGT	tgcggtgaact
17	cac	GGTTGT	gtattagctgg
18	agagtttctcaa	TCTCGG	

Supplemental Table 4: NKD2 SAAB Selected Sequences

Gene ID	Gene Annotation	<i>nkd1 nkd2</i> aleurone log2FC	o2 logFC	o2 p-value
GRMZM2G012806	subtilisin-chymotrypsin inhibitor CI-1B	-6.41	-6.49	6.69E-301
GRMZM2G353268	19 kD zein Z1A	-5.83	-2.03	1.71E-49
GRMZM2G026939	19 kD zein Z1A	-5.67	-1.2	1.20E-02
GRMZM2G059620	19 kD zein Z1A	-5.5	-1.58	2.36E-92
GRMZM2G138689	50 kD γ-zein	-4.94	-1.15	3.30E-06
GRMZM2G348914	Unknown	-4.69	-2.02	1.18E-04
GRMZM2G100018	18 kDδ-zein	-4.43	-194.82	4.10E-24
GRMZM2G138727	27 kD γ-zein	-4.38	-1.32	2.22E-10
GRMZM2G044152	22 kD α-zein	-4.32	-40.31	6.84E-70
GRMZM2G160739	22 kD α-zein	-4.22	-37.46	1.25E-231
GRMZM2G086294	14 kD β-zein	-4.08	-6.06	0.00E+00
GRMZM2G346897	22 kD α-zein	-4.01	-14.41	1.02E-93
GRMZM2G117956	proline oxidase	-3.97	-3.93	3.71E-03
GRMZM2G044625	22 kD α-zein	-3.89	-12.21	0.00E+00
GRMZM2G397687	22 kD α-zein	-3.83	-24.63	0.00E+00
GRMZM2G388461	22 kD α-zein	-3.72	-79.37	6.60E-62
GRMZM2G346895	22 kD α-zein	-3.61	-75.76	2.30E-91
GRMZM2G088441	22 kD α-zein	-3.56	-154.55	1.70E-23
GRMZM2G312877	Lactoylglutathione lyase	-3.5	-2.01	3.55E-05
GRMZM2G045387	22 kD α-zein	-3.22	-107.44	1.87E-194
GRMZM2G088273	22 kD α-zein	-3.07	-1.68E+06	7.60E-05
GRMZM2G181362	LKR/SDH	-2.91	-4.57	2.48E-17
GRMZM2G088365	22 kD α-zein	-2.88	-1.39E+07	9.78E-41
GRMZM2G147424	DNA-binding protein S1FA2	-2.17	-1.65	6.84E-05
GRMZM2G069651	Heat shock protein Hsp90	2.75	1.32	1.48E-02
GRMZM2G458208	Chaperonin Cpn60/TCP-1	3.85	1.88	2.03E-03
GRMZM2G156632	Bowman-Birk type wound-induced proteinase inhibitor WIP1 Precursor	-6.46	1.39	1.67E-02
GRMZM2G304548	Trypsin/factor XIIA inhibitor Precursor	-4.91	2.38	0.00E+00
GRMZM2G005633	Endochitinase B Precursor	-4.67	3.14	9.19E-42
GRMZM2G410134	plant lipid transfer protein/seed storage	-4.25	1.34	1.61E-12
GRMZM2G474575	Proteinase inhibitor I3, Kunitz legume	-3.52	2.37	3.51E-02
GRMZM2G174883	11-S seed storage protein	-3.48	2.12	2.77E-58
GRMZM2G030717	cysteine proteinase inhibitor B	-3.46	5.14	1.45E-13
GRMZM2G058358	subtilisin-chymotrypsin inhibitor CI-1C	-3.27	2.18	7.36E-11
GRMZM2G146283	Dof zinc finger protein PBF	-3.22	2.38	4.87E-08
GRMZM2G001500	Heat shock protein 70	-2.16	1.58	1.07E-02
GRMZM2G130062	2-isopropylmalate synthase B	-2.09	1.21	4.03E-02
GRMZM2G076239	hydroxyacid oxidase 1	-2.07	1.57	5.49E-03
GRMZM2G091481	Protein disulfide-isomerase (PDI)	-1.82	1.3	9.41E-05
GRMZM2G019325	40S ribosomal protein S11	-1.82	1.58	3.13E-04
GRMZM2G448151	30S ribosomal protein S3, chloroplastic	3.05	-1.22	4.69E-02
GRMZM5G811749	30S ribosomal protein S16, chloroplastic	3.2	-1.29	5.34E-05

Supplemental Table 5: NKD1, NKD2 and O2 Aleurone Co-Regulated Genes

Gene ID	Gene Annotation	nkd1 nkd2 starchy	o2 logFC	o2 p-value
		endosperm log2FC		
GRMZM2G012806	subtilisin-chymotrypsin inhibitor CI-1B	-4.69	-6.49	6.69E-301
GRMZM2G353268	19 kD zein Z1A	-3.96	-2.03	1.71E-49
GRMZM2G059620	19 kD zein Z1A	-3.71	-1.58	2.36E-92
GRMZM2G026939	19 kD zein Z1A	-3.39	-1.2	1.20E-02
GRMZM2G138689	50 kD γ-zein	-3.37	-1.15	3.30E-06
GRMZM2G348914	Unknown	-2.35	-2.02	1.18E-04
GRMZM2G100018	18 kDδ-zein	-2.26	-194.82	4.10E-24
GRMZM2G168330	60S ribosomal protein L14	0.87	1.82	6.55E-11
GRMZM2G091383	40S ribosomal protein S24	0.91	1.69	4.98E-03
GRMZM2G100467	60S ribosomal protein L39	1.01	1.4	3.22E-02
GRMZM2G377797	40S ribosomal protein S16	1.19	1.35	2.86E-02
GRMZM2G142640	60S ribosomal protein L24	1.19	2.07	2.20E-05
GRMZM2G178968	60S ribosomal protein L7	1.4	1.51	3.34E-03
GRMZM2G116292	60S ribosomal protein L40	1.72	2.47	2.91E-12
GRMZM2G069651	Heat shock protein Hsp90	2.58	1.32	1.48E-02
GRMZM2G156632	Bowman-Birk type wound-induced	-5 81	1.39	1.67E-02
GRMZM2G474575	Proteinase inhibitor I3, Kunitz legume	-3.18	2.37	3.51E-02
GRMZM2G005633	Endochitinase B Precursor	-2.59	3.14	9.19E-42
GRMZM2G304548	Trypsin/factor XIIA inhibitor Precursor	-1.84	2.38	0.00E+00
GRMZM2G146283	Dof zinc finger protein PBF	-1.54	2.38	4.87E-08
GRMZM2G448151	30S ribosomal protein S3, chloroplastic	3.17	-1.22	4.69E-02

Supplemental Table 6: NKD1, NKD2 and O2 Starchy Endosperm Co-Regulated Genes

GO term	Ontology	Description	Number in co-DE	Number in Suggested Background	p-value	FDR
GO:0045735	F	nutrient reservoir activity	18	100	1.90E-32	4.20E-31
GO:0004866	F	endopeptidase inhibitor	6	82	4.50E-09	3.30E-08
		activity				
GO:0030414	F	peptidase inhibitor activity	6	82	4.50E-09	3.30E-08
GO:0004857	F	enzyme inhibitor activity	6	180	4.00E-07	2.20E-06
GO:0030234	F	enzyme regulator activity	6	368	2.20E-05	9.60E-05

Supplemental Table 7: Enriched Gene Ontologies in NKD1, NKD2 and O2 Aleurone Co-Regulated Genes

GO term	Ontology	Description	Number in co-DE	Number in Suggested Background	p-value	FDR
GO:0006412	Р	translation	6	980	5.30E-05	0.0024
GO:0003735	F	structural constituent of ribosome	6	649	5.30E-06	2.90E-05
GO:0005198	F	structural molecule activity	6	767	1.40E-05	3.70E-05
GO:0033279	С	ribosomal subunit	7	301	1.40E-09	1.40E-07
GO:0005840	С	ribosome	8	772	3.70E-08	1.40E-06
GO:0044445	С	cytosolic part	6	280	4.20E-08	1.40E-06
GO:0022626	C	cytosolic ribosome	6	323	9.50E-08	2.30E-06
GO:0030529	С	ribonucleoprotein complex	8	894	1.10E-07	2.30E-06
GO:0043228	С	non-membrane-bounded organelle	8	1579	8.10E-06	0.00012
GO:0043232	С	intracellular non- membrane-bounded organelle	8	1579	8.10E-06	0.00012
GO:0032991	C	macromolecular complex	8	2550	0.00025	0.003
GO:0005829	C	cytosol	6	1316	0.00027	0.003

Supplemental Table 8: Enriched Gene Ontologies in NKD1, NKD2 and O2 Starchy Endosperm Co-Regulated Genes

Gene ID	Forward primer	Reverse primer	Amplicon size (bp)
Tubulin 1 (<i>tub1</i>), GRMZM2G164696	CAATACCCTGTTGCGCTTTG	CAGTTCCAGAAACATGAGCAAATA	99
Proliferating cell Nuclear Antigen2 (pcna2), GRMZM2G108712	CACATCTGGAGAAATTGGGAGTG	CCGGCTCCTGCATCTCTATAA	98
Cell Division Cycle2-like (CDC2- like), GRMZM2G068193	GACGAAGCTGTCTGCTCTTG	CATCTCCCTTCCTCACATCTTTG	146
Granule Bound Starch Synthase (waxy1), GRMZM2G024993	GCGTACGAGGAGATGGTGAG	CAGCACGTTCTCCCAGTTCT	81
Endo Betachitinase 2, GRMZM2G005633	GTGTAGGCGATCACTGTTTCA	CACAGAATGGGTAGAAGACCAC	112
Floury1, GRMZM2G094532	CAGAAGCAGATGTATGACCGG	ACAAGGCTCGATCAGTTATGG	106
Actin-1, GRMZM2G047055	AAGGCTGAGTACGACGAGT	CTCTCGGCTTTGCATCTCTT	86
Nac Transcription factor ASN1/Nac36, GRMZM2G154182	CTAGCTAGTACATGCACCGTATC	CCAAACTCGAATCTGCTTCTTAC	114
Fatty acid Desaturase 2, GRMZM2G064701	TCGGCGAGTACTACCAGTT	TGCTGTTGTACCAGAAGACG	123
Phospholipid Transfer Protein homolog1 (<i>plt1</i>), GRMZM2G101958	GCTCCAGGGTGAACTGAA	GTCGTGATCATGCGTAGGTAG	136
Opaque2, GRMZM2G015534	CCAGAAGTACAACGACGCTAAC	CAGGGAGTCCTCTCCCATC	94
Faciata1-like, GRMZM2G010105	GAAGAAATTAACCAGCCCAATCC	CACCACCTTATGGATACCATCTC	126
Prolamin-box Binding Factor1 (<i>pbf1</i>), GRMZM2G146283	CAACGCTAGCTCTAGCAATATGA	TGGGAGCACATTAGGGAATAAG	106
Legumin1 (<i>leg1</i>), GRMZM2G174883	GACGAGAACAACAACATCAACC	GAAGATGTTCTCGGCGAAGT	102
Ubiquitin Conjugating Enzyme (AL qRT), GRMZM2G132759	GCCATTGTTCCCTTGGATTTG	TGGTAGGCCGACGATATACA	101
betl1 ,GRMZM2G082785	CTGTTGCCATTCTGTCCTCACTG	CACCGTCCTTGAAACCCTTGGA	186
betl2, GRMZM2G152655	TGCACGCACAACAAGTGGGCAC	AGCATGGCCCGTCGTCATTACG	116
meg1, GRMZM2G354335	CTTTGCTGCTCATGCGCATGG	GCATGCATGACTACACTGAGCC	202
mrp1, GRMZM2G111306	CCGTGGACAACATGGACATGATG	CTTCCATTTACCACGGCCAAACAC	191
Ubiquitin Conjugating Enzyme (BETL qRT), GRMZM2G027378	AGGAAGTTTGGTTTGCTAGCG	CTGTTGGATCCCATGACGG	168

Supplemental Table 9: Primer sequences used for qRT-PCR

Primers	Forward	Reverse
GST- NKD1-ID	n1ID-BamH1: GGATCCGCATCGAATTCATCGGCGGCGTTC TTTG	n1ID-Sal1: aaaGTCGACCGTCGGCGGCAGGCGCGCGCTT TC
GST- NKD2-ID	n2ID-BamH1: GGATCCGCGTCGAATTCACCGGCGGCGGC G	n2ID-Sal1: aaaGTCGACGGTCGGCGGCAGCCGCGCGCTC
GST- NKD1-FL	nkd1BamH1: cttGGATCCGCATCGAATTCATCGGCGGCGT TCTTTG	nkd1Sal1: catGTCGACTGGCATCCTGCCTCCGTTGAAGGA CGAGG
GST- NKD2-FL	nkd2BamH1: cttGGATCCGCGTCGAATTCACCGGCGGCGG CG	nkd2Sal1: aaGTCGACTGGCATCCTGCCTCCATTGAAGGA CG
NKD1-ID- His	n1ID-BamH1: GGATCCGCATCGAATTCATCGGCGGCGTTC TTTG	n1ID-HINDIII: tttAAGCTTCGTCGGCGGCAGGCGCGCGCTTTC
NKD2-ID- His	n2ID-BamH1: GGATCCGCGTCGAATTCACCGGCGGCGGC G	n2ID-HINDIII: tatAAGCTTGGTCGGCGGCAGCCGCGCGCTC
NKD1-FL- His	nkd1BamH1: cttGGATCCGCATCGAATTCATCGGCGGCGT TCTTTG	nkd1BamH1 Rev: catGGATCCTGGCATCCTGCCTCCGTTGAAGGA CGAGG
NKD2-FL- His	nkd2BamH1: cttGGATCCGCGTCGAATTCACCGGCGGCGG CG	nkd2BamH1 Rev: aaGGATCCTGGCATCCTGCCTCCATTGAAGGA CG

Supplemental Table 10: Primers used to generate NKD GST and 6x His tag expression constructs

Primers	Forward	Reverse
WT	CCGGCCTTTGTCGTGGGCCC, 5'Biotinylated (no Biotin for unlabeled)	GGGCCCACGACAAAGGCCGG
M1	CCGGCCCTTGTCGTGGGCCC, 5'Biotinylated	GGGCCCACGACAAGGGCCGG
M2	CCGGCCTCTGTCGTGGGCCC, 5'Biotinylated (no Biotin for unlabeled)	GGGCCCACGACAGAGGCCGG
M3	CCGGCCTTCGTCGTGGGCCC, 5'Biotinylated	GGGCCCACGACGAAGGCCGG
M4	CCGGCCTTTTTCGTGGGCCC, 5'Biotinylated	GGGCCCACGAAAAAGGCCGG
M7	CCGGCCTTTGTCTTGGGCCC, 5'Biotinylated	GGGCCCAAGACAAAGGCCGG
M8	CCGGCCTTTGTCGCGGGCCC, 5'Biotinylated (no Biotin for unlabeled)	GGGCCCGCGACAAAGGCCGG
MM3	CCGGCCTTCGTCGCGGGCCC, 5'Biotinylated	GGGCCCGCGACGAAGGCCGG
М	CCGGCCGTCGCCGTGGGCCC, 5'Biotinylated	GGGCCCACGGCGACGGCCGG
MM	CCGGCCGTCGCCGGGGGGCCC, 5'Biotinylated	GGGCCCCCGGCGACGGCCGG

Supplemental Table 11. Oligonucleotides used in electrophoretic mobility shift assays (EMSA)

Primers	Forward	Reverse
NKD1-ID C and N-	Sal1-nkd1:	n1ID-BamH1:
terminal YFP halves	ttGTCGACATGGCATCGAATTCATCGGC	tttGGATCCCCGTCGGCGGCAGGCGCGCG
NKD2-ID C and N-	Sal1-pkd2:	n2ID-BamH1:
torminal VED balvoo		
terminal FF haives		
	GGCG	
NKD1-FL C and N-	Sal1-nkd1:	BamH1-nkd1:
terminal YFP halves	ttGTCGACATGGCATCGAATTCATCGGC	aaGGATCCGTGGCATCCTGCCTCCGTTGA
	GGCG	AGG
NKD2-FL C and N-	Sal1-nkd2:	BamH1-nkd2:
terminal YFP halves	ttGTCGACATGATGGCGTCGAATTCACC	aaGGATCCGTGGCATCCTGCCTCCATTGA
	GGCG	AGGAC
35s-mCherry	Mch-kpn1:	Mch-BamH1:
_	tttGGTACCATGGTGAGCAAGGGCGAG	tatGGATCCTTACTTGTACAGCTCGTCCAT
	GAG	GCC

Supplemental Table 12. Primers and restriction sites used for cloning of constructs used in BiFC

Primers	Forward	Reverse
35spro:NKD1	Sal1-nkd1: ttGTCGACATGGCATCGAATTCATCGGCGG CG	BamH1-nkd2: aaGGATCCGTGGCATCCTGCCTCCGTTG AAGG
35spro:NKD2	Sal1-nkd2: ttGTCGACATGATGGCGTCGAATTCACCGG CG	BamH1-nkd1: aaGGATCCGTGGCATCCTGCCTCCATTG AAGGAC
35Spro:RLUC	Rluc-NCO1: aataCCATGGATGACTTCGAAAGTTTATGAT CCAGAAC	Rluc-BamH1: atttGGATCCTTATTGTTCATTTTTGAGAAC TCGCTCA
X1P-1pro:LUC	XIP1-Kpn1: aaGGTACCGACCGACCTAGACTCCTCTAA TC	XIP1-Nhe1: ttGCTAGCGTCTCGTTGGTTAATTGCTGC TAC
o2 _{pro} :LUC	O2-Sac1: aaGAGCTCGCTCCAAAATATAGCAAGTCA CAG	O2-Nhe1: ttGCTAGCCACATTTTGAAGGCCTCGAG
zp22.1pro:LUC	Azein22.3-Sac1: aaGAGCTCACTTGAGGTTCGCACCAATTG C	Azein22.3-Nhe1: ttGCTAGCGTTGTTAGGTTGTTGCTAATG TGC
nkd1pro:LUC	Nkd1-MIU1: aataACGCGTGAAGCTCTATATTGATGGTTT GTAAGCC	Nkd1-BGIIIR: atttAGATCTGACTTCCTCCCGATTTATCC TGG
vp1pro:LUC	Vp1-MIU1: aataACGCGTGCTAGTGTTCTTTGAGCTCT TGTGCTTG	Vp1-Xho1: atttCTCGAGCAGAGAGACACGACGACAA AGGG
vp1-mut _{pro} :LUC	Vp1-MIU1: aataACGCGTGCTAGTGTTCTTTGAGCTCT TGTGCTTG	Vp1-Xho1: atttCTCGAGCAGAGAGACACGGCGACAA AGGG
JIP _{pro} :LUC	JIP-Sac1: aaGAGCTCACTCAGCAAAGAACCGAATTC CAG	JIP-Nhe1: ttGCTAGCATTACCTGCAACGATCGAGCA AC
MTF _{pro} :LUC	MFT-like-Kpn1: aaGGTACCGGTTCGGAAACTGATCCTTAA GCGG	MFT-like-Nhe1: ttGCTAGCGATCAACGCGACCTTGGGTA GAG
WRKY29pro:LUC	Wrky29-Mlu1: aaACGCGTGGCCTTTACTCCTGTCTCCTA G	Wrky29-Xho1: ttCTCGAGAGAGAGAGAGAGAGAGAAATTAA GCG

Supplemental Table 13. Primers and restriction sites used for cloning of transcription assay constructs.

Construct	Description	Experiments
NKD1-ID-N-YFP	C-terminal YFP (N-terminus)	BiFC
NKD1-ID-C-YFP	C-terminal YFP (C-terminus)	BiFC
NKD2-ID-N-YFP	C-terminal YFP (N-terminus)	BiFC
NKD2-ID-C-YFP	C-terminal YFP (C-terminus)	BiFC
NKD1-FL-N- YFP	C-terminal YFP (N-terminus)	BiFC
NKD1-FL-C- YFP	C-terminal YFP (C-terminus)	BiFC
NKD2-FL-N- YFP	C-terminal YFP (N-terminus)	BiFC
NKD2-FL-C- YFP	C-terminal YFP (C-terminus)	BiFC
35s-mCherry	Full length mCherry CDS	BiFC
GST-NKD1-ID	NKD1 ID CDS, N-terminal GST tag	Co-Pull Down, EMSA, SAAB
GST-NKD2-ID	NKD2 ID CDS, N-terminal GST tag	Co-Pull Down, EMSA, SAAB
GST-NKD1-FL	NKD1 CDS, N-terminal GST tag	Co-Pull Down, EMSA
GST-NKD2-FL	NKD2 CDS, N-terminal GST tag	Co-Pull Down, EMSA
NKD1-ID-His	NKD1 ID CDS, C-terminal 6x His tag	Co-Pull Down
NKD2-ID-His	NKD2 ID CDS, C-terminal 6x His tag	Co-Pull Down
NKD1-FL-His	NKD1 CDS, C-terminal 6x His tag	Co-Pull Down
NKD2-FL-His	NKD2 CDS, C-terminal 6x His tag	Co-Pull Down
X1P-1pro:LUC	X1P-1 proximal promoter region (-596bp from TSS to -4bp from ATG), Firefly Luciferase	Transcription Assays
o2pro:LUC	<i>opaque2</i> proximal promoter region (-570bp from TSS to +432 from ATG), Firefly Luciferase	Transcription Assays
zp22.1pro:LUC	<i>zp</i> 22.1proximal promoter region (-510bp from TSS to -1bp from ATG), Firefly Luciferase	Transcription Assays
nkd1pro:LUC	<i>nkd1</i> proximal promoter region (-966bp from TSS to -1bp from ATG), Firefly Luciferase	Transcription Assays
vp1pro:LUC	<i>vp1</i> proximal promoter region (-1592bp from TSS to +256bp from TSS), Firefly Luciferase	Transcription Assays
VP1-mut _{pro} :LUC	<i>vp1</i> proximal promoter region (-1592bp from TSS to +256bp from TSS) with point mutation in second NKD BCS TTGTCGT to TTGTCGC, Firefly Luciferase	Transcription Assays
JIP _{pro} :LUC	JIP proximal promoter region (-600bp from TSS to ATG), Firefly Luciferase	Transcription Assays
MTF _{pro} :LUC	MTF proximal promoter region (-343bp from TSS to -8bp from ATG), Firefly Luciferase	Transcription Assays
WRKY29pro:LUC	WRKY29 proximal promoter region (-600bp from TSS to - 19bp from ATG), Firefly Luciferase	Transcription Assays
35Spro:NKD1	2x 35S promoter-NKD1 CDS	Transcription Assays
35Spro:NKD2	2x 35S promoter-NKD2 CDS	Transcription Assays
35Spro:null	2x 35S promoter-MCS-TGA	Transcription Assays
35Spro:RLuc	2x 35S promoter-Renilla Luciferase CDS	Transcription Assays

Supplemental Table 14. Constructs cloned in this study.