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S1 Simulations. Assessment of the accuracy of the MetaGAP calculator.

Using five simulation studies, we assess the accuracy of the MetaGAP calculator, which is based on the expressions
for GWAS power and PGS R? derived in S1 Derivations and S2 Derivations. Since the calculator is based on specific
assumptions regarding the data-generating process, an important question is whether the calculator still provides
accurate predictions of power and R? when the underlying assumptions are violated.

Hence, each simulation study has a different underlying data-generating process. The first study, Simulation
1, assumes that rare variants have larger effects than common variants to such an extent that each causal SNP,
regardless of allele frequency, is expected to have the same R? with respect to the phenotype (Assumption 5 in
S1 Derivations). This simulation is entirely in line with the assumptions underlying the MetaGAP calculator. In
the second study, Simulation 2, common variants have effects of the same magnitude as rare variants (leading a
common causal variant to explain a larger proportion of the phenotypic variation than a rare causal variant). The
third study, Simulation 3, also allows for differential R? between SNPs and, in addition, does not assume that SNP
allele frequencies are uniformly distributed. Instead, the third study assumes that there are more variants in the
lower minor allele frequency bins than in the higher minor allele frequency bins. In addition to the deviations from
assumptions made in Simulations 2 and 3, Simulation 4 allows allele frequencies to be completely independent across
studies. Finally, in Simulation 5, we go back to a data-generating process in line with the assumptions underlying
the MetaGAP calculator, with one important difference; in Simulation 5, the genetic correlation as inferred at the
genome-wide level is not only shaped by the correlation of SNP effects, but also by the degree of overlap of causal
loci across studies. Thereby, Simulation 5 violates the assumption discussed in S1 Note, that the estimated CGR is
shaped only by imperfect correlations of SNP effects across studies.

For each simulation study there are 100 independent runs. In each run data is simulated for C' = 3 distinct
samples for discovery as well as a fourth sample used as hold-out sample for prediction. The sample sizes of the
respective studies are given by N; = 20,000, No = 15,000, N3 = 10,000, and N, = 1,000, where N, denotes the
sample size of the hold-out sample. For Simulations 1-4, an 11x11 grid of equispaced values of hiyp € [0, 1] and
pg € [0,1] is considered. Similarly, for Simulation 5, an 11x11 grid of equispaced values of s € [0,1] and pg € [0, 1]
is considered. Here, s denotes the fraction of causal SNPs that overlaps across studies and pg the cross-study
correlation of the effects of SNPs that are overlapping. In Simulations 1-4 we have that s = 1 and in Simulation 5
we have that hZyp = 0.5. In all simulations there are S = 100,000 independent SNPs of which M = 1,000 have a
causal influence. Moreover, when computing theoretical power and predictive accuracy, in line with S1 Note, we use
pc = s pa as value of the input parameter CGR. A detailed description of the data-generating process in each
simulation study can be found in Table Al.

For every run, data is simulated in accordance with the underlying data-generating process. Next, a GWAS
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is carried out in each of the three discovery samples. GWAS results are then meta-analyzed using sample-size
weighting. The fraction of causal SNPs reaching genome-wide significance in the meta-analysis is the estimate of
statistical power per SNP. The squared correlation between the meta-analysis-based PGS for the hold-out sample
and the corresponding phenotype is the estimate of the PGS R2.

Final estimates of power per causal SNPs and PGS R? are obtained by averaging the estimates across the runs.
Fig. A1-A2, show the resulting estimates of power per causal SNP in the meta-analysis and the R? of the PGS, for
both Simulations 1-4 and Simulation 5. In addition, both figures report the power per causal SNP and R? predicted
by the theoretical model, derived under the assumptions discussed in S1 Derivations. Inspection of Fig. A1 shows
that there is no qualitative difference between the contour plots. Moreover, when computing the root-mean-square
error (RMSE) between the theoretical predictions and the simulation-based estimates of power and R?, even for the
most extreme departures from our assumptions regarding allele frequencies and effects sizes (Simulations 3—4), the
RMSE in power remains below 3% and the RMSE in R? of the PGS below 2%. Hence, the theoretical predictions of
GWAS power and predictive accuracy — derived under assumptions of equal true R? of causal SNPs, with uniformly
distributed allele frequencies that are equal across studies — are robust to violations of these assumptions.

Inspection of Fig. A2 shows that when CGRs are being shaped by a combination of poor overlap and poorly
correlated effects of overlapping loci, there are some qualitative differences between predicted power and predictive
accuracy compared to simulation-based estimates. However, the RMSE of theoretical power is only 1.2% with
respect to the power estimated from simulations. Similarly, the RMSE of theoretical predictive accuracy is only
1.3%. Hence, the quantitative differences are small.

Simulation 5 shows that when low CGRs are induced by poor overlap of causal loci across studies instead of low
correlations of the effects of overlapping loci, this leads to a slight downward bias in our theoretical predictions (i.e.,
making our theory conservative). Hence, we argue that if our calculator deems a study design well-powered, the
analyses will be well powered, potentially even more so than what our theory predicts (e.g., if some of the imperfect

CGR can be attributed to causal loci that are not shared across studies).
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Figure Al. Power and polygenic score R? contour plots with, in each plot, SNP heritability on
the z-axis and cross-study genetic correlation on the y-axis. The first row shows predictions from the
theoretical model. Subsequent rows show estimates based on respective simulation studies. The first column shows
power per causal SNP. The second column the R? of a polygenic score in a hold-out sample. Above each plot, the
root-mean-square error (RMSE) is reported for the difference between predictions from the theoretical model and
the simulation-based estimates.
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Figure A2. Power and polygenic score R? contour plots, with in each plot the fraction of causal loci
that overlaps across studies on the x-axis and the cross-study correlation of the effects of overlapping
loci on the y-axis. The first row shows predictions from the theoretical model. The second row shows estimates
based on a simulation study. The first column shows power per causal SNP. The second column the R? of a polygenic
score in a hold-out sample. Above each plot, the root-mean-square error (RMSE) is reported for the difference
between predictions from the theoretical model and the simulation-based estimates.
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