Structural diversity of anti-pancreatic cancer capsimycins identified in mangrove-derived *Streptomyces xiamenensis* 318 and post-modification *via* a novel cytochrome P450 monooxygenase

He-Lin YU¹, Shu-Heng Jiang², Xu-Liang BU³, Jia-Hua WANG³, Jing-Yi Weng¹, Xiao-Mei Yang², Kun-Yan He¹, Zhi-Gang Zhang², Ping AO¹, Jun Xu^{3*} and Min-Juan XU^{1*}

¹ Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
² State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
³ State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Institute of Oceanology, Shanghai Jiao Tong University, Shanghai 200240, China

*Correspondence and requests for materials should be addressed to J. X. (xujunn@sjtu.edu.cn), M. X. (minjuanxu@sjtu.edu.cn)

Subject areas: *Streptomyces xiamenensis*, capsimycin, P450 monooxygenase, anti-pancreatic cancer

Supplementary materials

Figure S1. Coomassie blue stained SDS-PAGE gel analysis of IkaD
Figure S2. Alignment of IkaD to some macrolide P450 monooxygenases 8
Figure S3. Maximum-likelihood phylogenetic tree of the novel cytochrome P450 monooxgenase IkaD (full dendrogram)
Table S1. Summary of the P450 monooxygenases (Sxim_40690) BlastP analysis.
Figure S4. HPLC (A) and UPLC (B) profiles of ikarugamycin (1) conversions into capsimycin (3) and 3' catalyzed by IkaD <i>in vitro</i>
Figure S5. HPLC analysis of the changes of capsimycin (2), capsimycin B (3), and ikarugamycin (1) in methanol solution (contained 1‰ TFA) at 45 °C with different time
Figure S6. Analysis of capsimycin (2) and capsimycin B (3) acidification 14
Figure S7. Proposed three fragmentation patterns (A-C) of compound 1-7 in secondary mass spectrometry
Table S2. Fragment ions of compounds 1-7 in the positive mode
Figure S8. ESI-HR-MS/MS of 1
Figure S9. ESI-HR-MS/MS of 2
Figure S10. ESI-HR-MS/MS of 3 19
Figure S11. ESI-HR-MS/MS of 4
Figure S12. ESI-HR-MS/MS of 5

Figure S13. ESI-HR-MS/MS of 6	. 20
Figure S14. ESI-HR-MS/MS of 7	21
Figure S15. ESI-HR-MS/MS of 3'	21
Figure S16. UV spectra of compounds 1-7	22
Table S3. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of capsime (2).	ycin 23
Figure S17. HRESIMS of capsimycin (2) (Positve mode)	24
Figure S18. ¹ H NMR (600 MHz, CDCl ₃) spectrum of capsimycin (2)	24
Figure S19. ¹³ C NMR (600 MHz, CDCl ₃) spectrum of capsimycin (2)	. 25
Figure S20. DEPT 135 (600 MHz, CDCl ₃) spectrum of capsimycin (2)	25
Figure S21. HSQC (600 MHz, CDCl ₃) of capsimycin (2).	26
Figure S22. HMBC (600 MHz, CDCl ₃) of capsimycin (2)	26
Figure S23. COSY (600 MHz, CDCl ₃) of capsimycin (2).	27
Figure S24-a. NOESY (600 MHz, CDCl ₃) of capsimycin (2)	27
Figure S24-b. ROESY (600 MHz, CDCl ₃) of capsimycin (2)	28
Figure S25. HRESIMS of 3 (Positve mode)	28
Table S4. ¹ H (600 MHz) and ¹³ C (150 MHz) spectroscopic data of 3	29
Figure S26. ¹ H NMR (600 MHz, CDCl ₃) spectrum of 3	30
Figure S27. ¹³ C NMR (600 MHz, CDCl ₃) spectrum of 3	30
Figure S28. ¹³ C-DEPT 135 (600 MHz, CDCl ₃) spectrum of 3	. 31
Figure S29. HSQC (600 MHz, CDCl ₃) of 3.	31

Figure S30. HMBC (600 MHz, CDCl ₃) of 3
Figure S31. COSY (600 MHz, CDCl ₃) of 3
Figure S32. NOESY (600 MHz, CDCl ₃) of 3
Figure S33. HRESIMS of 4 (Positve mode)
Table S5. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 4 34
Figure S34. ¹ H NMR (600 MHz, MeOD/CDCl ₃) spectrum of 4 35
Figure S35. ¹³ C NMR (600 MHz, MeOD/CDCl ₃) spectrum of 4 35
Figure S36. ¹³ C-DEPT NMR (600 MHz, MeOD/CDCl ₃) spectrum of 4 36
Figure S37. HSQC (600 MHz, MeOD/CDCl ₃) of 4
Figure S38. HMBC (600 MHz, MeOD/CDCl ₃) of 4
Figure S39. COSY (600 MHz, MeOD/CDCl ₃) of 4
Figure S40. TOCSY (600 MHz, MeOD/CDCl ₃) of 4
Figure S41-a. NOESY (600 MHz, MeOD/CDCl ₃) of 4
Figure S41-b. ROESY (600 MHz, MeOD/CDCl ₃) of 4
Figure S42-a. FT-MS of 5 (Positve mode)
Figure S42-b. HR-MS of 5 (Positve mode)
Table S6. ¹ H (600 MHz) and ¹³ C (150 MHz) spectroscopic data of 5 41
Figure S43. ¹ H NMR (600 MHz, MeOD/CDCl ₃) spectrum of 5
Figure S44. ¹³ C NMR (600 MHz, MeOD/CDCl ₃) spectrum of 5 42
Figure S45. ¹³ C-DEPT NMR (600 MHz, MeOD/CDCl ₃) spectrum of 5 43
Figure S46. HSQC (600 MHz, MeOD/CDCl ₃) of 5

Figure S47. HMBC (600 MHz, MeOD/CDCl ₃) of 5 44
Figure S48. COSY (600 MHz, MeOD/CDCl ₃) of 5 44
Figure S49. TOCSY (600 MHz, MeOD/CDCl ₃) of 545
Figure S50-a. NOESY (600 MHz, MeOD/CDCl ₃) of 5 45
Figure S50-b. ROESY (600 MHz, MeOD/CDCl ₃) of 5 46
Figure S51. HRESIMS of 6 (Positve mode)
Table S7. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 6 47
Figure S52. ¹ H NMR (600 MHz, MeOD) spectrum of 6 48
Figure S53. ¹³ C NMR (600 MHz, MeOD) spectrum of 6
Figure S54. ¹³ C-DEPT NMR (600 MHz, MeOD) spectrum of 6 49
Figure S55. HSQC (600 MHz, MeOD) of 6
Figure S56. HMBC (600 MHz, MeOD) of 6
Figure S57. COSY (600 MHz, MeOD) of 6
Figure S58-a. NOESY (600 MHz, MeOD) of 6
Figure S58-b. ROESY (600 MHz, MeOD) of 6
Table S8. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 7
Figure S59. HRESIMS of 7 (Positve mode)
Figure S60. ¹ H NMR (600 MHz, MeOD) spectrum of 7
Figure S61. ¹³ C NMR (600 MHz, MeOD) spectrum of 7
Figure S62. ¹³ C-DEPT NMR (600 MHz, MeOD) spectrum of 7
Figure S63. HSQC (600 MHz, MeOD) of 7

Figure S64. HMBC (600 MHz, MeOD) of 7
Figure S65. COSY (600 MHz, MeOD) of 7
Figure S66-a. NOESY (600 MHz, MeOD) of 7
Figure S66-b. ROESY (600 MHz, MeOD) of 7
Table S9. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 3'
Figure S67. HRESIMS of 3' (Positve mode)
Figure S68. ¹ H NMR (600 MHz, 90% MeOD/C ₆ D ₆) spectrum of 3' 59
Figure S69. ¹³ C NMR (600 MHz, 90% MeOD/C ₆ D ₆) spectrum of 3' 60
Figure S70. ¹³ C-DEPT NMR (600 MHz, 90% MeOD/C ₆ D ₆) spectrum of 3' 60
Figure S71. HSQC (600 MHz, 90% MeOD/C ₆ D ₆) of 3' 61
Figure S72. HMBC (600 MHz, 90% MeOD/C ₆ D ₆) of 3' 61
Figure S73. COSY (600 MHz, 90% MeOD/C ₆ D ₆) of 3'
Figure S74. NOESY (600 MHz, 90% MeOD/C ₆ D ₆) of 3'
Figure S75. Kinetic analysis with Surface Plasmon Resonance (SPR) for A) ikarugamycin (1) and B) capsimycin B (3) binding to the IkaD 63
Table S10. Binding affinities and kinetic parameters for the interactions
between ikarugamycin (1) and capsimycin B (3) with IkaD as measured with SPR
Figure \$76. The reactions of consimultin $P_{1}(2)$ with NeV $(V - Cl Pr I)$

Figure S76. The reactions of capsimycin B (3) with NaX (X = Cl, Br, I). Targeted products were detected under the following conditions. A) Reaction of compound 3 in MeOH/H₂O; UPLC-total ion chromatography MS profiles of the products produced under the condition of B) 1 h after the mixing with TFA at room temperature; C) 1 h after the mixing with TFA at 45 °C; D) MS spectra

of (a) capsimycin B + HCl, (b) capsimycin B + HBr, and (c) capsimycin B + HI.

Figure S1. Coomassie blue stained SDS-PAGE gel analysis of IkaD.

Lanes: M, protein marker; 1, control, cell free supernatant of crude *E*. coli Rosetta (DE3) without IPTG induced; 2, expressing IkaD by IPTG induced; 3, purified C-terminal $6 \times$ His tagged IkaD.

Figure S2. Alignment of IkaD to some macrolide P450 monooxygenases.

The O₂ binding region and the heme binding pocket were showed as the solid line on the left and right, respectively. The scoring scheme works from 0 for the least conserved alignment position, up to 10 for the most conserved alignment position. MycG and MycCI (accession numbers Q59523 and Q83WF5), ChmPI and ChmHI (accession numbers AAS79447 and AAS79453), PimD (accession number CAC20932), EryK and EryF (accession numbers P48635 and AAA26496), and PikC (accession number O87605). The results were analysed from website of Centre for Integrative Bioinformatics VU (http://www.ibi.vu.nl/programs/#msa).

Figure S3. Maximum-likelihood phylogenetic tree of the novel cytochrome P450 monooxgenase IkaD (full dendrogram).

Maximum-likelihood phylogenetic tree of 430 representative amino acid sequences in the CYP107-clan and 6 CYP107-clan-like amino acid sequences, including the cytochrome P450 monooxgenase IkaD (SXIM_40690, GI:820150722). The tree was rooted using a

CYP102-clan of P450 superfamily member (GI:490075884 from *S. coelicolor*). The part of the dendrogram shown in Figure 5 was labeled in color. Bar, 0.02 substitutions per nucleotide position. Number for each branch is consisted of three letters that stand for the homologues family id according to CYPED, and follow by a string of NCBI gi number after the blank space.

Table S1. Summary of the P450 monooxygenases (Sxim_40690) BlastPanalysis.

Query protein	Size*	Locus	Name	Identity/Coverage				
	1			2	3	4	5	6
WP_046725809.1	3125	SXIM_40840	IkaA	99/100	99/99	87/99	70/99	67/99
WP_053116264.1	611	SXIM_40830	IkaB	100/100	99/97	92/93	75/97	68/90
WP_030733536.1	349	SXIM_40820	IkaC	99/100	\	89/100	66/99	64/100
WP_046724814.1	409	SXIM_40690	IkaD	99/100	99/100	90/100	59/97	\

1, *Streptomyces* xiamenensis 318; 2, *Streptomyces* sp. ZJ306; 3, *Streptomyces* sp. NRRL F-2890; 4, *Streptomyces* sp. AA0539; 5, *Streptomyces* avicenniae; 6, *Streptomyces* grisesus. Size*, amino acid numbers.

Figure S5. HPLC analysis of the changes of capsimycin (2), capsimycin B (3), and ikarugamycin (1) in methanol solution (contained 1‰ TFA) at 45 °C with different time.

Figure S6. Analysis of capsimycin (2) and capsimycin B (3) acidification.

A) Extracted ion chromatography of compounds related to acidized 2 and 3 by UPLC-ESI-MS. B) proposed mechanisms for acidification of 2 and 3.

Figure S7. Proposed three fragmentation patterns (A-C) of compound **1-7** in secondary mass spectrometry.

	m/z Found	m/z Calculated	%Base	Formula	mDa	ppm
ika (1)	479.2908	479.2910	100	$C_{29}H_{39}N_2O_4$	-0.2	-0.4
	461.2809	461.2804	52	$C_{29}H_{37}N_2O_3$	0.5	1.1
	443.2706	443.2699	52	$C_{29}H_{35}N_2O_2$	0.7	1.6
	433.2835	433.2855	12	$C_{28}H_{37}N_2O_2$	-2.0	-4.6
	425.2594	425.2593	16	$C_{29}H_{33}N_2O$	0.1	0.2
	323.2031	323.2011	26	$C_{22}H_{27}O_2$	2.0	6.2
	305.1914	305.1905	40	$C_{22}H_{25}O$	0.9	2.9
	295.2082	295.2062	27	$C_{21}H_{27}O$	2.0	6.8
	281.1920	281.1905	84	$C_{20}H_{25}O$	1.5	5.3
	263.1814	263.1800	69	$C_{20}H_{23}$	1.4	5.3
	253.1966	253.1956	99	$C_{19}H_{25}$	1.0	3.9
	211.1488	211.1487	40	$C_{16}H_{19}$	0.1	0.5
	193.0997	193.0977	50	$C_{10}H_{13}N_2O_2$	2.0	10.4
	181.0990	181.0977	55	$C_9H_{13}N_2O_2$	1.3	7.2
	165.0679	165.0664	79	$C_8H_9N_2O_2$	1.5	9.1
	139.0882	139.0871	97	$C_7H_{11}N_2O$	1.1	7.9
	109.1028	109.1017	39	C ₈ H ₁₃	1.1	10.1
cap (2)	525.2966	525.2965	39	$C_{30}H_{40}N_2O_6$	0.1	0.2
	507.2869	507.2859	15	$C_{30}H_{39}N_2O_5$	1.0	2.0
	493.2694	493.2702	100	$C_{29}H_{37}N_2O_5$	-0.8	-1.6
	475.2598	475.2597	98	$C_{29}H_{35}N_2O_4$	0.1	0.2
	457.2501	457.2491	42	$C_{29}H_{33}N_2O_3$	1.0	2.2
	449.2454	449.2440	22	$C_{27}H_{33}N_2O_4$	1.4	3.1
	439.2401	439.2386	15	$C_{29}H_{31}N_2O_2$	1.5	3.4
	429.2520	429.2542	11	$C_{28}H_{33}N_2O_2$	-2.2	-5.1
	319.1720	319.1698	14	$C_{22}H_{23}O_2$	2.2	6.9
	291.1761	291.1749	14	$C_{21}H_{23}O$	1.4	4.1
	277.1612	277.1592	45	$C_{20}H_{21}O$	2.0	7.2
	249.1616	249.1643	16	$C_{19}H_{21}$	-2.7	-10.8
	209.1350	209.1330	22	$C_{16}H_{17}$	2.0	9.6
	193.0999	193.0977	22	$C_{10}H_{13}N_2O_2$	2.2	11.4
	181.1000	181.0977	32	$C_9H_{13}N_2O_2$	2.3	12.7
	165.0684	165.0664	47	$C_8H_9N_2O_2$	2.0	12.1
	139.0892	139.08/1	50	$C_7H_{11}N_2O$	2.1	15.1
2000 D (2)	122.0028	122.0000	0 96	C U N O	2.2	18.0
сар В (3)	495.2855	495.2859	80 100	$C_{29}H_{39}N_2O_5$	-0.6	-1.2
	477.2701	477.2733	100	$C_{29}\Pi_{37}\Pi_{2}O_{4}$	0.0	1.7
	439.2001	439.2048	34	$C_{29}H_{35}IN_2O_3$	1.5	2.8
	441.2349	441.2342	20	$C_{29}\Pi_{33}IN_2O_2$	0.7	1.0
	431.2094	431.2099	14	$C_{28}\Pi_{35}\Pi_{2}O_{2}$	-0.3	-1.2
	521.1655 202.1016	521.1655 202 1005	13	$C_{22}\Pi_{25}O_2$	0.0	0.0
	273.1910 270.1764	293.1903	14	$C_{21}\Pi_{25}O$	1.1 1 7	5.ð 4 1
	219.1700	219.1149	40 19		1./	0.1
	231.1799	231.1000	10	$C_{19}\Pi_{23}$	-0.1	-0.4
	211.1407 193 0991	211.1407 103 0077	20	$C_{10}H_{10}N_{2}O_{2}$	0.0 1 A	0.0 7 3
	193.0771	195.07//	20	C_{10} 1_{13} N_2 O_2	1.4	1.5

Table S2. Fragment ions of compounds 1-7 in the positive mode.

	181.0993	181.0977	34	$C_9H_{13}N_2O_2$	1.6	8.8
	165.0679	165.0664	55	$C_8H_9N_2O_2$	1.5	9.1
	139.0885	139.0871	55	C7H11N2O	1.4	10.1
cap C (4)	513.2963	513.2965	17	$C_{29}H_{41}N_2O_6$	-0.2	0.4
	495.2858	495.2859	42	$C_{29}H_{39}N_2O_5$	-0.1	-0.2
	477.2717	477.2753	100	$C_{29}H_{37}N_2O_4$	-3.6	-7.5
	459.2641	459.2648	52	$C_{29}H_{35}N_2O_3$	-0.7	-1.5
	441.2534	441.2542	29	$C_{29}H_{33}N_2O_2$	-0.8	-1.8
	424.2310	424.2277	18	$C_{29}H_{30}NO_2$	3.3	7.6
	321 1847	321 1855	22	$C_{22}H_{25}O_{2}$	-0.8	-2.5
	303 1726	303 1749	20	$C_{22}H_{23}O_2$	-2.3	-7.6
	293 1906	293 1905	15	$C_{22}H_{23}O$	0.1	0.3
	279 1743	279 1749	82	$C_{21}H_{23}O$	-0.6	-2.1
	251 1777	251 1800	28	C10H22	-2.3	-9.2
	211 1485	211 1487	31	$C_{19}H_{23}$	-0.2	-0.9
	193 0987	193 0977	24	$C_{10}H_{12}N_2O_2$	1.0	5.2
	181 0986	181 0977	33	$C_0H_{13}N_2O_2$	0.9	5.0
	165.0672	165.0664		CoHoNoOo	0.9	1.8
	139 0875	139 0871	40 50	$C_{8}H_{11}N_{2}O_{2}$	0.8	29
can D (5)	531 2604	531 2626	51			
cap D (3)	513 2505	513 2520	38	$C_{29}H_{40}N_2O_5Cl$	-2.2	-7.9
	495 2504	A95 2495	15	CasHarNaOr	0.9	-2.9
	495.2504	495.2495	15 64	$C_{28}H_{35}N_2O_6$	3.5	73
	477.2718	477.2755	41	$C_{29}\Pi_{3}/N_{2}O_{4}$	-5.5	-7.5
	439.2037	439.2048	41	$C_{29}II_{35}IV_{2}O_{3}$	-1.1	-2.4
	441.2338	441.2342	21	$C_{29}II_{33}IN_2O_2$	-0.4	-0.9
	321 1854	321 1855	21	CarHarOa	0.1	0.3
	303 1750	303 1749	22	C22112502	-0.1	-0.3
	203 1000	203 1005	21	C ₂₂ H ₂₃ O	0.1	0.5
	295.1900	293.1905	100		-0.5	-1.7
	279.1743	279.1749	41	C ₂₀ 11230	-0.0	-2.1
	211 1/83	211 1487	-11		-0.2	-3.0
	103 0086	103 0005	34	$C_{16}H_{19}$	-0.4	-1.9
	193.0980	195.0995	17 17	$C_{10}H_{13}N_2O_2$	0.9	4.7
	161.0982	161.0977	47 50	$C_{9}H_{13}N_{2}O_{2}$	0.5	2.8
	130.0878	130.0004	51	$C_8 H_9 N_2 O_2$	1.0	0.1 5.0
	100 1021	100 1017	JI 16		0.7	3.0
aan E(6)	557 2220	557 2007	5		0.4	1.2
cap E (0)	537.5220	537.5227	22	$C_{31}H_{44}N_2O_7$	-0.7	-1.2
	507 2808	525.2905	10	$C_{30}\Pi_{40}N_2O_6$	0.4	0.7
	307.2898	307.2839	19	$C_{30}\Pi_{39}\Pi_2O_5$	5.9	7.7
	493.2712	493.2702	20	$C_{29}H_{37}N_2O_5$	1.2	2.0
	475.2589	4/5.259/	100	$C_{29}H_{35}N_2O_4$	-0.8	-1./
	457.2512	457.2491	33	$C_{29}H_{33}N_2O_3$	2.1	4.0
	449.2455	449.2440	43	$C_{27}H_{33}N_2O_4$	1.5	5.5
	439.2412	439.2386	14	$C_{29}H_{31}N_2O_2$	2.6	5.9
	431.2369	451.2555	10	$C_{27}H_{31}N_2O_3$	5.4	1.9
	319.1/14	319.1698	12	$C_{22}H_{23}O_2$	1.0	5.0
	277.1609	277.1592	49	$C_{20}H_{21}O$	1./	6.1
	249.1599	249.1643		$C_{19}H_{21}$	-4.4	-1/.6
	209.1353	209.1330	26	$C_{16}H_{17}$	2.3	11.0
	193.1010	193.0977	16	$C_{10}H_{13}N_2O_2$	3.3	17.1
	181.1006	181.0977	18	$C_9H_{13}N_2O_2$	2.9	16.0
	165.0687	165.0664	21	$C_8H_9N_2O_2$	2.3	13.9

	139.0894	139.0871	27	$C_7H_{11}N_2O$	2.3	16.5
cap F (7)	527.3118	527.3121	15	$C_{30}H_{42}N_2O_6$	-0.3	-0.5
	509.2995	509.3015	15	$C_{30}H_{40}N_2O_5$	-2.0	-3.9
	495.2838	495.2859	33	$C_{29}H_{39}N_2O_5$	-2.1	-4.2
	477.2728	477.2753	100	$C_{29}H_{36}N_2O_4$	-2.5	-5.2
	459.2649	459.2648	55	$C_{29}H_{35}N_2O_3$	0.1	0.2
	441.2510	441.2542	33	$C_{29}H_{33}N_2O_2$	-3.2	-7.3
	424.2281	424.2277	18	$C_{29}H_{30}NO_2$	0.4	0.9
	321.1837	321.1855	23	$C_{22}H_{25}O_2$	-1.8	-5.6
	303.1750	303.1749	23	$C_{22}H_{23}O$	0.1	0.3
	279.1742	279.1749	95	$C_{20}H_{23}O$	-0.7	-2.5
	251.1781	251.1800	26	$C_{19}H_{23}$	-1.9	-7.6
	211.1487	211.1487	36	$C_{16}H_{19}$	0.0	0.0
	193.0986	193.0977	25	$C_{10}H_{13}N_2O_2$	0.9	4.7
	181.0982	181.0977	28	$C_9H_{13}N_2O_2$	0.5	2.8
	165.0677	165.0664	34	$C_8H_9N_2O_2$	1.3	7.9
	139.0879	139.0871	46	$C_7 H_{11} N_2 O$	0.8	5.8
capG (3')	511.2825	511.2808	14	C29H39N2O6	1.7	3.3
	493.2687	493.2702	100	C29H37N2O5	-1.5	-3.0
	475.2615	475.2597	68	C29H35N2O4	1.8	3.8
	457.2487	457.2491	18	C29H33N2O3	-0.4	-0.9
	319.1688	319.1698	14	C22H23O2	-1.0	-3.1
	277.1656	277.1592	50	C20H21O1	6.4	23.1
	193.0978	193.0977	32	C10H13N2O2	0.1	0.5
	181.0948	181.0977	27	C9H13N2O2	-2.9	-16.0

Figure S8. ESI-HR-MS/MS of 1.

Figure S9. ESI-HR-MS/MS of 2.

Figure S10. ESI-HR-MS/MS of 3.

Figure S11. ESI-HR-MS/MS of 4.

Figure S12. ESI-HR-MS/MS of 5.

Figure S13. ESI-HR-MS/MS of 6.

Figure S14. ESI-HR-MS/MS of 7.

Figure S15. ESI-HR-MS/MS of 3'.

Figure S16. UV spectra of compounds 1-7.

Table S3. ¹H (600 MHz) and ¹³C (150 MHz) spectroscopic data of capsimycin (2).

Position	δ _C , type	$\delta_{\rm H}$, multi (J in H _Z)	HMBC (correlations from H to C)
1	196.5, C		
2	61.6, CH	3.83, br d (3.6)	1, 3, 4, 27
3	27.2, CH ₂	1.75, m	1, 2, 4, 5
		1.97, m	
4	20.9, CH ₂	1.19, m	2, 3, 5
		1.47, m	
5	38.9, CH ₂	2.55, br t (10.4)	3, 4, 7
		3.61, m	
6-NH		6.39, br s	5,7
7	166.3, C		
8	124.2, CH	5.82, dd (11.4, 2.0)	7, 9, 10
9	140.0, CH	6.04, ddd (11.4, 11.4, 2.3)	7, 8, 11
10	25.3, CH ₂	2.36, m	8, 9, 11, 12
		3.67, m	
11	45.5, CH	1.65, m	9, 10, 12, 13, 23
12	40.1, CH	2.31, m	10, 11, 13, 14, 15, 20
13	53.8, CH	2.87, d (4.0)	11, 12, 14, 20
14	58.3, CH	3.22, dd (4.0, 2.1)	15
15	47.1, CH	0.95, m	14, 16, 20, 30
16	50.1, CH	1.87, m	14, 15, 17, 30, 31
17	33.6, CH	2.30, m	16, 18, 29, 30
18	39.0, CH ₂	0.59, m	15, 16, 17, 19, 20, 29
		1.96, m	
19	47.5, CH	1.07, m	14, 15, 18, 20, 21
20	40.8, CH	1.67, m	11, 12, 18, 21
21	36.8, CH ₂	1.11, m	11, 12, 19, 20, 22, 23
		2.07, m	
22	48.7, CH	2.44, m	10, 11, 21, 23, 24
23	151.2, CH	6.69, dd (15.4, 10.1)	11, 21, 22, 24, 25, 26
24	122.7, CH	7.11, d (15.4)	11, 22, 23, 25, 26
25	173.6, C		
26	100.7, C		
27	175.7, C		
28-NH		7.17, br s	
29	17.7, CH ₃	0.93, d (7.2)	16, 17, 18
30	77.4, CH	3.30, m	16, 17, 33
31	17.4, CH ₃	1.25, d (7.2)	16, 30

Measured in CDCl₃. δ values are given in ppm.

Figure S17. HRESIMS of capsimycin (2) (Positve mode).

Single Mas	s Analysis												
Tolerance =	5.0 PPM / D	BE: min	= -1.5, m	ax = 50.0	0								
Element pred	diction: Off												
Number of is	otope peaks u	sed for i-	FIT = 3										
Monoisotopic 558 formula(e Elements Use C: 0-35 H:	Mass, Even Elec) evaluated with d: 0-100 N: 0-5	ctron lons 2 results O: 0-2	within limi O	its (up to t	50 best is	sotopic mate	ches for ea	ch ma	ss)				
XMJ_20151227	_YHL_04 238 (5.0	93) Cm (2	37:239)									1: TO	F MS ES+
100 81.795	9 277.1591	475.2	2617 525.29	975 624.21	71	787.9521	999.5653	1049.5	5902 _1102	2.5021	1365	.6597	9.010+004
100	200 300	400	500	600	700	800	900 1	000	1100	1200	1300	1400	1500
Minimum: Maximum:		5.0	5.0	-1.5 50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Form	ula				
525.2975	525.2965 525.2983	1.0 -0.8	1.9 -1.5	11.5 -1.5	256.0 256.6	0.427 1.057	65.26 34.74	C30 C18	H41 N2 H45 N4	06 013			

Figure S18. ¹H NMR (600 MHz, CDCl₃) spectrum of capsimycin (2).

Figure S19. ¹³C NMR (600 MHz, CDCl₃) spectrum of capsimycin (2).

Figure S21. HSQC (600 MHz, CDCl₃) of capsimycin (2).

Figure S22. HMBC (600 MHz, CDCl₃) of capsimycin (2).

Figure S24-a. NOESY (600 MHz, CDCl₃) of capsimycin (2).

Figure S24-b. ROESY (600 MHz, CDCl₃) of capsimycin (2).

Figure S25. HRESIMS of 3 (Positve mode).

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 340 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-35 H: 0-100 N: 0-5 O: 0-10 3151 XMJ_20151227_YHL_03 288 (6.165) Cm (287:288)

100 139.08	53 279.1720 200 30	0 <u>343.1664</u> 0	459.2644 	495.2854	594.21 60	1 <u>18 686</u> 0	5.4368 700	870.5217 800	916.4982 900	989.5686 	.5608 1100
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
495.2854	495.2859 495.2819 495.2899	-0.5 3.5 -4.5	-1.0 7.1 -9.1	11.5 7.5 15.5	214.3 214.0 215.5	0.980 0.672 2.173	37.55 51.07 11.39	C29 H39 N2 C24 H39 N4 C34 H39 O3	05 07		

1: TOF MS ES+

Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, multi (<i>J</i> in H _Z)	HMBC (correlations from H to C)
1	195.9, C		
2	61.4, CH	3.85, br d (3.7)	1, 3, 4, 27
3	27.4, CH ₂	1.77, m	1, 2, 4, 5
		1.98, m	
4	21.0, CH ₂	1.20, m	2, 3, 5
		1.51, m	
5	38.9, CH ₂	2.56, br t (11.4)	3, 4, 7
		3.63, m	
6-NH			
7	166.3, C		
8	124.2, CH	5.79, dd (11.6, 2.0)	7, 9, 10
9	140.4, CH	6.06, ddd (11.6, 11.6, 2.5)	7, 10, 11
10	25.5, CH ₂	2.38, m	8, 9, 11, 22
		3.61, m	
11	45.2, CH	1.65, m	9, 10, 12, 13, 23
12	40.8, CH	2.34, m	10, 11, 13, 14, 19, 20
13	53.5, CH	2.89, d (3.8)	11, 12, 14, 20
14	57.7, CH	3.13, dd (3.8, 2.0)	15, 16
15	49.6, CH	0.91, m	14, 16, 20, 30
16	46.6, CH	1.60, m	14, 15, 17, 29, 30, 31
17	33.0, CH	2.18, m	15, 16, 18, 29
18	38.3, CH ₂	0.59, m	15, 16, 17, 19, 20, 29
		1.96, m	
19	47.9, CH	1.01, m	14, 15, 18, 20, 21
20	40.7, CH	1.70, m	11, 12, 15, 18, 19, 21
21	36.6, CH ₂	1.11, m	11, 12, 19, 20, 22
		2.06, m	
22	48.9, CH	2.46, m	10, 11, 21, 23, 24
23	151.6, CH	6.70, dd (15.6, 10.2)	11, 21, 22, 24, 25
24	122.7, CH	7.11, d (15.6)	11, 21, 22, 23, 25, 26
25	173.7, C		
26	100.6, C		
27	175.5, C		
28-NH			
29	17.5, CH ₃	0.81, d (7.3)	16, 17, 18
30	22.5, CH ₂	1.44, m	15, 16, 17, 31
31	13.2, CH ₃	0.94, d (7.3)	16, 30

Table S4. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 3.

Measured in CDCl₃. δ values are given in ppm.

Figure S26. ¹H NMR (600 MHz, CDCl₃) spectrum of 3.

Figure S27. ¹³C NMR (600 MHz, CDCl₃) spectrum of **3**.

Figure S28. ¹³C-DEPT 135 (600 MHz, CDCl₃) spectrum of **3**.

Figure S29. HSQC (600 MHz, CDCl₃) of 3.

Figure S30. HMBC (600 MHz, CDCl₃) of **3**.

Figure S31. COSY (600 MHz, CDCl₃) of 3.

Figure S33. HRESIMS of 4 (Positve mode).

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 195 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 24-35 H: 6-100 N: 2-5 O: 2-20 100-1-12 XMJ_20151103_06 218 (4.683) Cm (218)

100-1 XMJ_	-12 20151103_	06 218 (4.	.683) Cm	(218)									1: TO	F MS ES+
100	118.0828	240.20)7 <u>0</u>	477.2729	513.2958	07.3293,645.	2859 781.6	6400 971.635	4 1026,5897	1079.54	¹⁷⁹ 1173.6	614		1.650+004
Ū	100	200	300	400	500	600 70	008 00	900	1000	1100	1200	1300	1400	1500
Mini Maxi	mum: mum:			5.0	10.0	-1.5 50.0								
Mass		Calc.	Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Form	nula			
513.	2958	513.29 513.29	65 24	-0.7 3.4	-1.4 6.6	10.5 6.5	26.3 29.4	0.044 3.151	95.72 4.28	C29 C24	H41 N H41 N4	12 06 08		

Page 1

Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$ (multi., J in H _Z)	HMBC (correlations from H to C)
1	197.5, C		
2	61.8, CH	3.79, dd (5.5, 2.1)	1, 3, 4, 27
3	27.5, CH ₂	1.71, m	1, 2, 4, 5
		1.96, m	
4	21.3, CH ₂	1.06, m	3, 5
		1.51, m	
5	39.2, CH ₂	2.54, br t (11.5)	3, 4, 7
		3.50, ddd (11.5, 4.6, 2.9)	
6-NH			
7	167.7, C		
8	123.6, CH	5.75, dd (11.6, 1.9)	7, 10
9	142.3, CH	5.99, dd (11.6, 3.1)	7, 11
10	26.9, CH ₂	2.40, ddd (17.5, 3.0, 3.0)	8, 9, 11, 12
		3.29, m	
11	46.0, CH	1.97, m	12, 20, 22
12	46.6, CH	1.91, dd (10.6, 4.0)	11, 13, 14, 19, 20
13	74.6, CH	3.72, br t (3.8)	12, 14, 15, 19, 20
14	72.1, CH	3.74, br t (3.8)	12, 13, 15
15	48.0, CH	1.38, dd (11.0, 3.6)	16, 19, 30
16	42.5, CH	1.68, m	17, 18, 20, 29, 31
17	33.3, CH	2.10, m	15, 16, 18, 19, 29
18	39.5, CH ₂	0.61, m	15, 16, 17, 19, 20, 29
		2.05, dd (12.3, 7.5)	
19	41.0, CH	1.51, m	18, 20
20	43.5, CH	1.90, m	13, 18, 19
21	36.1, CH ₂	1.20, m	11, 19, 20, 22
		1.99, m	
22	49.9, CH	2.33, m	11, 21, 23, 24
23	153.4, CH	6.75, dd (15.4, 10.3)	11, 21, 22, 25
24	122.3, CH	7.03, d (15.4)	22, 23, 25, 26
25	173.7, C		
26	101.0, C		
27	175.8, C		
28-NH			
29	17.6, CH3	0.81, d (7.0)	16, 17, 18
30	21.9, CH2	1.27, m	16, 17, 31
31	13.0, CH3	0.86, t (7.38)	16, 30

Table S5. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 4.

Measured in 90% CDCl₃/CD₃OD. δ values are given in ppm.

Figure S35. ¹³C NMR (600 MHz, MeOD/CDCl₃) spectrum of 4.

Figure S34. ¹H NMR (600 MHz, MeOD/CDCl₃) spectrum of 4.

Figure S37. HSQC (600 MHz, MeOD/CDCl₃) of 4.

Figure S36. ¹³C-DEPT NMR (600 MHz, MeOD/CDCl₃) spectrum of 4.
Figure S38. HMBC (600 MHz, MeOD/CDCl₃) of 4.

Figure S39. COSY (600 MHz, MeOD/CDCl₃) of 4.

Figure S40. TOCSY (600 MHz, MeOD/CDCl₃) of 4.

Figure S41-a. NOESY (600 MHz, MeOD/CDCl₃) of 4.

Figure S41-b. ROESY (600 MHz, MeOD/CDCl₃) of 4.

Figure S42-a. FT-MS of 5 (Positve mode).

Figure S42-b. HR-MS of 5 (Positve mode).

Elemental Composition Report

Single Mass Analysis

Monoisotopic Mass, Even Electron Ions 975 formula(e) evaluated with 5 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-35 H: 0-100 N: 0-5 O: 0-10 CI: 0-2 WJY-170 XMJ_20151028_03 282 (6.059) Cm (280:282)

601.3491_686_4321___888.4955___1063.5266_1115.4318 0 500 600 700 800 900 1000 1100 1200 1200 1400 531.2623 ¹⁰⁰ <u>205,1954</u> <u>358,2377</u> <u>358,2377</u> <u>205,1954</u> <u>358,2377</u> <u>358,2377</u> 100 200 300 400 $^{-1.5}_{50.0}$ Minimum: 5.0 Maximum: 5.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 10.5 5.5 1.5 15.5 C29 H40 N2 O5 C1 C28 H45 O5 C12 C23 H45 N2 O7 C12 531.2623 531,2626 -0.3 -0.6 213.8 0.000 99.99 -2.1 9.114 0.01 10.366 0.00 12.483 0.00 531.2644 -4.0222.9 224.2 531.2604 1.9 3.6 1.6 531.2607 3.0 226.3 C30 H35 N4 O5 531.2648 -4.7 226.4 C35 H35 N2 O3 -2.519.5 12.622 0.00

Page 1

1: TOF MS ES+ 5.82e+004

Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$ (multi., J in H _Z)	HMBC (correlations from H to C)
1	197.1, C		
2	61.6, CH	3.88, dd (5.5, 2.1)	1, 3, 4, 27
3	27.5, CH ₂	1.82, m	1, 2, 4, 5
		2.05, m	
4	21.1, CH ₂	1.18, m	
		1.62, m	
5	39.0, CH ₂	2.65, br t (11.2)	3, 4, 7
		3.55, ddd (11.2, 4.9, 3.0)	
6-NH			
7	167.2, C		
8	123.7, CH	5.84, dd (11.5, 1.3)	7, 10
9	141.6, CH	6.06, ddd (11.5, 11.5, 3.4)	7, 10, 11
10	26.4, CH ₂	2.53, dd (17.3, 3.0)	8, 9, 11, 22
		3.38, m	
11	45.6, CH	2.14, m	12, 20, 22
12	47.3, CH	2.07, m*	13, 14, 20
13	73.7, CH	4.13, br t (2.6)	11, 14, 20
14	64.7, CH	4.23, br t (2.9)	13, 15, 19
15	47.0, CH	1.77, m	14, 17, 20
16	44.7, CH	1.76, d (3.3)	14, 15, 30
17	32.6, CH	2.21, m	15, 16, 18, 19, 29
18	38.6, CH ₂	0.75, m	15, 16, 17, 19, 20, 29
		2.19, d (7.6)	
19	41.1, CH	1.61, m	12, 15, 20
20	42.6, CH	2.07, m*	13, 18, 19
21	35.6, CH ₂	1.29, m	11, 12, 20, 22
		2.13, dd (7.6, 4.8)	
22	49.6, CH	2.41, m	11, 21, 23, 24, 25
23	153.0, CH	6.83, dd (15.4, 10.3)	11, 21, 22, 24, 25
24	122.2, CH	7.13, d (15.4)	22, 23, 25, 26
25	173.6, C		
26	100.8, C		
27	175.6, C		
28-NH			
29	17.7, CH3	0.90, d (6.8)	16, 17, 18
30	21.2, CH2	1.35, m	16, 17, 31
31	12.8, CH3	0.94, t (7.38)	16, 30

Table S6. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 5.

Measured in 90% CDCl₃/CD₃OD. δ values are given in ppm. (* inseperatable)

Figure S46. HSQC (600 MHz, MeOD/CDCl₃) of 5.

43

Figure S47. HMBC (600 MHz, MeOD/CDCl₃) of 5.

Figure S48. COSY (600 MHz, MeOD/CDCl₃) of 5.

Figure S49. TOCSY (600 MHz, MeOD/CDCl₃) of 5.

Figure S50-a. NOESY (600 MHz, MeOD/CDCl₃) of 5.

Figure S50-b. ROESY (600 MHz, MeOD/CDCl₃) of 5.

Figure S51. HRESIMS of 6 (Positve mode).

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 201 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-40 H: 0-50 N: 0-4 O: 0-10 289-AA-main1 XMJ_20160319_YHL_01 220 (4.717) Cm (219:221)

						7 0005							э.	730+004
100	85.059	3 274.2740	387.1	794 475.2	2584 55	7.3235	6.2434_698.2	2418 862.4	1318 106	9.6135 1113.641	⁵ _1166.555	5		m/ _
0-111	100	200 ;	300	400	500	600	700	800	900 1	000 1100	1200	1300	1400	1500
Minimu Maximu	1m: 1m:			5.0	5.0	-1.5 50.0								
Mass		Calc. Mas	ss	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
557.32	235	557.3227		0.8	1.4	10.5	228.6	n/a	n/a	C31 H45 N2	07			

1: TOF MS ES+

Position	δ _C , type	$\delta_{\rm H}$, multi (<i>J</i> in H _Z)	HMBC (correlations from H to C)
1	198.2, C		
2	62.9, CH	3.85, br d (4.0)	1, 3, 4, 27
3	28.3, CH2	1.84, m	1, 2, 4, 5
		1.99, m	
4	22.0, CH2	1.18, m	3, 5
		1.54, m	
5	40.0, CH2	2.66, br t (11.0)	3, 4, 7
		3.40, m	
6-NH			
7	168.8, C		
8	124.7, CH	5.84, d (11.3)	7, 9, 10
9	142.6, CH	6.06, td (11.3, 3.8)	7, 10, 11
10	27.6, CH2	2.45, d (15.7)	8, 9, 11
		3.49, m	
11	45.9, CH	2.01, m	
12	49.6, CH	2.02, m	13, 19, 20
13	68.7, CH	4.08, br	14, 15, 19
14	83.0, CH	3.46, t (2.7)	12, 13, 15, 33
15	44.7, CH	1.69, dd (11.2, 2.6)	16, 19, 30
16	45.9, CH	2.06, m	14, 15, 17, 19, 30, 31
17	35.0, CH	2.18, m	16, 18, 29
18	40.9, CH2	0.67, m	16, 17, 19, 20, 29
		2.03, m	
19	42.7, CH	1.56, m	14, 15, 18, 20, 21
20	42.6, CH	2.00, m	12, 13
21	36.3, CH2	1.27, m	12, 20, 22
		2.08, m	
22	51.2, CH	2.37, m	10, 11, 21, 23, 24
23	153.0, CH	6.75, dd (15.8, 10.5)	11, 21, 22, 24, 25
24	123.7, CH	7.13, d (15.8)	11, 21, 22, 23, 25, 26
25	174.1, C		
26	102.2, C		
27	176.9, C		
28-NH			
29	18.4, CH3	1.00, d (7.1)	16, 17, 18
30	79.1, CH	3.39, m	16, 17, 31, 32
31	18.0, CH3	1.20, d (6.1)	16, 30
32	55.8, CH3	3.29, s	30
33	58.6, CH3	3.42, s	14

Table S7. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 6.

Measured in CD₃OD. δ values are given in ppm.

Figure S52. ¹H NMR (600 MHz, MeOD) spectrum of 6.

Figure S53. ¹³C NMR (600 MHz, MeOD) spectrum of 6.

Figure S54. ¹³C-DEPT NMR (600 MHz, MeOD) spectrum of 6.

Figure S55. HSQC (600 MHz, MeOD) of 6.

Figure S56. HMBC (600 MHz, MeOD) of 6.

Figure S57. COSY (600 MHz, MeOD) of 6.

Figure S58-a. NOESY (600 MHz, MeOD) of 6.

Figure S58-b. ROESY (600 MHz, MeOD) of 6.

Position	δ _C , type	$\delta_{\rm H}$, multi (<i>J</i> in H _Z)	HMBC (correlations from H to C)
1	198.2, C		
2	62.9, CH	3.85, br d (3.87)	1, 3, 4, 27
3	28.3, CH2	1.84, m	1, 2, 4, 5
		1.99, m	
4	22.0, CH2	1.19, m	3, 5
		1.54, m	
5	40.0, CH2	2.66, br t (10.9)	3, 4, 7
		3.40, m	
6-NH			
7	168.9, C		
8	124.7, CH	5.84, d (10.8)	7, 9, 10
9	142.7, CH	6.06, td (10.8, 3.8)	7, 10, 11
10	27.6, CH2	2.45, br d (15.3)	8, 11, 12
		3.46, m	
11	45.7, CH	2.00, m	9, 12
12	49.6, CH	2.01, m	11, 13, 14, 20
13	68.7, CH	4.08, br t (2.2)	11, 14, 15, 19
14	82.5, CH	3.38, m	13, 19, 33
15	47.6, CH	1.46, dd (11.5, 2.7)	16, 30
16	43.8, CH	1.73, m	15, 17, 29, 30, 31
17	33.8, CH	2.16, m	18, 29
18	40.2, CH2	0.66, m	15, 17, 20, 29
		2.14, m	
19	42.9, CH	1.53, m	14, 15, 18, 20, 21
20	43.0, CH	1.98, m	12, 21
21	36.3, CH2	1.24, m	11, 20, 22, 23
		2.08, m	
22	51.2, CH	2.37, m	10, 11, 21, 23, 24
23	153.2, CH	6.74, dd (15.3, 10.4)	11, 21, 22, 25
24	123.3, CH	7.13, d (15.3)	22, 25, 26
25	173.7, C		
26	102.2, C		
27	177.1, C		
28-NH			
29	18.0, CH3	0.89, d (3.5)	16, 17, 18
30	22.6, CH2	1.37, m	15, 16, 17, 31
31	13.6, CH3	0.95, t (7.6)	16, 30
32			
33	59.0, CH3	3.42, s	14

Table S8. 1 H (600 MHz) and 13 C (150 MHz) spectroscopic data of 7.

Figure S59. HRESIMS of 7 (Positve mode).

Elemental Composition Report

Elemental	Composition	n Repo	rt								Page 1
Single Mas Tolerance = Element pred Number of is	ss Analysis 5.0 PPM / D diction: Off sotope peaks u)BE: min ised for i	= -1.5, r -FIT = 3	nax = 5	0.0						
Monoisotopic 227 formula(e Elements Use C: 0-40 H: 315-AA-1	Mass, Even Ele) evaluated with d: 0-50 N: 0-4	ctron lons 2 results O: 0-1(s within lin)	nits (up t	o 50 best iso	otopic mate	ches for ea	ch mass)		1. TO	
XMJ_20160319	9_YHL_08 259 (5.9	555) Cm (2	258:263)							1: IOF	- MS ES+ 3.90e+004
100 186.95	85 415	.2110,477	.2733 52	7.3104	626.2305	692.3907	816.902	7 941.497	3 1053.618	7 1106.5327	,
200	300	400	500		600	700	800	900	1000	1100	1200 m/z
Minimum: Maximum:		5.0	5.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
527.3104	527.3121 527.3081	-1.7 2.3	-3.2 4.4	10.5 6.5	298.5 301.6	0.042 3.184	95.86 4.14	C30 H43 N2 C25 H43 N4	06 08		

Figure S60. ¹H NMR (600 MHz, MeOD) spectrum of 7.

Figure S62. ¹³C-DEPT NMR (600 MHz, MeOD) spectrum of 7.

Figure S61. ¹³C NMR (600 MHz, MeOD) spectrum of 7.

Figure S63. HSQC (600 MHz, MeOD) of 7.

Figure S64. HMBC (600 MHz, MeOD) of 7.

Figure S65. COSY (600 MHz, MeOD) of 7.

Figure S66-a. NOESY (600 MHz, MeOD) of 7.

ppm e e 1 MWMMM. 2 -3 4 - 5 6 ٠ -7 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 7.5 7.0 6.5 6.0 4.5 4.0 0.5 ppm

Figure S66-b. ROESY (600 MHz, MeOD) of **7**.

Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, multi (<i>J</i> in H _Z)	HMBC (correlations from H to C)
1	198.0, C		· · · · · · · · · · · · · · · · · · ·
2	62.5, CH	3.78, br d (3.8)	1, 3, 4, 27
3	27.9, CH ₂	1.85, m	1, 2
		2.00, m	
4	21.7, CH ₂	1.26, m	3, 5
		1.52, m	
5	39.7, CH ₂	2.64, m	3, 7
		3.46, br d (12.0)	
6-NH			
7	168.6, C		
8	124.9, CH	5.91, d (11.9)	7, 10
9	141.4, CH	6.05, ddd (11.9, 10.1, 2.8)	7, 11
10	26.8, CH ₂	2.42, m	8, 9, 11, 12
		3.63, m	
11	47.1, CH	1.61, m	8, 13
12	41.5, CH	2.28, m	10, 11, 13, 14, 20
13	55.1, CH	2.89, d (3.8)	11, 12, 14, 20
14	59.4, CH	3.26, br s	15, 16
15	48.3, CH	0.93, m	14, 16, 19, 20, 30
16	52.8, CH	1.88, m	14, 15, 17, 29, 30, 31
17	34.8, CH	2.39, m	16, 18, 29
18	40.0, CH ₂	0.65, td (11.9, 8.1)	17, 19, 20, 29
		2.04,	
19	48.6, CH	1.12, m	14, 18, 20
20	42.5, CH	1.68, m	11, 12, 18, 19
21	38.0, CH ₂	1.10, m	19, 20, 22
		2.02, m	
22	50.0, CH	2.35, m	11, 21, 23, 24
23	149.3, CH	6.68, dd (15.0, 9.8)	11, 21, 22
24	124.7, CH	7.28, m	22
25	176.3, C		
26	102.4, C		
27	177.5, C		
28-NH			
29	18.3, CH ₃	1.08, d (7.74)	16, 17, 18
30	68.9, CH	3.87, m	16, 17
31	23.5, CH ₃	1.36, d (6.3)	16, 30

Table S9. ¹H (600 MHz) and ¹³C (150 MHz) spectroscopic data of 3'.

Measured in mixture solvent 90% MeOD/ C₆D₆.

Figure S67. HRESIMS of 3' (Positve mode).

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron lons 188 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 25-35 H: 0-45 N: 0-5 O: 0-10											
511-2 XMJ_2016061	3_YHL_02 197 (3.8	0.0-1 841) Cm (1 475 2!	96:198) ₅₅₉ 511.280	03		794 000	c 1(021.5574	4010	10	1: TOF MS ES+ 1.59e+004
100 20.	200 300	400	500	610.203 600	7 729.402 700	800	900 1	000 1100	1172.599 1200	97 133 1300	m/z 1400
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
511.2803	511.2808 511.2848	-0.5 -4.5	-1.0 -8.8	11.5 15.5	203.4 205.7	0.094 2.409	91.01 8.99	С29 Н39 1 С34 Н39 (12 06 04		

Figure S68. ¹H NMR (600 MHz, 90% MeOD/C₆D₆) spectrum of 3'.

Figure S70. ¹³C-DEPT NMR (600 MHz, 90% MeOD/C₆D₆) spectrum of 3'.

Figure S71. HSQC (600 MHz, 90% MeOD/C₆D₆) of 3'.

Figure S72. HMBC (600 MHz, 90% MeOD/C₆D₆) of 3'.

Figure S73. COSY (600 MHz, 90% MeOD/C₆D₆) of 3'.

Figure S74. NOESY (600 MHz, 90% MeOD/C₆D₆) of 3'.

Figure S75. Kinetic analysis with Surface Plasmon Resonance (SPR) for A) ikarugamycin (1) and B) capsimycin B (3) binding to the IkaD.

Table S10. Binding affinities and kinetic parameters for the interactions between ikarugamycin (1) and capsimycin B (3) with IkaD as measured with SPR.

	k _a (1/Ms)	k _d (1/s)	K _D (M)
ikarugamycin (1)	$2.37 imes 10^4$	0.1305	5.50×10^{-6}
capsimycin B (3)	$1.07 imes 10^4$	0.0713	$6.65 imes 10^{-6}$

 k_a , association rate constant; k_d , dissociation rate constant; K_D , equilibrium dissociation constant.

Surface Plasmon Resonance (SPR) assay

All binding kinetic experiments were performed at 25 °C using Biacore T200 instrument equipped with a CM5 sensor chip (GE Healthcare, USA). The surface of the CM5 chip was pre-activated with a 1:1 mixture of 0.05 M

N-hydroxysuccinimide (NHS) 0.2 M and *N*-ethyl-*N*'-(3-dimethylaminopropyl) carbodiimide (EDC). Then fresh IkaD, diluted to 70 µg/mL in 10 mM sodium acetate (pH 4.0), was immobilized on the CM5 chip via amino coupling, following blocking by 1 M ethanolamine HCl (pH 8.5). An empty chip surface was submitted as a negative control to monitor nonspecific binding between compounds with the surface. Ikarugamycin (1) and capsimycin B (3) were sequentially diluted with running buffer to different concentrations (ikarugamycin: $0-10.45 \mu$ M; capsimycin B: 0-10 µM), and injected with HBS-EP+ running buffer over the chip surfaces at a constant flow rate of 30 μ L/min. Between experiments, surfaces were regenerated with 50 mM glycine (pH 9.5). Nonspecific sensorgrams were subtracted from experimental sensorgrams to obtain curves representing specific binding. Kinetics and affinity parameters were evaluated in global fitting based on a 1:1 binding model by using Biacore evaluation software (version 3.0).

Figure S76. The reactions of capsimycin B (3) with NaX (X = Cl, Br, I). Targeted products were detected under the following conditions. A) Reaction of compound 3 in MeOH/H₂O; UPLC-total ion chromatography MS profiles of the products produced under the condition of B) 1 h after the mixing with TFA at room temperature; C) 1 h after the mixing with TFA at 45 °C; D) MS spectra of (a) capsimycin B + HCl, (b) capsimycin B + HBr, and (c) capsimycin B + HI.

Figure S77. The reactions of capsimycin B (3) with NaX (X = Cl, Br, I). No products were detected under the following conditions. A) Reaction of compound **3** in MeOH/H₂O; UPLC-total ion chromatography MS profiles of the products produced under the condition of B) immediately after the mixing at room temperature; C) 1 h after the mixing at room temperature; D) 1 h after the mixing at 45 °C.

Figure S78. The reactions of capsimycin B (3) with H₂O. Targeted product (4) was detected under the following conditions. A) Reaction of compound 3 in MeOH/H₂O can be accelerated by the TFA; B) UPLC-total ion chromatography MS profiles of the products produced under the condition of a) immediately after the mixing at room temperature; b) 1 h after the mixing at 45 °C; c) 1 h after the mixing with TFA at room temperature; (d) 1 h after the mixing with TFA at 45 °C.

Figure S79. Gel filtration of purified IkaD indicated with the blue line.

Gel filtration of purified IkaD. The standards (Bio-Red, USA) are shown in green and are as follows: 1.35 kDa (Vitamin B12), 17 kDa (Myoglobin from horse), 44 kDa (Ovalbumin from chicken), 158 kDa (γ -globulin from bovine) and 670 kDa (Thyroglobulin from bovine). The molecular mass of the recombinant P450 monooxygenase IkaD was determined by analytical gel filtration on Biologic DuoFlowTM Chromatography System (Bio-Rad, USA), column using Tris-HCl (10mM Tris, 150 mM NaCl, pH 7.5) buffer.

Figure S80. IkaD identification by nano LC-MS/MS and database search

(MATRIX) MASCOT Search Results User : hou E-mail : Searcht title :maxis_manual MS data file : 281474976714999.mgf Database : Trembl 2016.01 (59,718,150 sequences; 19,944,314,533 residues) Taxonomy : Bacteria (Eubacteria) (37,204,640 sequences) Timestamp : 10 Aug 2016 at 05:38:07 GMT Re-search All Non-significant Unassigned M[help] Export As XML Not what you expected? Try withe select summary Not what you expected? In githe select summary. ▼Search parameters Type of search : MS/MS Ion Search Enzyme : Trypsin Fixed modifications : cCatadiamethyl (C) Variable modifications : cCatadianethyl (C) Variable modifications : cCatadianethyl (C) Protein mass tolerance : ± 20 pon (c ¹³C = 2) Fragment mass tolerance : ± 20.05 Da Max missed cleavages : 2 Instrument type : ESI-QUAD-TOF Number of queries : 7,741 ▼Score distribution Hits (21 5.0 4.0 30 25 Number 3000 Protein Score Peptide Score Peptide score distribution. Ions score is -100g(*P*), where *P* is the probability that the observed match is a random event. Individual ions scores > 58 indicate identity or extensive homology (p<0.05). [Deprecated] Score distribution for family members in the first 50 proteins. Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein families. Expect Rank U 1 2 Peptide 0.037 2 GRYSLSLR significant 0 GRYSLSLR top ranking 6.4e-005 1 GSRTGLAPGK significant and top ranking 1.3e-006 1 SSGTSYPDVLK peptide is found in all proteins in family member 1 0.2e-007 1 UCTYVYLIX peptide is found in some but not all proteins in family member 2 6.4e-005 1 U GSSIFGLAPGK unique 0.48 1 ULTYLETEEWFFK peptide has two duplicates 0.18 1 UNTLETEEWFFK duplicate peptide Dupes 12 Right-Facing triangle (P) in the Dupes or Bank column indicates content that can be expanded by clicking on it. Down-facing triangle (T) indicates the content is expanded and can be collapsed. Protein Family Summary Filter Significance threshold p<</th> 0.05 Max. number of families AUTO ud'[help] Ions score or expect cut-off 15.0 Dendrograms cut at 0 Preferred taxonomy All entries Proteins (6) Report Builder Unassigned (7609) Protein families 1-6 (out of 6) 10 • per page 1 Expand all Collapse all Accession Contains Find A0A0F7FYZ9 2847 Unspecific monooxygenase OS=Streptomyces xiamenensis GN=SXIM_40690 PE=3 SV=1 ▼1 Score Mass Matches Sequences emPAI 2847 46024 131 (100) 22 (18) 6.44 Unspecific monooxygenase OS=Streptomyces xiamenensis GN=SXIM_40690 PE=3 SV=1 dA0A0F7FYZ9 1.1 ▼131 peptide matches (38 non-duplicate, 93 duplicate) Auto-fit to window ppm M Score Expect Bank U Peptide 8.550 57 0.071 1 U R.FGVFENELK.N -9.741 40 0.038 1 U R.FGVFENELK.N -0.741 30 0.12 1 U.R.FGVFENELK.N -0.741 30 0.12 1 U.R.FGVFENELKN.Q -0.741 5 0.12 U.R.FGVFENELKN.Q -0.74 30 0.5 1.0000 H.WEINSOFFENELKN.Q -0.220 100 5.1e-007 1 U.R.HVFILSOFFFR.Y -0.160 92 1.4e-006 1 U.R.FSTVASLOODORY.T -11.00 122 1.3e-008 1 U.R.PSTVASLOODORY.T Query Dupes Observed Mr (expt) Mr (calc) 516.7761 1031.5376 1031.5287 673.8522 1345.6899 1345.7030 24350 **7**3 25104 25109 449.5746 1345.7020 1345.7030 m 5109 m 5144 ▶6 m 5205 ▶1 m 5543 ▶1 m 5543 ▶2 m 5687 422.9169 1355.7289 1355.7350 678.9746 1355.7347 1355.7350 678.9746 1355.7347 1355.7350 678.9746 1355.7347 1355.7350 718.9174 1355.2021 1455.8259 749.9245 1475.7341 1457.8402 503.9853 1507.3770 1507.7276 508.9215 197.4971 497.4802 503.9853 1507.3770 1507.7276 508.9137 1523.720 1531.7675 508.9137 1523.722 1523.7225 508.9170 1523.722 1523.7225 508.9170 1523.722 1523.7225 511.4355 1520.8661 1520.8224 452.9169 1355.7289 1355.7350 -11.9 0 122 1.3e-008 1 U R.FSTWASLODDERT. -4.001 45 0.018 1 U R.FSTWASLODDERT. -3.87 0 108 7.1e-007 1 U R.RGZAVIFVIJAANR.D -3.87 0 108 7.1e-007 1 U R.RGZAVIFVIJAANR.D -3.80 0 60 6.9e-005 1 U R.VELQVVIEALTER.F. 6.26 0 59 0.0064 1 U R.ABETDOMFOMIWS.A -4.61 0 123 3.1e-008 1 U R.ATETDOMFOMIWS.A -4.61 0 123 3.1e-008 1 U R.ATETDOMFOMIWS.A -4.61 0 123 3.1e-008 1 U R.ATETDOMFOMIWS.A -4.14 0 26 0.22 U R.ATETDOMFOMIWS.A -3.15 0 56 0.0073 1 U R.ARETDOMFOMIWS.A -3.16 0 57 1 10 0.0031 1 U R.ARETDOMFOMIWS.A -3.67 1 71 0.0031 1 U R.ARETDOMFOMIWS.A -3.67 1 72 1.2e-005 1 U R.VONGLFSLDPPQESR.L -7.00 76 1.7e-005 1 U R.ARETDOMFOMIWS.A -6.13 1 44 0.013 1 U R.ARETDOMFOMIWS.A -3.7 1 22 0.22 U U R.YATEDELELOUVING.G d5687 d5690 d5833 b5886 1 d6036 1 d6046 2 d6054 1 d6253 d6259 d6259 d6259 U R.YATEDLELGOVIVR.R U R.ARPTDDMFGMLVR.A + Oxidation (M) U R.ARPTDDMFGMLVR.A + Oxidation (M) 541.2968 1620.8686 1620.8624 541.9420 1622.8042 1622.8165 812.4099 1622.8051 1622.8165 555.6119 1663.8138 1663.8287 d6426 }2 ±6432 ▶17 ±6434 ▶4 ±6521 ▶1 d6523 832.9165 1663.8185 1663.8287 ef6559 560.2891 1677.8455 1677.8686

1 subset or intersection (1 subset protein in total)

§ permalink

Protein identification by nano LC-MS/MS and database search

IkaD was reduced by 1M DTT at 60 °C for 30 min and cysteine residues were blocked by 1M IAM for 20 min at room temperate. Protein was digested with Sequencing Grade Modified Trypsin (Promega, USA) via the FASP protocol with spin ultrafiltration units of nominal molecular weight limit of 10,000 Da. After digestion, the peptides were collected by centrifugation and the filtration units were washed with 50 mM NH₄HCO₃. Then the pooled peptides were dried by SpeedVac and re-dissolved in 2% ACN with 0.1% formic acid. Each of the fractions was performed using an LC system (Nano Pump, Ultimate 3000, Dionex, Thermofisher) equipped with an ESI-Q-TOF mass spectrometer (maXis, Impact, Bruker Daltonik, Germany). Briefly, the peptides were loaded onto a peptide trap column (100 μ m \times 2 cm, 5 μ m, Dionex, Thermofisher) for desalination and concentration with 2% ACN and 0.1% formic acid at a flow rate of 5 µL/min for 10 min. Trapped peptides were released and separated in a C18 capillary column (75 μ m \times 15 cm, 3 µm, Dionex, Thermofisher). The peptides were eluted with a gradient of 4-80% ACN/H₂O hold for 50 min at a constant flow rate of 400 nL/min. The mass spectrometer was performed in data dependent acquisition mode (m/z 350-1500) using a full MS scan followed by ten MS/MS scans on the ten most intense ions from the MS spectrum. Tandem mass spectra were processed with Compass Data Analysis (version 4.1) according to the standard workflow. The peak list was directly generated from raw data using centroid algorithm with peak width set as 0.1 m/z and intensity above 100, and submitted for database search using Mascot (version 2.4, Matrix Science) to identify the protein from the Trembl_Bacteria database (37,204,640 sequences). No peak smooth or filter process was applied. Carbamidomethyl of cysteine was specified as fixed modifications (C) and oxidation of methionine was specified as variable modification (M). Two missed cleavages were allowed to trypsin. Peptide mass tolerance was set to 20 ppm and fragment mass tolerance to 0.8 Da. Peptide charges of +2, +3, and +4 were selected. The criteria of two peptides and a significance threshold p < 0.05 were used for peptide identification.

Figure S81. Expended NOESY spectra (600 MHz, MeOD/CDCl₃) of **4** (A-C) and expended ROESY spectra (600 MHz, MeOH/CDCl₃) of **5** (D-E).

