
SUPPLEMENTARY METHODS

Trapped 171Yb+ ion qubits

The system considered in this work consists of a small, ap-
proximately homogeneous ensemble of trapped 171Yb+ ions
in a linear Paul ion trap enclosed in an ultra-high vacuum
(UHV) chamber, and controlled by an external microwave
driving field in the presence of engineered dephasing noise.
The ions are Doppler cooled on the 2S1/2 to 2P1/2 transition
with a 369 nm laser tuned approximately γ/2 lower than the
resonance frequency of the transition, where γ is the natu-
ral linewidth. Undesired states to which the ions may decay
are depopulated using two additional repump lasers at 638 nm
and 935 nm. Details of the experimental system appear in [1].

Qubits are realised by the magnetic dipole tran-
sition in the ground state hyperfine splitting be-
tween the states |0〉 := 2S1/2 |F = 0,mF = 0〉 and
|1〉 := 2S1/2 |F = 1,mF = 0〉 with a transition frequency
of 12.6 GHz as shown in supplementary figure 1. State ini-
tialisation is accomplished using a 2.1 GHz sideband on the
369 nm laser to optically pump the ion state to the |0〉 state.
The qubit transition is uniformly driven by an ultra-low phase
noise vector signal generator (Agilent E8267D) locked to an
atomic caesium (Cs) reference. The microwaves are injected
into the trap as free-space waves directed through a conical
microwave horn and a dielectric lens (Flann Microwave
CL320-4901) which focuses the microwave field onto the ion
cloud, see supplementary figure 1b.

Qubit measurement

The qubit state is read out by stimulating the 2S1/2 |F = 1〉
to 2P1/2 transition and detecting scattered photons using a
photon multiplier tube and a single-photon counting module
(Standford Research Systems, SR400). The signal is pro-
cessed by the experiment computer to calculate an optimal
prediction of the dephasing process to feedback to the signal
generator in the next measurement cycle. All experimental
measurement results are normalised to measurements of the
dark state and bright state (achieved using a π rotation) im-
mediately preceding the experiment, in order to account for
fluctuations in laser intensity and ion number.

Phase shifts between the local oscillator and the qubits are
measured via Ramsey spectroscopy, integrated over time TR.
After initialising the qubits in state |0〉, we apply two σx/2
pulses separated by the Ramsey interrogation time, TR, dur-
ing which the qubits evolve freely in an equal superposition
of the measurement basis states. The microwave frequency of
the pulses is detuned from resonance ω0 as dictated by the en-

gineered noise. A detuning will result in a reduction of bright-
ness tracing out the so-called Ramsey fringe whose centre can
be approximated by a squared sine function, see supplemen-
tary figure 1c.

To measure this detuning from resonance, we carry out two
sequential Ramsey interrogations with interleaved Doppler
cooling and state initialisation, using an additional detuning
of the carrier of ±1/(4TR), which corresponds to the full
width at half maximum of the centre fringe. The difference
in brightness detected between these two sequential measure-
ments provides means to calculate the frequency/phase offset
using trigonometric relations. This technique is called square-
wave frequency modulation (SWFM) and is popular among
the frequency metrology community [2]. Experimentally, the
desired frequency shifts are realised using an external arbi-
trary waveform generator (Rigol DG4602), which produces a
rectangular voltage waveform that is sent to the vector signal
generator’s external analogue FM port synchronous with the
experimental protocol.

In our experiments a single realisation of this pair of Ram-
sey interrogations constitutes of a single measurement of du-
ration TM, including periods of system reinitialisation. While
we employ an approximately homogeneous spatial ensemble
of ions and single-shot detection over each Ramsey period,
the definition of TM is independent of the specific realisation
of the measurement routine. In the case of a single ion giv-
ing binary detection events, TM would simply be defined by
the time taken to accumulate sufficient experimental results in
order to deduce a temporal average value of the qubit state.

Dephasing noise engineering

The engineered dephasing noise in our experiments is re-
alised as a time-varying frequency detuning of the system’s lo-
cal oscillator from resonance with the qubit transition, δ (t) ≡
(Ω (t)− ω0) /ω0, where ω0 is the qubit frequency and Ω (t)
is the noisy clock frequency. In the frame co-rotating with
ω0 this noise is indistinguishable from an external dephas-
ing term in the Hamiltonian Ĥ (t) = −φ̇ (t) σ̂z/2 where σ̂z
is the Pauli operator in the measurement basis, and the dot
indicates a time derivative [3]. This noise thus produces
phase evolution of the qubit relative to the local oscillator,
|ψ (t)〉 = 1√

2

[
|0〉+ exp−iφ(t) |1〉

]
, with φ (t) =

∫ t
0
dt′δ (t′).

The form of the time-varying noise signal is produced as out-
lined in [1] in order to produce an effective dephasing noise
power spectral density with user-defined characteristics. This
noise is generated by an external arbitrary waveform genera-
tor and applied to the microwave source using an additional
analog FM input (see supplementary figure 1).

To ensure the dominance of the engineered noise over in-



AWG

Vector
Signal

Generator

FM2

12.64 GHz

PC
algorithm

FM1

Quartz
Oscillator

Cs Reference

PMT

10 MHz
Reference

Fluoresence
detection

+18 dB
Amp

Horn
& lens

Ion
trap

Laser beams

Predictive
feedback

DAC

F
lu

or
es

ce
nc

e,
(a

.u
.)

Frequency

a b

2.1 GHz

12.6 GHz
Qubit

369 nm

c

Supplementary Figure 1. Experimental setup and measurement technique. a Atomic energy level diagram of our trapped 171Yb+ ions (not to
scale) showing the most important transitions . The qubit is realised through the hyperfine splitting of the 1S1/2 ground state. Initialisation
in the |0〉 state is accomplished using a 2.1GHz sideband on the 369 nm laser, discriminative read-out between |0〉 and |1〉 by measuring
scattered photons of the 369 nm laser without sidebands. b Simplified version of the experimental setup. We trap multiple ions in a linear Paul
trap and drive the 12.6GHz qubit transition with an ultra-low phase noise local oscillator locked to a 10MHz reference. Engineered noise and
SWFM shifts are applied using external FM. State detection and initialisation is accomplished using the 369 nm laser. The ion fluorescence is
collected and focussed onto a photon multiplier tube whose signal is processed by a single-photon counting module. The resulting counts are
processed by the experiment computer to provide optimal feedback to the LO. c Schematic procedure of square-wave frequency modulation
(SWFM). The microwave frequency is shifted below and above the centre frequency of the microwaves by exactly 1/(4TR). By measuring
the difference in fluorescence at the two different frequencies we can calculate the difference between the centre frequency of the microwave
source and the qubit transition frequency.

trinsic system noise, we scale its amplitude to be on the order
of 20 − 50 % of the Ramsey fringe width. Previous demon-
strations [1] have given coherence times of T2 > 2 s under
intrinsic system conditions, while comparable phase accumu-
lation here occurs on time scales of order tens of milliseconds.

Prediction estimation algorithm

The predictive algorithm employed here is derived from
supervised machine learning and represents a simple yet ef-
ficient approach to optimisation problems with convex cost
functions. We optimise the correlation between past mea-
surements of qubit phase accumulation, φM(t < tk), under
stochastic engineered dephasing noise, and future phase evo-
lution of the qubit state, φM(t > tk). This is accomplished
by constructing a linear combination of past measurements
weighted by coefficients which are optimised with respect to
the mean-squared error, ε, between our predictions and fu-
ture measurement outcomes. This is equivalent to a multi-
dimensional least-squares minimisation problem also known
as linear regression, where the dimensionality is determined
by the number of past measurements employed, n. While we
possess quantitative knowledge of the engineered noise in our
experiments, this information is not employed in any way in
the optimisation routine and only serves to permit quantitative
evaluation of predictive efficacy.

Weighting coefficients are calculated as a matrix w =
{w}i,j which produce a set of optimal predictions,

φP(tk+1) =
∑n,k
i,j=0 wi,jφ

M(tj), for a range of past mea-
surements, i = 1, .., n, and discrete timesteps into the future,

j = 1, ..k. We start with a set of initial weighting coeffi-
cients which are typically all zero except for the first one, i.e.
the one relating to the most recent measurement, then calcu-
late φP and our cost-function ε =‖ w · φM − φP ‖2, where
φA,(M) =

{
φA,(M)

}
i,j

. A customised gradient-descent al-
gorithm is employed to find the weights which minimise this
cost-function for all i and j. Convergence is ensured by com-
paring the values of ε for sequential iterations and the speed of
convergence is controlled by adaptive adjustment of the learn-
ing parameter. This algorithm was chosen as its performance
scales favourably with matrix size, permitting efficient incor-
poration into real-time experimental demonstrations.

In order to ensure a conservative estimate of predictive per-
formance we routinely determine the matrix w using a “train-
ing” data set that shares statistical properties with a target
“validation” data set, but constitutes a different noise reali-
sation. Proceeding in this manner ensures good predictive ca-
pabilities over an ensemble of similar noise realisations; such
ensemble-averaged performance may be traded for enhanced
predictive capabilities at the cost of diminished predictive ro-
bustness under different data sets. This tradeoff is commonly
encountered in optimal control contexts [4] and may be re-
ferred to as “model robustness” or mitigation of “overfitting”.

Time-division-multiplexed stabilisation

We craft a setting that replicates the constraints of quan-
tum information experiments in which projective measure-
ments are forbidden due to their role in causing quantum state
collapse. We interleave periods of projective measurements



(“probe”) with periods in which the qubits undergo free evo-
lution (“stabilisation”) and are otherwise available for use in
quantum information experiments. Our objective is to miti-
gate qubit dephasing during the stabilisation periods in which
the qubit state is unsupervised, using information gained dur-
ing the probe period and predictive estimation of future qubit
dephasing.

During the probe period we perform n equally spaced mea-
surements of the qubit’s phase which are stored in memory
and used to calculate φP (tk) for all tk in the stabilisation pe-
riod. The LO frequency is then corrected (effectively compen-
sating for the qubit dephasing evolution) in each time step, tk,
up to a variable time at which a diagnostic measurement is per-
formed. We vary k = 1 → 50, with the entire measurement
sequence including the probe period, prediction and step-wise
stabilisation, repeated for each diagnostic experiment as k is
varied. A general performance estimate is obtained by aver-
aging over multiple probe and stabilisation periods.

Numerical simulations of these measurements are per-
formed using the same engineered noise processes to which
we add Gaussian noise with variance matching the expected
shot noise level in our experiment. The simulations approx-
imate the measurements well, indicating that they provide a
good resource for performance estimates prior to experiments
in our system.

Closed-loop predictive stabilisation

In this experiment we perform cyclic measurement feed-
back based on predictive estimation of future qubit phase evo-
lution. Periodic measurements of the qubit-LO phase differ-
ence are performed and stored in memory on the experimental
control computer. Using a previously calculated set of weight-
ing coefficients w trained on a different noise realisation, we
calculate φP(tk) at the time of correction in real time using
the latest measurement outcomes. We then correct to com-
pensate for the predicted phase offset, and measure the qubit
state again. With each measurement we update our estimate of
future evolution, feeding our algorithm the effectively uncor-
rected measurement by adding the correction to it. This way
the correction is overlapping and continuous. This procedure
is repeated over 1000 cycles in order to test the long-term sta-
bility of a qubit undergoing predictive stabilisation, and cal-
culate the sample variance [5] as a function of the number of
cumulative measurement cycles, N . The sample variance in-
cludes Bessel’s correction in order to account for the finite na-
ture of the measurement set. This routine is compared against
a traditional feedback model in which corrections are cycli-
cally applied based solely on the last measurement outcome
without the use of any predictive estimation. Real-time feed-
back experiments are averaged over ten different noise realisa-
tions for both methodologies. We vary the effective sampling
frequency of the measurement protocol relative to the spec-
trum of the engineered dephasing noise, ωs/ωc, by introduc-
ing gaps between measurements (skipping discrete timesteps)

that correspond to “dead time” in precision frequency metrol-
ogy.

The numerical simulations presented alongside with this
data are obtained following the same overlapping protocol on
the same noise realisations and approximate the experimental
results well.

SUPPLEMENTARY DISCUSSION

The experiments presented in the main text employ quasi-
white engineered noise spectra with fixed cut-off frequen-
cies, ωc, selected for experimental convenience and the ease
of quantitative analysis. Here we provide evidence that the
approach we employ to predict qubit stochastic dephasing is
broadly applicable across a range of noise spectra, and sam-
pling rates.

Complex coloured noise

We provide numeric simulations of the performance of our
predictive algorithm in the context of closed-loop predictive
feedback stabilisation, taking the same approach as for the
experiments and simulations presented in figure 3 in the main
text. We calculate the resulting sample variance of the free-
running and stabilised qubit-LO system employing three dif-
ferent power spectra of dephasing noise:

- 1/ω power spectrum with a white floor up to a high-
frequency cutoff,

- Power spectrum including multiple different colours of
noise, spanning from ω2 to 1/ω2,

- 1/ω power spectrum with narrow spurs as may be en-
countered in synthesisers subject to interference from
mains power or mechanical pickup.

In all cases we calculate the sample variance at 1000 sta-
bilisation cycles, varying the sampling rate ωs as expressed
in terms of the (arbitrary) maximum frequency, ωmax used
in the power spectra. As before, a varying sampling rate is
simulated by increasing the step size between two successive
points in the time-domain realisation. Calculated performance
is shown in supplementary figure 2, normalised to the sam-
ple variance of the free-running system. Predictive stabilisa-
tion is compared against traditional feedback, revealing order-
of-magnitude improvements at the lowest sample rates, and
demonstrating gains of tens of percent for ωs → ωmax. This
behaviour appears because a reduction in the sampling fre-
quency (dead time increases) increases aliasing of the noise
and has detrimental impact on traditional feedback. Notably
the greatest advantages appear for predictive estimation in
cases where there is substantial noise power near the inverse
cycle time [5]. We also observe that in cases where aliasing
leads to destabilisation of the locked qubit-LO system under
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Supplementary Figure 2. Analysis of the efficacy of our approach
to minimising LO-qubit dephasing for three different power spec-
tra. a, c, e Various power spectra in arbitrary units with maximum
frequency ωmax normalised to 1. Examples include a 1/ω spec-
trum with white floor ranging from 0.0001 − 0.1ωmax, a complex
coloured spectrum spanning from 1/ω2 to ω2 and a 1/ω spectrum
with spurs at frequencies ranging from 0.0001 − 0.8ωmax. Insets
show sample time-domain representations. The vertical line in the
top left panel illustrates the change of sampling frequency in the
analysis. Any frequency in the power spectrum greater than half this
value is aliased. b, d, f Sample variance of the corrected data relative
to their associated free-running oscillators (grey dashed line). Both
left and right panels are relative to the same maximum frequency.
These calculations use n = 50 past measurements.

traditional feedback, the predictive algorithm learns that the
best strategy is to apply no correction, leading the predictive
scheme to converge to the sample variance of the free-running
system.

Intrinsic system noise

In addition to the quantitative performance demonstrations
of our algorithm on engineered noise, we provide a valida-
tion of its efficacy on the native noise in our experiment. The
underlying intrinsic instability of our system is dominated by
a combination of phase noise inherent to the local oscillator
and ambient magnetic field drifts, leading to a complex tem-

poral form of measured qubit dephasing. Measurement shot
noise has the added effect of increasing the amplitude of the
flat noise floor of our measurements and reducing the quality
of correlations that can be extracted from the data.

We calculate the performance of predictive feedback and
traditional feedback control at a large number of cycles based
on measurements of the free-running qubit-LO system. The
small size of the residual phase/frequency instabilities in our
system mandate a relatively long Ramsey time (TR = 60 ms),
and technical limitations impose an approximately 1.7 Hz
sampling rate. We collect over 15,000 sequential measure-
ment and use the first 70 % of the data set for training of the
weighting coefficients in w and the remainder for validation.

The calculated sample variance at 5000 cycles of simulated
feedback demonstrates that while the high frequency nature of
noise in the system leads traditional feedback to destabilise the
locked qubit-LO system, the use of n > 40 past measurements
in calculating optimal prediction demonstrates improvements
of up to 30 % relative to the free-running system. Gains rela-
tive to traditional feedback are commensurately higher.

This demonstration reveals that the real-time implemen-
tation of predictive feedback control can, in principle, pro-
vide substantial improvements under realistic conditions us-
ing state-of-the-art qubit-LO systems. Further improvements
may be gained by reducing latency in the control cycle
through use of dedicated high-speed FPGA hardware, instead
of a control PC, for both data acquisition and the calculation
of predictions in real time.
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