Supplementary Note 1. Nodal lines stemming from ther Berry phase

As explained in the Methods section, nodal lines in spinless systems with inversion and time-
reversal symmetries can originate from th8erry phase. Here, we explain this mechanism. The

Berry phase)(¢) along a loofY is defined as

occ.
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whereu, (k) is a bulk eigenstate in the-th band, and the sum is over the occupied states. We
define the Berry phase in terms of modalo because it can change by an integer multiple@of
under gauge transformation. Under a product of time-reversal and spatial inversion operations, this

quantity can be transformed intep(¢):

o(0) = —¢p(f) (mod 27). 2

This leads to quantization of the Berry phasas¢(¢) = 0 or 7 (mod 27). Under a continuous
change of in thek space, a jump af(¢) occurs only when the band gap closes. Therefore, if the
Berry phase)(¢) is 7 (mod2r) for a certain value of, then the loog cannot continuously deform

to a point without closing a gap. This condition means that closing of the gap occurs along a loop

(nodal line) ink space, and that this loop is linked#4o

We also describe in terms of an effective model a mechanism for the appearance of the nodal

line. An effective model for a single valence band and a single conduction band is generally



described as follows:

ao(k) +a.(k) ay(k) —ia,(k)
H(k) =

ay(k) +iay(k) ao(k) —a.(k)

= ap + 0, + ay0, + a.o,. 3)

We assume that; (k) (i = 0, z, y, z) is a continuous function &. In the presence of both inversion
and time-reversal symmetries, we obtain= 0 (after an appropriate unitary transformation in
some cases). Thus we halék) = ag + a,0, + a,0,. The band gap closes only if the following

conditions are satisfied simultaneously:
az(k) =0, 4
a.(k) = 0. (5)
Each of these equations determines a surfakesipace, and their intersection gives a nodal line in
k space. In this case, a Berry phagé) (Supplementary Eq. (1)) along a loémround the nodal

line, is calculated to be equal to a change of phase@f-. This is found to ber (mod 27), in

agreement with the discussion in the previous paragraph.

Supplementary Note 2. Zak phase and polarization

2.1 Decomposition of the wavevector components with respect to the surface Brillouin zone

In preparation for the calculation in the next subsection, we show the formula for the decom-
position of the wavevectdk into the surface normal, and the directions along the surfakg
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For the calculation of the Zak phase we use the formula

occ.
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whereb, is the width of the Brillouin zone along the direction perpendicular to the surface. How-
ever, defining the integration region when the primitive vectors are not orthogonal to each other is
not straightforward. As we discussed in the main text, we consider the superstructure of the sur-
face; furthermore, the primitive vectors may differ from the standard choice. Below, we formulate

the Brillouin zone of the crystal, which takes into account the surface periodicity.

Let a;; anday| denote the primitive vectors along the surface. If a surface superstructure
is formed, then these primitive vectors should be chosen to comply with the superstructure. We
then introduce another vectafsuch thafa, |, ay, a'} is a set of three-dimensional (3D) primitive
vectors which takes into account the surface superstructure. Thus, it is not necessarily the primitive
vectors of the 3D bulk crystal, but it is the minimal set of translation vectors which respects surface

superstructure.

We then take the primitive reciprocal vectdts,, by, b, } from {a;|, ay,a’}:

ag| X a’
b, =27 7
' (ay x ag)) - &’ ()
a’ x ay|
by = 27 8
’ (ay) x ag)) - a ©)
b, = 2r i =2 ©)

(ay) X ag)) - &’
We note thab , is normal to the surface, wherelags andb, are not necessarily along the surface
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(see Supplementary Figure 1). We then projgcandb, onto the surface:

b;-n

by =b; — nl o, (10)
b, -

by = by — : nna (11)

wheren is the unit vector normal to the surface. It then follows that
ai” -bj” = 27T5ij (Z,] = 1, 2); (12)

therefore the sefby, by} is a set of two-dimensional (2D) primitive reciprocal vectors for the
surface, corresponding to the 2D primitive vectors along the surface, ay }. Furthermore,
the 3D Brillouin zone, which is a parallelogram spanned{by, b,,b, }, is equivalent to the
parallelogram spanned byb,, by, by}, with b, perpendicular to the surface. Therefore, we
takek, from zero tob, in Supplementary Eq. (6), whille| takes a 2D wavevector within the 2D
Brillouin zone spanned byb,, by }. We note thab, is equal to2r/a’,, whered/, is a surface-

normal component of’.

2.2 Symmetry properties of the Zak phase in three dimensions

Here we note on symmetry properties of the Zak phase. We first review the results shown
in previous works®?, and then we discuss results for nodal-line semimetals. We first rewrite
the Schoédinger equatiorHy, = FEyxiy in terms of the Bloch wavefunction, whefi is the
Hamiltonian k is the Bloch wavevectot), is the wavefunction, and is the energy. Throughout
the paper, we adopt the gauge

1/1k+G = wk, (13)



(a) real space (b) reciprocal space

a,, surface
Lam
a’\

Supplementary Figure IPrimitive vectors. Primitive vectors ina, b, real space and reciprocal

surface

space, respectively, used in our calculation

whereG is any reciprocal lattice vectdr? this choice of gauge is necessary for relating the Zak

phased (k) to polarization. We then obtain
Hyune = By, (14)

wherey, = uce™ ™ and Hy, = e~ *He*r. The choice of gauge in Supplementary Eq. (13) is

rewritten asuy, = uy ge™*r.

When the inversion and time-reversal symmetries are present in spinless systems, the Zak

phasg)(C') around any closed loofd is quantized as follows:

ocCcC.
0C)=—iy 7{ dk - (1 (K)| Vic [un(K)) = nr (n : integer). (15)
n C
In particular, the Berry phase around the nodal line (contour c in Supplementary Figure;?2) is
because of the above quantization, the nodal line is topologically protected. Thus the Zak phases

(Berry phase) along the surface normhalchanges byr, whenk is changed across the projection



surface Brillouin zone

Supplementary Figure Zak and Berry phases.Relation between the Zak phases (Berry phase)

along the surface normal (paths a, b) and the Berry phase around the nodal line.

of the nodal line onto the surface. In Supplementary Figure 2 the Zak phases for the paths a and b

differ by 7, which is the Berry phase around the loop ¢ around the nodal line.

In the following we show the effects of the symmetries of the syster(lky)

(i) Inversion symmetry

When the system has inversion symmetry, we have
P.H]=0 = PHP ' = Hy, (16)
whereP is the inversion operator. We can then derive the relationship for the Zak phase:
0(k)) = —0(—k)) (mod 2m). (17)

Compared with the present result, the results in a previous wowhktains an additional term. This
is due to the choices of gauge; the above sfuagopted the gauga. = ui..q, Whereas we adopt
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the gauge in Supplementary Eq. (13), which is directly related to the polarization.

(i) Time-reversal symmetry

When the system has time-reversal symmetry, we have
K, H] =0 = KHK = H_, (18)

where I is the complex conjugation. Here we focus on spinless systems, for which the time-

reversal operation is representedaslhe Zak phase then satisfies
9(—1{“) = (9(1{”) (Inod 27T). (19)

This is the same as that in the above stéidyithough the gauges are different from ours.

(iii) Inversion and time-reversal symmetries

When the system has both time-reversal and inversion symmetries, Egs. (17) and (19) yield
from the results in (i) and (ii)

0(k;) = 0 or 7 (mod 27). (20)

We consider an implication of Supplementary Eq. (20) for insulators and for nodal-line semimetals

in the following discussion.

In a previous worké, the relationship between the Zak phase and the surface polarization
charge density was found. The surface polarization charge density, i.e. the surface normal
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component of the polarization vector, is given by
0 = Ojon + 0 (21)

whereo;,, IS an ionic contribution from surface atoms, andepresents an electronic contribution

d’k —e
Oe = /(27)206(k)7 o.(ky) = %Q(k”) (mod e). (22)

If we regard the system at fixdqg to be a one-dimensional system(k; ) is an electronic surface

charge density for the one-dimensional subssystelm At

We first consider insulators, assuming that there is no surface state that crosses the Fermi
energy. Thusg. (k) does not have a jump as a functionlgf. According to Supplementary

Eq. (20),0.(k)) is therefore independent &f:

oe(ky) = Nga (23)

whereN is an integer constant. Hence, the surface charge densaigy:ismNef where Agurface
is an area of the surface unit céll Although N can be any integer, it is physically expected to
vanish in almost all insulators, because nonz€rcorresponds to a large polarization, which leads

to chemical or electronic instability. Thug = 0 is expected of stable electronic states; so far, no

insulator is known to have nonzero integér which means a huge surface polarization.

In materials with nodal lines which are the focus of the present work, the Zak phase jumps

by 7 at the nodal lines; therefore, there is always a region Wily) = 0 (mod 27) and one



with 0(k|) = = (mod 27). The latter region leads to an appreciable polarization. In nodal-

line semimetals, the bulk electronic carriers and ions eventually screen the polarization, but large
deformation of the lattice structure and surface dipoles occur. We expect this to lead to large
Rashba splitting if adatoms with large spin-orbit coupling are present, as indicated in the main

text.

Supplementary Note 3. Surface termination and choice of the unit cell

The surface polarization charge densityis related to the polarization vect® by o =
P, = P -n, wheren is a unit vector normal to the surface. Even when the direction of the surface
plane is fixed, such as in (111) or (001), there are possibilities for surface terminations. Moreover,

there are various possible choices for the unit cell for a given surface termination.

The dependence on the choice of unit cell is discussed in another’stimdgummary, results
of this work? indicate that the polarizatiom(= P,) at a fixed surface termination is independent
of the choice of the unit cell of the bulk. That is, whereas independent of the choice of the unit
cell at a fixed surface termination, the contributionsofindo;,,, in Supplementary Eq. (21) may

depend on the unit cell choice.

On the other handy generally changes with the surface termination. In the following dis-
cussion, we consider several cases of surface terminations for the (001) and (111) surfaces. For

the calculations we always choose the unit cell in such a way that there are no additional ‘surface



atoms’, which are excess atoms that are not covered by translations of the usit\a&th such a
choice of unit cell, we always have,, = 0 and we only have to consider the dependence of the

electronic part.,.

Thus, the unit cell is chosen accordingly in the following discussion of various surface ter-
minations. Because the choice of unit cell corresponds to the unitary transformation of the Hamil-
tonian, it affects the Zak phase in the following manhe8uppose the unit structure consists\of
atoms at{ry,--- ,ry}. If the unit cell convention is changed {®; + €, -+ ,ry + ex} Wheree,

(a =1,---,N) are translation vectors of the crystal, then the change in the Zak pXtide)) is
expressed as follows

Ab (k) = —27726 pa(ky), (24)

wheree is a surface-normal componentqf and

occ. b, dk
pa(K|) Z / = (U Patse) - (25)
HereP, (a = 1,--- , N) is a projection operator projecting onto the atem

In the present framework, is a translation vector, which is a linear combinatioq afj, a;, a'}
with integer coefficients. Among these primitive vectors, oaflhas a nonzero surface-normal

component. Hence;- is an integer multiple o/, .

3.1 (001) surface

On the (001) surface, &2 x /2 structure is formed when half of the surface atoms are
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depleted. Therefore, we consider from the outset the unit cell for the 2D surface with an enlarged
unit cell for they/2 x /2 structure. Let: denote the lattice constant for the cubic unit cell of the
fcc lattice. We take one of the surface atoms to be an origin, and the surface to be along the

plane. The primitive vectors for the 2D surface can then be taken as:
a; = a(1,0,0), ay = a(0,1,0) (26)

The other primitive vector is then given oy = a(3, 0, 3). The unit cell spanned bfa, |, ay, a’}
contains two atoms. Thus, we have

27 2T 4

b; = —(1,0,-1), by, = —(0,1 b, = — 1). 27
1 a ( 707 )’ 2 a (07 70)7 1 a (0707 ) ( )
Additionally,

2w 27

For the perfect (001) surface on thg plane (Supplementary Figure 3a), the unit structure consists

of the two atoms af0, 0, 0) andc = a(—1, 1, 0). Let us denote the two sublattices | and II, which
belong to the point® andc, respectively. When the surface atoms:at + %, n + %) (m,n:

integer) become depleted (Supplementary Figure 3b), the surface foyfisca/2 structure, and

the unit structure consists of the two atomg(@t), 0) andc + a’ = (0, 3, 5). Both choices of

the unit structure are inversion-symmetric; therefore, the Zak phase in both cases is quantized as 0
or 7 (mod2x). Thus, the atom in sublattice Il in the unit structure in Supplementary Figure 3b is

shifted from those in Supplementary Figure 3aalyyand

Al (k) = —2md pr(ky), (29)
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occ. b, dk
pu(k)) Z/ = (tte| Pt ttnic) (30)

Noting that the two sublattices are equivalent, we obf@ifi|Pa|unk) = 2 (tn|unk) = 1 (@ =

L1I) andpr(ky) = Soc® 12 = Noce B '\whereN,,.. is the number of occupied bands. Thus,

NOCC. NOCC.
Af(k)) = — 5 a b, =— 5 27 (31)

Lastly we note that the unit cell is doubled from the original fcc unit cell; therefgg, is even.
Thus the Zak phase is unchanged, i¥!(k;) = 0 (mod 27), in accordance with thab initio
calculation in the main text. This invariance of the Zak phase is natural because it is a bulk quantity

independent of the surface.
3.2 (111) surface

When one-third or two-thirds of the surface atoms on the (111) surface are deplefec a
/3 structure is formed. Therefore, we consider from the outset the unit cell for the 2D surface with
an enlarged unit cell for th¢/3 x /3 structure. We take one of the surface atoms to be an origin,

and the surface to be along the plane. While the standard choice for the primitive vectors are

ay| = \/%(07 1,0), ag| = ( V/3,1,0), the primitive vectors for the/3 x /3 structure can be
ay = L(\/gaga 0)7 A = L(_\/§7370) (32)
22 22

The other primitive vector is then given ky = #5(\/3,3,2\/6). The unit cell spanned by

{ay|, ay, @’} contains three atoms. Thus, we have

Qﬂ(f\f —V3), b2f2\/_ﬂ( V3,1,0), (33)
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Supplementary Figure 3Surface structure and primitive vectors. g Crystal structure of fcc

Ca, Sr and Yb, and that of the (001) surface (black circles) with surface atoms (grey cilgles).
The same surface orientation but with one-half of the atoms per unit cell on the swf@rgstal
structure of the (111) surface (black circles) with surface atoms (grey ciraks), The same
surface orientation but with one-third and two-thirds of the atoms, respectively, per unit cell on the
surface. Ina-g, the primitive vectors,, a,| along the surface are shown as black arrows, while
the other primitive vectoa’ is shown as a white arrow. Here, the choice of the unit structure is
marked by the circles with gradation, i.e.amndb the unit structure consists of two atoms, while

in c-eit consists of three atoms.
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2\f”(o 0,1) (34)

and

by = 22 (51.0), by = 2 L) 35)

For the perfect (111) surface on thg plane (Supplementary Figure 3c), the unit structure consists
of the three atoms g0, a,|, a, }. Let us denote the three sublattices I, Il and Il which belongs to
the points), a; | anday, respectively When the one-third of the atoms become depleted (Supple-
mentary Figure 3d), the unit structure consists of the three atoqts af; + a’, a,}. Thus, the
atom in sublattice Il is shifted by’ in the new selected of unit structure, and

Ab(k) = —2md’ pu(k), (36)

occ.

b dk
it =3 / L el Pt 37)

Noting that the three sublattices are equivalent, we ohltaig| P.|u.x) = §<unk!unk> = % (a =

I 11, 111), andpy; (k) = So0¢¢ 254 = Naee B '\whereNN,.. is the number of occupied bands. Thus,

m 3

NOCC. NOCC.
3 albLz— 3 2m (38)

Af(ky) = —

Lastly we note that the unit cell is tripled from the original fcc unit cell; therefdig,. is a integer
multiple of three. Consequently, the Zak phase is unchangetlk;) = 0 (mod 27). This

invariance of the Zak phase is natural because it is a bulk quantity independent of the surface.

When the two-thirds of the atoms are depleted (Supplementary Figure 3e), the unit structure
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consists of the three atoms{dt a,| + a’, ay| + a’}. Using a similar calculation we obtain

AY' (k) = —2m(a' pu(ky) + o' o (ky)), (39)
Nocc. bi
= = —, 4
pu(ky) = pur(ky) 3 o (40)
Therefore,
Af(k)) = _ 2oce 27 =0 (mod 27) (41)

and the Zak phase is unchanged, in accordance witaliheitio calculation in the main text. We
also note that in these three choices of the unit structure, the Zak phase is quantizea &0ar

2m).

Supplementary Note 4.Z, topology of nodal lines in alkaline-earth metals

In a previous work*, a Z, topological number is defined for each nodal line in spinless

systems with both inversion and time-reversal symmetries. If it is nontrivial, then the nodal line

cannot vanish by itself after shrinking to a point. THistopological number can be defined for

each nodal line in Ca, when the spin-orbit interaction is neglected. This has been found to be

trivial; the nodal lines around the L points disappear upon addition of an artificial potential for the

4s orbital (see Supplementary Figures 4a-c).

Similar analysis of the nodal lines around 5 eV in Ag (Supplementary Figure 4d) shows that

it is also Z,-trivial as defined by the above study Supplementary Figures 4e and f show the

disappearance of the nodal line with the decrease in the on-site potentiabefdhatal.
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Supplementary Figure 4Disappearance of nodal lines by adding the on-site potential. ,a
Electronic band structure of Cain the LDW\.c, Electronic band structure of Ca, depicting addition
of 1.5 and2.5 eV, respectively, to the on-site potential of therbital. d, Electronic band structure
of Ag in the LDA. e, f, Electronic band structure of Ag, depicting subtractiorv&nd9.5 eV,

respectively, from the on-site potential of therbital.
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Supplementary Note 5. Screening in nodal-line semimetals

We have shown in the main text that when the nodal-line semimetal is regarded as a set of
independent one-dimensional systems for individual valuks,ofithin ak-space region of Zak
phase, there is an appreciable polarizatiod-ef2. Nevertheless, the polarization charges at the
surface are eventually screened since the entire system is a semimetal with carriers. In this section
we consider screening of the surface polarization charges by carriers in nodal-line semimetals. For
simplicity, we consider the nodal-line semimetal with its nodal line being a circle ih,Hig plane

with radiusk,, assuming the dispersion perpendicular to the nodal line to be linear with velocity

vo. The dispersion can then be representedvas /v, \/(« /k2 + k% — ko)? + kZ. Thus, the
density of states is(E) = C|E|, with C = £ per unit volume. In calcium there are four
0

nodal lines; therefore, the constaris multiplied by the number of nodal lingg= 4).

The Poisson equation is

d?Vv e
—_—= 42
dz? aosp (42)

wherep(z) is the charge density, arid is the potential energy for electrohsWe set the:-axis

normal to the surface of the semimetal, with= 0 representing the surface.

We suppose that the polarization charge appears at the surface because of the presence of
nodal lines, with polarization charge density As we have shown in the main text, for example,
the nodal line depletes electrons on the Ca surface within the aleapace surrounded by the
nodal lines (shown as the shaded region in Supplementary Figure 3h), and the polarization charge
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is positive, that isg; > 0. Electron carriers are then induced near the surface because of this
positive surface charge, and z) < 0 is expected for the region near the surface. The following

equation relates the charge dengityp the potential/,

p(z) = —en(2), n(z) = / " fe(E, 2)v(E)dE, (43)

where fr(E, z) = m is the Fermi distribution function in the presence of potential
V(z). For simplicity we consider zero temperature dnd = 0 (i.e. at the nodal line). We thus
have

n(z) = %CV(Z)2 (44)

From Egs. (42) (43) and (44), we obtain

d*v e2C
_— =V 45
dz? 2e0€ (45)
with boundary condition¥’(z = oc) = 0, V'(z = 0) = _=o,. The solution is
e, 1
Viz) = ——= 46
() = =9 1+ 2/02 (46)
24e2¢? 1/3 . . . . .
where)\ = <e369crs) represents a screening length. The charge distribution is
1 C (ers\® 1
=_CV?=— : 47
n(z) 2 8 ( E0€ ) (14 z/X)* (47)

The spatial dependence of the potentigl) and electron density,(z) are plotted in Supple-
mentary Figure 5. The total induced charge density is calculateg,as= —e fooo ndz = —os.

Therefore, the induced electronic distribution totally screens the positive polarization charge at the
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Supplementary Figure Electronic potential and density due to screening of surface charges.

a, b, Spatial dependence of the potentidlz) and electron density, respectively.

surface. Meanwhile, there remains a finite dipole moment, the density of which is calculated as

follows:

—e/ nzdz = _ A (48)
O 2

Upon settings = 5, o, ~ 0.243¢/Agutacer Asurtace = 1.5 x 1071m?, vy ~ 3 x 10°m s, and
ko ~ 0.24nm~! for rough estimates for calcium at 7.5 GPa, the screening length is estimated as
A ~ 0.24nm, i.e. on the order of a lattice constant. The depth of the pote¥itiat V' (z = 0) =
— 2% 5 gpproximately-0.77 eV. The dipole density per surface unit celDig43e - 0.24nm /2 =

2ep€

4.7 x 1072'C - nm, and the electric field at the surface-ig€V;/(e)\) = 6.4V nm ™!,

Thus far, we have studied screening by bulk carriers. We found that the dipoles are formed at
the surface, and that the electronic potential is lower near the surface as shown in Supplementary
Figure 5, This property affects surface states, if any, as discussed below. Supplementary Figure 6
shows results from full self-consistent slab calculations with the lattice being fixed for the band
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Supplementary Figure &lectronic relaxation on the surface of Ca. aElectronic band structure
of Ca at 7.5 GPa for the (111) surface in the LDA, with the lattice is fixbd.The region in
the surface Brillouin zone (grey); where the surface states descend below the Fermi energy by

relaxation. The solid curves are projections of nodal lines.

structure of the Ca slab at 7.5GPa with (111) surfaces. Comparing Supplementary Kjgure 3
(without electronic relaxation) and Supplementary Figuad\@ith electronic relaxation), we see

that surface states descend to the Fermi energy, which is within the grey region inSupplementary
Figure @, and that some of the surface states descend even below the Fermi energy, becoming
occupied (shown as the shaded region in Supplementary FignreThis lowering of surface

states is attributed to the negative potentigk) near the surface. Because the poteritiat)

is close to the surface, the surface states with shorter penetration depth are more affected by the
potential V' (z). The maximum of the energy shift of the surface state is expected iG;bie

has been estimated to be aroun@.77eV. This estimate is in good agreement with the energy
shift of the surface states between Supplementary Figgi@vBhout electronic relaxation) and

Supplementary Figureab(with electronic relaxation). To summarize, the bulk carriers partially
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screen the surface polarization charge due to the nodal lines, leaving behind dipoles at the surface.
This induces an electronic potential which affects surface states, if there are any surface states

within the energy scale of the potentid(z) at the surface.
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