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S1 Derivations. Statistical power of a meta-analysis of GWAS results.

In this supporting information section, we derive an expression for the power of a meta-analysis of GWAS results,

under a design with many studies, with arbitrary sample sizes, SNP-based heritability, and cross-study genetic

correlation (CGR).

First, the underlying assumptions are presented. Second, we write the GWAS Z statistics in terms of the true

SNP effect and noise. Third, we incorporate cross-study genetic correlations by assuming a model with random

SNP effects that are correlated imperfectly across studies. Using the Cholesky decomposition of the cross-study

genetic correlation matrix, we write the correlated SNP effects in terms of a weighted sum of independent genetic

factors. By means of this decomposition into independent factors, we derive the distribution of the Z statistic in a

given study, as well as the distribution of the multi-study meta-analysis Z statistic. From the latter distribution we

obtain a framework for performing multi-study power calculations.

It is important to note that models which incorporate random SNP effects have been widely used, for instance,

to estimate variance components [1] and genetic correlations across traits and samples [2], to control for cryptic

relatedness and population structure in a GWAS [3], and to distill the constituents of genomic inflation [4,5]. Hence,

the novelty in our work lies not in using random SNP-effect models to incorporate imperfect genetic correlations

across studies. Instead the novelty lies in the subsequent step, viz., to use such models in order to perform power

calculations under the presence of imperfect CGRs.

Assumptions We derive an expression of statistical power for a quantitative trait in sample-size weighted

meta-analysis [6]. In order to arrive at a tractable expression of statistical power, we make the following assumptions.

1. When considering a given SNP in the GWAS, any phenotypic variance due to other SNPs gets absorbed by

the normally, independent, and identically distributed residual term (which is what happens when studying

a sample of unrelated individuals, and which is in line with assumptions underlying most GWAS packages,

except for family-based and mixed-linear-model-type GWAS software). This assumption keeps the algebra

simple at the cost of a small loss in generality. In S1 Simulations we show that violations of this assumption

do not affect results.

2. The regressors (i.e., SNP data) in the meta-analysis studies are fixed (i.e., non-stochastic)—this assumption is

equivalent to conditioning on the genotype data. This assumption also keeps the algebra simple at the cost of

a small loss in generality. In S1 Simulations we show that violations of this assumption do not affect results.

3. Each causal locus is shared across all studies. This assumption enables us to consider CGRs as a one-

dimensional factor that is shaped solely by the cross-study correlation of the effects of trait-affecting haplotype

blocks. In S1 Simulations we show that violations of this assumption hardly affect results.

S1 Derivations 1/9



Supporting Information. De Vlaming et al. PLOS Genetics

4. The genome can be divided into independent haplotype blocks, where for each block we have precisely one

SNP that tags all the variation within this block. By means of this assumption, we can ignore linkage

disequilibrium, thereby strongly reducing the complexity of our derivations. In addition, we assume that

the effects of trait-affecting haplotype blocks are independent. The former assumption would imply that all

trait-affecting variation in a haplotype block can be captured by the single tag SNP for that block. Although

we make no claim that common SNPs perfectly tag all trait affecting variants, we do claim that a relatively

small set of common SNPs can tag the heritability as estimated using common SNPs. Consequently, when

using estimates of SNP heritability based on common SNPs, we deem this assumption and its implications to

generate little bias in our theoretical predictions.

5. The effect sizes of SNPs are inversely related to SNP variance (i.e., rare variants have larger effects than

common variants, such that the expected R2 of each causal SNP, with respect to the phenotype, is equal

regardless of allele frequency). This assumption makes it possible to compute statistical power without having

to specify the allele frequency and an a priori unknown effect size. Under this assumption, SNP heritability

and the number of trait-affecting haplotype blocks replace a SNP-specific effect size and allele frequency. In

S1 Simulations we show that violations of this assumption hardly affect results.

Single-SNP model Here, we write the GWAS Z statistic in a given study for a given SNP, as a function of the

true effect and noise. This decomposition into true effect and noise helps to derive the distribution of the Z statistic.

For studies j = 1, . . . , C and SNPs k = 1, . . . , S, let the model for a quantitative trait with a single SNP as

predictor (Assumption 1) for the mean-centered phenotype yj be given by

yj = xjkβjk + εj , (1)

εj ∼ N
(
0, σ2

εjINj

)
(2)

where xjk denotes the mean-centered genotype vector of SNP k in study j, scaled such that (x>jkxjk)/Nj = 1. In

Eq. 1, βjk is the effect of SNP k in study j. In Eq. 2, εj is the residual and INj
the Nj×Nj identity matrix, where Nj

is the sample size of study j.

The GWAS estimate of βjk for a quantitative trait is usually obtained by applying OLS. Hence, it can be written

S1 Derivations 2/9



Supporting Information. De Vlaming et al. PLOS Genetics

as

β̂jk =

(
1

Nj
x>jkxjk

)−1
1

Nj
x>jkyj (3)

=
1

Nj
x>jkyj (4)

=
1

Nj
x>jkxjkβjk +

1

Nj
x>jkεj (5)

= βjk +
1

Nj
x>jkεj . (6)

Using standard results from regression theory assuming fixed regressors (Assumption 2) and the aforementioned

scaling of the genotype vector, the theoretical variance of the OLS-estimate of the SNP effect is given by

Var
(
β̂jk

)
= σ2

εj

(
x>jkxjk

)−1
=
σ2
εj

Nj
.

Therefore, the standard error of the OLS estimate is given by

s.d.
(
β̂jk

)
=

σεj√
Nj

. (7)

By taking the ratio of Eq. 6 and 7 we obtain the Z statistic (instead of the commonly used and highly similar

t-test statistics) for SNP k in study j. That is,

Zjk =
β̂jk

s.d.
(
β̂jk

) (8)

=

√
Nj

σεj
βjk +

x>jkεj

σεj
√
Nj

. (9)

Let vjk denote the last term in the right-hand side of Eq. 9. Under the aforementioned scaling of the regressor and

the distribution of εj , it follows from standard properties of the multivariate normal distribution that vjk ∼ N (0, 1).

Modelling cross-study genetic correlation We incorporate cross-study genetic correlations by considering

a model with random SNP effects, correlated across studies. For ease of derivations, we assume that each causal

SNP contributes across all studies (Assumption 3). In order to simplify further derivations, we use a Cholesky

decomposition to write correlated SNP effects in terms of independent underlying factors. Using this independent-

factor representation, we derive the distribution of a GWAS Z statistic, in terms of the study-specific noise and

contributions of the underlying genetic factors.
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Genetic correlation can be conceptualized as the correlation between SNP effects across different strata (e.g.,

across populations, studies, age groups, etc.). Taking studies as ‘strata’, a group of C studies has C×C genetic

correlation matrix, denoted by PG.

When effects are normally distributed, a given correlation structure between effects is most straightforwardly

obtained by constructing the Cholesky decomposition of the correlation matrix, and multiplying independent

standard-normal random variables by this decomposition. An interpretation of this decomposition is that it provides

a set of weights that transform a set of independent underlying genetic factors into correlated genetic effects.

First, we formalize how to transform independent standard-normal random variables into correlated normal

random variables. Let ΓG be the lower-triangular Cholesky decomposition of the genetic correlation matrix, such

that ΓGΓG
> = PG, letM denote the set of M causal SNPs, let E be an C×M matrix of independent standard

normal draws from different genetic factors (rows) for the different causal SNPs (columns), and let ηk be the column

of E corresponding to causal SNP k. Then

ηk =


η1k
...

ηCk

 ∼ N (0, IC) ,

where ηk is independent of ηl for l 6=k (Assumption 4). Now, for SNP k in the set of causal SNPs, we can define the

vector of effects across studies for the given SNP, such that it has correlation matrix PG, as follows:

βk =


β1k
...

βCk

 = diag (σβ1 , . . . σβC )ΓGηk,

where diag() is a diagonal matrix with specified elements as diagonal entries, and

σβj =

√
h2jσ

2
yj

M
,

with h2j (resp. σ
2
yj
) denoting the SNP heritability (phenotypic variance) in study j. Under this design of study-specific

SNP effects, we attain a CGR structure in line with PG and the desired study-specific SNP heritabilities.

Using this approach for constructing correlated SNP effects, we can write the effect of SNP k in study j (i.e.,
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βjk) as a linear combination of the independent underlying N (0, 1) distributed random variables. That is,

βjk = σβj

j∑
i=1

γjiηik, (10)

where γji denotes element in row j column i of Γ and ηik the i -th element of ηk. Given our scaling of SNPs, the R2

of each causal SNP in study j is given by σ2
βj
, regardless of the allele frequency of the SNP of interest (Assumption

5).

We can now write the GWAS Z statistic for a given SNP in a given study, as a linear combination of independent

random variables. For SNP k in the set of P non-causal SNPs, denoted by P (such thatM∩P = ∅), we have

for all studies j that βjk = 0. By substituting β in Eq. 9 according to Eq. 10 for causal SNPs and the preceding

equality for non-causal SNPs, we obtain the following expression for the Z statistic of SNP k in study j :

Zjk =

 vjk +
√
Nj

σβj
σεj

∑j
i=1 γjiηik for k ∈M, and

vjk for k ∈ P.
(11)

Distribution meta-analysis Z statistic Here, we derive the distribution of the meta-analysis Z statistic and

reduce the number of input parameters by appropriate substitutions. Finally, for intuition, we present the distribution

of Z statistics from a meta-analysis of GWAS results from two studies.

For any SNP k in the set S = M∪ P consisting of S = M + P causal and non-causal SNPs, we use the

sample-size-weighted meta-analysis Z statistic [6], defined as follows:

Zk =

C∑
j=1

√
Nj√
NT

Zjk, (12)

where NT = N 1 + . . .+ NC denotes the total sample size. Plugging Eq. 11 for k ∈ M into Eq. 12, yields an

expression for the meta-analysis Z statistic in terms of independent random variables. That is,

Zk =


∑C
j=1

√
Nj√
NT

vjk +
∑C
j=1

∑j
i=1

Nj√
NT

σβj
σεj

γjiηik for k ∈M, and∑C
j=1

√
Nj√
NT

vjk for k ∈ P.
(13)

As the vjk terms in the preceding expression are independent standard-normal draws, it follows that

vk =

C∑
j=1

√
Nj√
NT

vjk ∼ N (0, 1) .

In Eq. 13 we have a double sum over random variables. However, by changing the order of summation, this
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double sum can be rewritten as follows:

C∑
j=1

j∑
i=1

Nj√
NT

σβj
σεj

γjiηik =

C∑
i=1

ηik

C∑
j=i

Nj√
NT

σβj
σεj

γji.

Therefore, we can rewrite Eq. 13 as follows:

Zk =

 vk +
∑C
i=1 ηik

∑C
j=i

Nj√
NT

σβj
σεj

γji for k ∈M, and

vk for k ∈ P,
(14)

where the inner sum yields the weight for the random variable of interest.

Exploiting the fact that ηik and vk are independent standard-normal draws, the variance of the sum of terms is

equal to the sum of the variance of the respective terms. Hence, we have that

Zk ∼

 N (0, 1 + d) for k ∈M, and

N (0, 1) for k ∈ P,

where

d =

C∑
i=1

 C∑
j=i

Nj√
NT

σβj
σεj

γji

2

(15)

=
1

NT

C∑
i=1

 C∑
j=i

Nj
σβj
σεj

γji

2

(16)

The quantity d we refer to as the ‘power parameter’. Since this parameter is a sum of squares, it is non-negative.

The greater the power parameter is, the higher the statistical power of the meta-analysis of GWAS results is. Note

that in case σβj = 0 for all j (i.e., the trait is not heritable in any study), that d = 0, and hence the meta-analysis

Z statistic reverts to a standard-normal test statistic, which matches the distribution under the null. However, as

σβj increases, d becomes larger, yielding a meta-analysis with higher statistical power.

Given SNP-based heritability, phenotypic variation, and the number of causal variants, we have that the effect

size per causal SNP in a study is given by σ2
βj

=
h2
jσ

2
yj

M , and the residual variance, absorbing the variance due to the

omitted M − 1 SNPs (Assumption 1), is given by σ2
εj = σ2

yj
− σ2

βj
. Using these expressions, we can write the ratio
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of σβj and σεj , appearing in Eq. 16, as a function of only heritability and the number of causal SNPs. That is,

σβj
σεj

=

√√√√√ h2
jσ

2
yj

M

σ2
yj
−

h2
jσ

2
yj

M

(17)

=

√
h2j

M − h2j
. (18)

Plugging the last expression into Eq. 16 yields

d =
1

NT

C∑
i=1

 C∑
j=i

Nj

√
h2j

M − h2j
γji

2

(19)

This expression for the power parameter shows that it is not affected by scaling due to phenotypic variance; the

parameter is only affected by the cross-study genetic correlation matrix, the SNP-based heritability per study, and

the sample size per study.

In case the number of studies is two, with sample size N in Study 1 and N in Study 2, SNP heritability h2SNP,

and a genetic correlation ρG between the two studies, we have that the meta-analysis Z statistic, of a trait-affecting

SNP k, is normally distributed with mean zero and

Var (Zk,C=2) = 1 +
h2SNP

M − h2SNP

N (1 + ρG) .

Bearing in mind that the number of causal SNPs M � 1 under a highly polygenic model, while h2SNP ∈ [0, 1], we

have that under high polygenicity M − h2SNP ≈M . Hence, the variance of Zk can be approximated by

Var (Zk,C=2,high polygenicity) ≈ 1 +
h2SNP

M
N (1 + ρG) .

In the scenario where the cross-study genetic correlations equals one, we have that Var (Zk) ≈ 1 +
h2
SNP

M NT

for a trait-affecting haplotype block and Var (Zk) = 1 for a non-causal haplotype block, where NT = 2N. These

expressions are equivalent to the expected value of the squared Z statistics from the linear regression analysis

reported in Section 4.2 of the Supplementary Note to [3], as well as the first equation in [5] when assuming that

confounding biases and linkage disequilibrium are absent.

Adding genetically uncorrelated studies to the meta-analysis Here, we consider what happens to statistical

power of a meta-analysis of GWAS results from several sets of studies, with genetic correlations between the studies

within each set, but with no genetic correlation between the different sets. We first consider a scenario with one set
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consisting of C − 1 studies and one other set consisting of only one study. We then generalize to a setting with

multiple sets, each set containing at least one study. We show that the power parameter for a meta-analysis of

several sets of studies with no genetic correlations between sets, can be written as a sample-size weighted sum of the

power parameters within the respective sets.

In case one has C − 1 studies with associated CGR matrix, the associated Cholesky decomposition denoted by

Γ(C), and an additional study indexed by C, which is genetically uncorrelated to the C − 1 other studies, then the

C×C Cholesky decomposition of the full CGR matrix is given by

ΓG =

 Γ(C) 0

0> 1

 ,

where 0 denotes a column vector of zeros.

Now, the quantity d in Eq. 19 can be decomposed as follows.

d =
1

NT

C−1∑
i=1

C−1∑
j=i

Nj

√
h2j

M − h2j
γji

2

+
1

NT

(
NC

√
h2C

M − h2C

)2

(20)

=
N(C)

NT

1

N(C)

C−1∑
i=1

C−1∑
j=i

Nj

√
h2j

M − h2j
γji

2

+
NC
NT

1

NC

(
NC

√
h2C

M − h2C

)2

(21)

=
N(C)

NT
d(C) +

NC
NT

dC , (22)

where dC denotes the power parameter in Eq. 19 had only study C (with sample-size NC) been considered, and d (C )

the power parameter in Eq. 19 had only the first C − 1 studies (with total corresponding sample-size N (C )) been

considered. Hence, the power parameter in this scenario is the sample-size-weighted average of the power parameter

of the first C − 1 studies jointly and the power parameter of the last study.

Eq. 22 can be generalized, to reflect a situation where there are P disjoint sets of studies, denoted by C1, . . . , CP ,

with genetic correlation within each set, but no genetic correlation between the sets. In this scenario, the power

parameter d in Eq. 19 for a joint meta-analysis of all sets is given by

dC1∪C2∪...∪CP =

P∑
p=1

NCp
NT

dCp , (23)

where NCp denotes the total sample size in study-set Cp and dCp the power parameter in Eq. 19 for the meta-analysis

of all studies in set Cp, and NT the total sample size when aggregating over all study sets. This equation states that

power parameter for a meta-analysis of several sets of studies with CGR within each set, but no CGR between sets,

is a weighted average of the power parameters in the underlying sets.
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Since the statistical power is a monotonically increasing function of the power parameter d, Eq. 23 leads to two

corollaries under CGR equal to zero between sets of studies, namely that

βC1∪C2∪...∪CP ≤ max
{
βCp
}
p=1,...,P

and (24)

βC1∪C2∪...∪CP ≥ min
{
βCp
}
p=1,...,P

, (25)

where βA denotes the power in set of studies A.

The implication of Eq. 23 is simple yet powerful; when several sets of studies with genetic correlation within

each set, but no genetic correlation between sets, are considered for meta-analysis, one should not meta-analyze sets

C1, . . . CP jointly, but rather meta-analyze only the set of studies which has the largest power parameter according

to Eq. 19.

Only when dC1∪C2∪...∪CP > max {dC1 , . . . , dCP }, does the meta-analysis of all sets jointly have higher statistical

power than a meta-analysis based on only one set of studies.
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