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S4 Text. Integrative Bayesian GLMs 

Classical statistical modeling requires the specification of the likelihood function (joint 

probability distribution of the response data as random variables, given the model parameters). 

The likelihood is conventionally denoted by �(�) = �(�|�), where θ and y are the vectors of 

model parameters and response data, respectively. (In this SI, y comprehensively denotes all non-

covariate information rather than merely the observed number of infected ticks as given in Figs 

1–2 in the main text.) Bayesian modeling additionally requires the specification of the joint prior 

distribution (joint probability distribution of model parameters), �(�), to reflect any a priori 

understanding of the behavior of parameters in the absence of the current dataset. Applying 

Bayes' rule to � and � yields the joint posterior distribution, �(�|�), which is the basis of 

Bayesian inference. For a particular parameter �,, Bayesian inference refers to the marginal 

posterior distribution �(�,|�). For complex models, closed-form expressions of �(�|�) often do 

not exist or are too cumbersome to derive analytically. For this reason, we used Markov chain 

Monte Carlo (MCMC), a computationally intensive method, to sample from �(�|�). (See [1] for 

more detail.) To this end, we implemented all Bayesian models with the MCMC software JAGS 

version 3.4.0 [2] and above, interfaced through the runjags package on R version 3.2.2 and 

above. The program code for our full Bayesian analyses appears in S8 File (for 2006 data) and 

S9 File (for 2009 data). 

For our Lyme disease studies, all RLB tests in 2009 successfully produced a 1 or 0 for �./ 

(presence/absence of HIS), but some in 2006 failed to produce results. As such, the GLM 

constructed for 2009 is a degenerate case of the 2006 model hierarchy. In what follows, we focus 

the discussion on the hierarchical framework of the more complex case, which accounted for the 
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unobservability of �./ (due to RLB failure in 2006) by regarding the unobserved �./s as model 

parameters. 

Referring to Fig 3, our binary data vector was � = [�, �, �observed], and we had the 

following probabilities: 

P zij=1 =pi
B

	 =	Prob( tick j from site i testing Bb+ ),

P(vij=1|zij=1) =pi
S

	 =Prob RLB	success	 	tick	�	from	site	�	testing	Bb + ,

P(tij=1|vij=1) =pi
SH

	 =	Prob tick testing HIS+	 	{tick j from site i testing Bb+}, {RLB success} ,

P(tij=1|vij=0) =pi
FH

	 =	Prob tick would have tested HIS+ had RLB been successful	 	{tick j from site i testing Bb+},	{RLB failure}

P(tij=1|zij=1) =pi
c

	 =	Prob tick testing or would have tested HIS+	 	tick j from site i testing Bb+

	 =	pi
Spi

SH+(1-pi
S)pi

FH,

P(tij=1|zij=0) =	0.

 

 

Little collinearity existed among the four covariates after removing sites with potentially 

influential covariate values (i.e., sites for which at least one covariate value was visibly isolated 

from the rest of the data). Thus, for a preliminary model on the full dataset (including potentially 

influential sites), we considered all 4 covariates (centered – see S5 Text) in each logistic linear 

predictor:  

logit �.
X = �Z + �[�[. +⋯+ �^�^. + �.  ,

logit �.
a = �Z + �[�[. +⋯+ �^�^. + �.

 

where �. and �. were normally distributed noise terms with variances �e and �e, respectively. 

Altogether, our parameter vector was � = [�X , �a , �h, �hi , �ji , �, �, �e, �e, �missing]. 

To complete the specification of our Bayesian GLM, we assumed the following flat or 

nearly flat priors (subject to necessary constraints) for all parameters that appear without parent 

nodes in Fig 4: 
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�m , �m ∼ Normal 0, 1000 ;									�pe, �pe ∼ Gamma 1, � ; 

�.
hi �.

a ∼ Uniform 0, �.
a ; 												�.

ji �.
a ∼ Uniform(�.

a , 1) 

where � was taken to be either 0.1 (prior less vague) or 0.01 (prior more vague), depending on 

the computational efficiency (see S8 File, S9 File). Aside from the bounds in the uniform priors 

that were necessary to preserve the mathematical relationship �.
h = 1 −

st
u

st
vw 1 −

st
xw

st
vw

p[

=

(�.
ji − �.

a)/(�.
ji − �.

hi), these vague priors reflect our a priori ignorance of these parameters' 

behavior. 

 

Bayesian inference results 

Bayesian inference based on the preliminary model (including all 4 covariates) suggested 

little evidence that a site's chipmunk relative abundance was relevant to �X in 2009. Thus, for 

reduced model fits, we set �z= 0 for 2009. Selected posterior summaries for the reduced models 

appear in Table 1. The same summaries appear graphically in Fig S4.1. 

We diagnosed the goodness-of-fit of each final model by (a) examining "residual plots" 

that displayed violin plots of posterior distributions for �. and �. against each covariate and �, 

and (b) conducting posterior predictive cross-validation based on �. 

For (a), we found that even with the large amount of 0 data for �./ and the presence of 

influential data, our residual plots showed no reason for concern of poor fit. Fig S4.2 shows 

examples of our residual plots. 

For (b), we made posterior predictions only for � as the primary response data, while � 

and � were conditional on � and were therefore secondary response data. As described in the 

main text, for each site i we simulated predicted values of  �.//  (denoted y in the main text) 
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from the posterior distribution. Denote posterior predictive results by a tilde (“~”). Then, our ith 

posterior predictive distribution of �.//  constituted several thousands of simulated predicted 

values of �.// . This led to the ith posterior predictive distribution of naïve DINAll	(=

�.�.
p[�.

p[ �.// ). Thus, each 95% “predictive” interval in Figs 1C, 2C (in black) was obtained 

by simply scaling by a factor of �.�.
p[�.

p[ the 2.5th and 97.5th percentiles among the several 

thousands of �.// . Except for site 615 in 2006 and sites 914 and 918 in 2009, the remaining 

(29+16)/(30+18)=94% of the studied sites yielded 95% “predictive” intervals that contained the 

observed naïve estimates. In this regard, our models were highly consistent with the raw data, 

and hence, had high goodness-of-fit from the perspective of posterior predictions of naïve 

DINAll. 

Note that the posterior medians presented in Figs 1C, 2C are not the 50th percentiles of 

�.//  but rather based on the posterior inference for the model parameter �X (as in Figs 1A, 2A). 

Each posterior median in Figs 1C, 2C was obtained by scaling the posterior median of �X by a 

factor of  �.�.
p[, which amounted to a quasi-modeled estimate for DINAll in the wild. Properly 

modeled inference for DINAll would require the modeling of the true DON in the wild. As mi was 

not replicated in the field experiment, we could not make mdoel-based inference for DON. 

Aside from posterior predictive checks based on DINAll, we conducted additional checks 

based on the ranking of sites according to their naïve NIPAll estimates, specifically the sample 

median among the 30 sites in 2006 and that among the 18 sites in 2009 (Fig S4.3). Based on the 

raw data, the 2006 median was 0.364 (shared by sites 601 and 613), while the 2009 median was 

0.199 (shared by sites 901 and 908). For each year, we simulated several thousands of sets of 

naïve NIPAll (= �.
p[ �.//  for i = 1, 2, …, 30 in 2006 or i = 1, 2, …, 18 in 2009), each set 
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constituting a single ordering of the 30 sites in 2006 or of the 18 sites in 2009. From each set of 

ordering we obtained the median. The several thousands of posterior predictive medians thus 

obtained formed the respective distributions shown in Fig S4.3. Comparing the posterior 

predictive distributions to the raw values based on the observed data (shown in red), again we 

see a high level of consistency between our model and the raw data. In fact, each year’s 90% 

predictive interval contained the raw value from that year (0.273 < 0.364 < 0.380 for 2006, and 

0.128 < 0.199 < 0.228 for 2009). Therefore, the two-sided posterior predictive p-value 

(probability that the posterior predictive naïve NIPAll value would be at least as extreme as the 

observed value) was > 0.1 for each year. (Small two-sided p-values would suggest poor fit.) 

The high goodness-of-fit of our models on the whole based on (a) and (b) does not 

preclude isolated anomalies in the fit. In particular, an anomaly for the 2009 analysis was that the 

posterior median for �.
a was always > 0.6, and was between 0.9 and 1.0 for 9 of the 18 sites. Due 

to this lack of spread, it is possible that the high posterior probabilities presented in Table 1 for 

NIPHIS-related regression coefficients (�ms) in 2009 were a pure artifact of statistical significance 

on the logit scale rather than practical significance in the ecological sense. 

For 2006, we additionally fitted a model that omitted ν from the data vector y. This naive 

model and the fully integrated model both yielded comparable inferences for infection-related 

parameters, namely, �X , �, and �e. However, the naive model yielded noticeably bigger posterior 

standard deviations (i.e., weaker inference) for NIPHIS-related parameters, namely, �a , �, and �e. 

Thus, modeling ν alongside z and t helped to improve our overall inference. 

Finally, we investigated the potential effect of the confounding false and true 

positives/negatives on our inference (see S6 Text for more on confounding). Throughout the 

paper, we have referred to �.
X , �.

hi , �.
ji, and �.

a as disease detection probabilities. It was out of 
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the scope of our studies to rigorously assess the actual discrepancy between �.
X and NIPAll or 

between �.
a and conditional NIPHIS. Still, we compared our inference to that obtained from a 

model that considered the marginal likelihood for t, as follows. 

Hypothetically, suppose RLB tests had been administered for all sampled ticks, even if 

�./ = 0. That is, pretend that each incidence of �./ (0, 1, or missing) had been observed from an 

RLB test, irrespective of the value of �./. Then, �.
~ = Prob(�./ = 1) = �.

X�.
a would be the 

marginal probability for any tick to test HIS+. Thus, for each year, we additionally fitted an 

integrated model based on Prob(�./ = 1) = �.
X�.

a, and compared the resulting inference to the 

model based on reality, i.e., based on Prob(�./ = 1 | �./ = 1) = �.
a and Prob(�./ = 1 | �./ = 0) = 0, 

as described throughout this paper. For both years, the hypothetical and realistic models yielded 

comparable inferences for infection-related parameters. This could be expected, because in each 

year, z was fully observed and modeled identically between models. However, inferences 

differed noticeably in various respects of NIPHIS-related parameters. For 2006, the posterior 

medians for �Z and some �.
as were noticeably different between models, and so were the 

posterior standard deviations (SDs) for �e, some �ms and some �.
as (on the logit scale). For 

2009, the hypothetical model slightly reduced the posterior SD for infection-related parameters, 

but at the expense of hugely increased posterior SDs for NIPHIS-related parameters. In both 

years, the hypothetical model was much worse in predictive performance according to the 

deviance information criterion (Table S4.1). 
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Table S4.1. Deviance information criteria (DIC), computed as the mean deviance plus half the 

deviance variance [3]. Smaller DIC values suggest better predictive performance. Note that DIC 

can be compared only between models that involve the same y, and thus cannot be compared 

between years. 

 

Model (all covariates) 2006 DIC 2009 DIC 

hypothetical > 1600 > 950 

realistic < 1500 < 650 
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Fig S4.1. Graphical representation of Table 1 in the main text. Panels A and C: Estimates 

(posterior medians) of regression slope parameters. Panels B and D: Posterior probabilities of 

positive or negative association between covariates and NIPAll (Panel B) or NIPHIS (Panel D). 

Blue plot symbols correspond to positive slope estimates, whereas red symbols correspond to 

negative slope estimates. Each plot symbol denotes the corresponding covariate under 

consideration, namely, ‘H’ for Shannon-Weiner diversity, ‘M’ for Mouse relative abundance, ‘C’ 

for Chipmunk relative abundance, and ‘S’ for Shrew relative abundance. For example, the largest 

value for 2006 in Panel B is the symbol ‘M’ in blue at a value of 0.96, indicating a posterior 

probability of 0.96 that mouse relative abundance is positively associated with NIPAll. 
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Fig S4.2. Examples of residual plots made up of violin plots of posterior distributions of �.s and 

�.s; the left half of any violin plot is the posterior distribution of the corresponding �. or �., and 

the right half is its mirror image.
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Fig S4.3. Posterior predictive distributions of the median value for  �.
p[ �.// , where “median” 

is defined respectively as the average between the 15th and 16th largest among the 30 sites in 

2006 (top panel), and the average between the 9th and 10th largest among the 18 sites in 2009 

(bottom panel). In the case of multiple sites yielding identical predicted values of �.// , the sites 

were ordered according to S7 File. See S8 File and S9 File for full details and additional 

posterior predictive summaries.  
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