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METHODS 

Theory behind combining P-values 
A combined p-value with a Fisher’s or Stouffer’s Method becomes more significant as the 
number of combined p-values increase.  This behavior is considered a major strength of p-value 
combination methods [1] as shown in the following simplified scenario.  Given two gene 
promoters, G1 and G2, and epigenetic modifications overlapping them with effect significances 
p1 and p2, respectively, such that p1=(0.01, 0.60) and p2=(0.06, 0.10, 0.20), we would 
traditionally conclude that G1 has a significant effect at α<0.05 and deprioritize G2.  However, 
using the Fisher’s Method combined p-value for both p1 and p2, we find that the p1,combined=0.04 
and p2,combined=0.04.  Even though p2 has no significant p-values at α=0.05, it has more 
borderline significant elements than p1 and, therefore, should be prioritized.  In this manner, the 
overall study power can be improved by not ignoring evidence that falls above arbitrary 
thresholds only by chance.  

 

P-value combination methods 
Of the available methods used in meta-analyses to combine p-values, the most common 
methods are implemented in SMITE.  Each method has strengths and weaknesses and may be 
useful depending on the type of combined effect that is most interesting to the user.  For an 
explanation of the implemented methods, we consider combining K p-values, p1…k.  The 
generalized form for combining K p-values from independent experiments in a meta-analysis is: 

𝑇 = 𝑤$𝐻 𝑝$'
$()            (1) 

where wi represents weights and H is a transformation of p-values [2].   

(1) Stouffer’s method [3] first applies the inverse standard normal CDF transformation of each pi 
such that:  

𝛷+) 1 − ./
0

= 𝑍$           (2) 

and then calculates a combined statistic as: 

          (3) 

Stouffer’s method is convenient because one can easily include weights for the individual 
components wi…k [4]  such that:  
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(2) Fisher’s method [5] is another straightforward way to combine p-values where: 

           (5) 

Fisher’s method is optimal when trying to assess the joint significance between nodes in an 
interaction network, which is generally a sum between the node scores.  There is some 
evidence that Fisher’s method can lose power when there are a few large p-values compared to 
the rest of the p-values [6]. 

(3) Sidak’s Adjustment [7] is equivalent to taking the most significant effect within a region, 
which is a common practice in genomics research, but it includes an additional penalty for the 
number of p-values considered such that: 

         (6) 

(4) The binomial method is an intuitive approach to combining p-values that relies on finding the 
probability under a Binomial distribution of finding significant p-values given a series of tests.  By 
defining a threshold, α, and finding the total number of p-values less than or equal to alpha, we 
calculate the probability under a binomial distribution of finding the result or a more extreme 
result such that: 

          (7) 

 
Cholesky decomposition for correlated p-values 
The existence of the Cholesky decomposition for a correlation matrix is known so that given a 
symmetric, positive, and definite correlation matrix, 𝛴$3, there is an upper triangular matrix with 
positive diagonal entries, Cij, so that 𝛴$3=Cij

TCij.  In the literature, one major use of this 
decomposition has been to correlate random variables that are independent. One example 
comes from Hoyland, Kaut, and Wallace [8], where they state that given 𝑋 , an n-dimensional N 
(0, 1) random variable with a correlation structure indicating mutual independence, then the 𝑌 = 
C𝑋 is an n-dimensional N (0, 1) random variable with correlation matrix that depends on C and 
is not longer mutually independent.  By rearranging this equation it is apparent that mutually 
independent random variables may be achieved by finding the product of inverse of the 
Cholesky decomposition of a correlation matrix and a N(0,1) random variables that are assumed 
to be dependent, 𝐶+)𝑌 = 𝑋.  Thus, as the inverse standard normal CDF transformation 	 
𝛷+) 1 − ./89

0
= 𝑍$3: results in N(0,1) distributed random variables, when considering correlated 

p-values we can use 𝐶$3+)𝑍$3: = 𝑍$3:∗  to find a mutually independent random variables.  This use 
of the Cholesky decomposition has been previously demonstrated [6]. 
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Notation used to explain SMITE algorithm  
For the theory behind SMITE, we use {ijk} to denote each p-value associated with an interval 
and gene, e.g. one p-value in a specific gene’s promoter.  We use {ij} to denote each interval 
associated with a particular gene, e.g. a single combined p-value representing all p-values 
within a specific gene’s promoter.  We use {.j} to denote each interval as it associates with all 
genes, e.g. a single weight associated with all promoters.  We use {i} to denote each gene.  
Therefore, we define genes as Gi for i in 1,2…I and genomic intervals as Rij for j in 1,2…J 
related to Gi (e.g. a specific gene’s promoter and body).  Within each Rij, we find the N 
overlapping p-values, pijk for k in 1…Nij.  Weights w.j are defined for each R.j,  

 

Program runtime and requirements 
We benchmarked the running time for SMITE on a Windows machine with 4 GB of RAM at 
approximately 45 minutes, while the running time on a high performance computing Linux 
cluster was approximately 30 minutes, depending on the number and resolution of loaded 
modifications.  SMITE is a pipeline with multiple steps, so the runtime is not necessarily 
reflective of the actual analysis time, which would involve more user interaction with the data.  
Memory intensive processes like the spin-glass algorithm may fail unless the system has 
enough free RAM, which in our tests required roughly 1.6 GB.  On memory-poor systems, we 
have found that this sometimes requires saving the working data set object, freeing up memory 
on the system and within R, and loading the object again before running network algorithms in 
SMITE.   

 

Infection of human foreskin fibroblasts (HFF) with Toxoplasma gondii (T. gondii) 
To benchmark SMITE, we obtained a large multifaceted genomics dataset from a controlled 
experiment studying the genomic effects on human foreskin fibroblasts (HFF) following infection 
by T. gondii.  This dataset is part of a separate manuscript in preparation, and will be made 
available as a public resource after manuscript submission. The HFFs were obtained from 
ATCC CRL-1634 Hs27 LOT:4012886. After being received from ATCC, they were labeled as 
P16 (Passage 16) and a lab stock was created that was labeled P17. All experiments were 
done using P17-P20, and HFFs were discarded after P20.  HFFs were grown in Dulbecco’s 
modified Eagle medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; 
HyClone), 100 U/mL penicillin (Gibco), 100 µg/mL streptomycin (Gibco) and 2 mM L-glutamine 
(HyClone) and were maintained at 37°C with 5% CO2.  T. gondii type I tachyzoites (RH) were 
repeatedly passaged with HFFs until the host infections were synchronized.  Following 
synchronization of the infection, the tachyzoites were released by passing the infected cells 
through a 25 gauge needle three times and centrifuging at 3000 rpm for 8 minutes.  Next, 75 
cm2 flasks containing confluent HFFs were infected using a multiplicity of infection (MOI) of 3.  
After 24 hours, the proportion of infected host cells per flask was calculated by identification of 
parasite rosettes adjacent to the nuclei of the infected host cells using a light microscope, and 
quantifying the proportion of cells showing this pattern.  When flasks were found to have at least 
80% infected HFFs, they were harvested by scraping.  An uninfected flask containing cells to be 
used as controls was also harvested in parallel.  The harvested cells were centrifuged at 1,300 
rpm for 5 minutes.  Cells were harvested such that both RNA and DNA could be extracted from 
the same flask for each biological replicate, and three replicates of uninfected and infected 
HFFs were harvested in total.  We expect that these intracellular parasites could alter multiple 
host cellular pathways, especially pathways related to infection, inflammation, metabolism and 
host cell cycle [9, 10].  



Genomic DNA was extracted from cells using a protocol developed by the Einstein Epigenomics 
Facility. The cells were incubated in 10 ml of a DNA extraction buffer (10 mM Tris-HCl (Fisher), 
0.1 M EDTA (Sigma-Aldrich), 0.5% SDS (Sigma-Aldrich), and 10 μl of 20 mg/mL RNaseA 
(NEB)) at 37°C for one hour, then incubated with 50 μl Proteinase K (Life Technologies) at 50°C 
overnight. Next, 10 ml of saturated phenol (Fisher) was added to the DNA extraction buffer and 
mixed slowly at room temperature for 15 minutes then centrifuged at 3000 rpm for 10 minutes at 
room temperature. The supernatant was transferred to a new 50 ml falcon tube, and this 
process was repeated twice more with saturated phenol.  The process was repeated three 
additional times substituting the phenol with chloroform (Sigma).  Subsequently, the sample was 
pipetted into a dialysis bag (Fisher) and put sequentially into three 500 ml baths of 0.2x saline-
sodium citrate buffer (Fisher).  Finally, the dialysis bags were placed on PEG crystals (Sigma) 
allowing the water to be removed by osmosis.  The DNA was collected from the dialysis bag 
and stored at 4°C for further analysis (see HELP-tagging and HELP-GT).  Gene expression 
(directional RNA-seq), DNA methylation (HELP-tagging [11]), and DNA hydroxymethylation 
(HELP-GT [12]) profiles were generated from the three uninfected and three T. gondii-infected 
HFF samples, using additional information about cis-regulatory element locations from ChIP-seq 
annotations of histone modifications of IMR90 human fibroblasts.  Through simultaneous 
alignment of RNA-seq reads to a combined hg19-Toxoplasma genome, we find that the relative 
proportions of parasite and host were similar between replicates (Figure S1).  Although the RH 
strain of T. gondii was used in our experiments, we chose to align the reads to the ME49 v9.0 
Toxoplasma reference genome, as it was more completely annotated at the time of alignment, 
was shown to be 97.6% identical to the RH strain [13], and is the most common strain infecting 
humans.  

	

Figure S1:  For each HFF + T. gondii replicate we aligned the RNA-seq reads to a composite 
hg19-Toxoplasma genome.  We assess the proportion of reads that aligned to each genome 
separately to demonstrate consistency between and within samples. 

	



HELP-tagging and HELP-GT 
The HELP-tagging assay was developed by our group [11] and is a high-throughput approach to 
assay DNA methylation genome-wide.  Samples were treated with the restriction enzymes HpaII 
or MspI, both of which recognize a CCGG motif but have a differential ability to digest DNA 
depending on the presence of 5-methylcystosine (5-mc).  After preparing and sequencing 
libraries from digested DNA, the relative number of sequencing tags between the HpaII and 
MspI channels indicated the relative DNA methylation at a specific locus.   Using HELP-tagging, 
we were able to assay DNA methylation at approximately 2 million loci.  We used a modification 
of HELP-tagging, HELP-GT, to assay genome-wide DNA hydroxymethylation [12].  HELP-
tagging does not discriminate between methylated and hydroxymethylated CpG dinucleotides, 
but the use of the bacteriophage T4 beta-glucosyltransferase (BGT) can catalyze the addition of 
a glucose moiety to the hydroxyl group of 5-hydroxymethlcytosines (5-hmC), which interferes 
with the ability of MspI to digest DNA at these CpG dinucleotides.  A third comparison after BGT 
treatment followed by MspI treatment allows for the detection of 5-hmC levels within each 
sample.  Both HELP-tagging and HELP-GT were performed on the control and infected T. 
gondii samples.  The resulting significance is obtained from two-sided T-testing with 4 degrees 
of freedom. 

 

RNA-seq 
Directional RNA-seq was performed on the uninfected and T. gondii-infected samples.  Total 
RNA was extracted from each of the samples using a Trizol protocol.  Cells were pelleted and 
resuspended in ice-cold PBS (Fisher).  Following this, 1 ml of the Trizol reagent (Life 
Technologies) was added, with 5 minutes of incubation at room temperature and centrifugation 
to remove cell debris.  The supernatant was transferred to new tube and 0.2 ml of chloroform 
(Sigma) was added and the tube was centrifuged.  The aqueous phase was transferred and 
added to 0.5 ml of isopropyl alcohol.  The samples were incubated at room temperature for 10 
minutes and centrifuged.  The RNA pellet was washed with 75% ethanol, air-dried, and 
resuspended in nuclease-free water.  The extracted RNA was then depleted for ribosomal RNA 
using the Ribo-zero kit (Epicentre Biotechnologies).  After sequencing the mRNA-enriched 
library, HTSeq was used to calculate the total counts at each human gene, and the 
Bioconductor package DESeq was used to compare relative expression between uninfected 
and T. gondii infected samples using negative binomial testing.  For the purposes of this study, 
we examined only the human host gene expression and epigenome, querying for changes 
induced in the host by T. gondii infection.   

 

 

 

 

 

 

 

 

 

 



Defining cis-regulatory elements in human fibroblasts 
The histone modification profiles of a human fibroblastic cell type, IMR-90, assayed by the 
ENCODE project [14] were obtained.  We used the H3K4me1, H3K27ac, and H3K27me3 
modifications to define cis-regulatory elements in this cell type.  We processed the data using 
an adaptation of an imaging signal processing algorithm to define the locations of chromatin 
constituents with minimal data transformation [15, 16].  We defined genomic context relative to 
the gene transcription start site (TSS) by the criteria defined in Table S1. 

Genomic Context Criteria 
RefSeq Gene Promoter ± 2 kb from TSS 

RefSeq Gene Body 
Gene Body TSS to TES 

 (minus promoter region) 

Active Enhancer H3K4me1+, H3K27ac+ 

Poised Enhancer H3K4me1+, H3K27me3+ 

 

Table S1:  To analyze the T. gondii HFF dataset, genomic contexts were defined using the 
RefSeq gene annotation track from the UCSC genome browser and IMR90 histone mark 
combinations available from ENCODE.  TSS: transcription start site. 

 

Incorporating a priori hypotheses into SMITE analysis 
SMITE incorporates three different points within its pipeline where the user can alter the final 
outcome dramatically depending on a priori information. First, users can include a priori 
information about how modifications within a specific genomic context should be weighted. 
Distance from the TSS is a popular method to weight epigenetic effects, given that epigenetic 
states may reflect transcription factor (TF) binding, and TFs are often assumed to maintain a 
relationship with a gene within a specific distance from the gene’s TSS [17].  Alternatively, as is 
the case in other network analysis tools like Epimods [18], a researcher may only focus on the 
most significant p-value within a particular genomic context, although SMITE allows the use of 
the Sidak correction that accounts for multiple comparisons.  Second, users can control a priori 
information about the relationship between transcription and a modification given a particular 
genomic context. Though the relationship between transcription and epigenetic modifications 
can be complicated, some relationships have been studied extensively and are generally found 
to be true like DNA methylation in gene promoters being associated with transcriptional 
silencing [19], whereas DNA methylation in a gene body is associated with increased 
expression [20–22].  By giving the user has the option to define a relationship for each 
modification-genomic context pairing, SMITE results in functional modules enriched for more 
easily interpretable gene effects.  Third, when scoring nodes, a linear combination of weights 
can be provided to address a priori research goals defining the relative importance of a 
component score toward the final scores and functional modules (e.g., functional modules 
enriched for relating transcription and enhancer modifications).  

 

 



 

 

 

Annotation Level 
Relationship 
with increasing 
expression 

SMITE: 
Full weight 

SMITE: 
Reduced weight 

Expression Gene NA 0.1 0.5 

DNA 

Methylation 

Gene promoters Decreasing 0.04 0.5 

Gene Bodies Increasing 0.01 0.0001 

Active 
Enhancers Bidirectional 0.2 0.0001 

Poised 
Enhancers Bidirectional 0.2 0.0001 

DNA 

Hydroxymethylation 

Gene promoters Bidirectional 0.04 0.0001 

Gene Bodies Bidirectional 0.01 0.0001 

Active 
Enhancers Bidirectional 0.2 0.0001 

Poised 
Enhancers Bidirectional 0.2 0.0001 

 

Table S2.  To score the T. gondii HFF dataset, the relationship between each modification and 
gene expression can be indicated in a genomic context-specific manner.  Here, DNA 
methylation at gene promoters will have an inverse relationship with expression, and DNA 
methylation at gene bodies will have a positive relationship with gene expression.  All other 
effects will be maximized regardless of their direction.  In addition, the weighting vectors indicate 
that the modules we detect in the SMITE-Full model will be driven by gene expression, DNA 
methylation and DNA hydroxymethylation at enhancers, and they were chosen so that the sum 
of the weights would be 1.  The modules that we detect in the SMITE-Reduced model will be 
driven by gene expression and promoter DNA methylation. 

 

 

 

 



 

 

 

 

	

Figure S2:  To explore the effect of using altered weights, wijk, we requested that no weights 
be used and compared it to weighting by distance.  From the overall scores derived from p-
values and the R2=0.99 it is apparent that the overall scores are very concordant and the effect 
of the weight choice is minimal.	



 

 

 

	

Figure S3: To explore the effect of using altered weights, w.j, we fixed all weights except for 
one which was varied between 0.01, a value that down weights the component severely, and 
0.4, a value that makes the component the dominant one in the model.  Then for each 
iteration, we requested the highest scoring genes (genes that were above the random null 
score distribution) and showed their scores.  Finally, we show for each iteration the proportion 
of high scoring genes under the original model (weights shown in red) that remain.  For each 
component, there is a subset of genes that remains high scoring despite the choice in weight, 
and a subset of genes that emerges as more weight is placed on the component. 

	



 

 

  

	

Figure S4:  Under the reduced SMITE model (SMITE-R) and the full SMITE model (SMITE-F) 
we compare the overall scores of genes to show how gene scores vary greatly under these 
two very different model choices.  The Venn diagram shows that there is very little overlap in 
the downstream high scoring genes. 

	



 

	

Figure S5.  Using the reduced SMITE model (SMITE-R) and the full SMITE model (SMITE-F), 
we requested the BioNet module using the heinz algorithm.  (a) The detected modules are 
shown, and within them there are hotspots that roughly correspond to the modules detected by 
the spin-glass algorithm. (b) From a Euler diagram of the module genes, it is clear that there is 
very little overlap between the identified genes between SMITE-R and SMITE-F. 

	



 

  

 

	

Figure S6:  Because a KS-test between SMITE module genes (roughly 500) and SMITE 
scored genes (roughly 23,000) will generally be significant when compared with a KS-test 
between FEM module genes (roughly 200) and FEM scored genes (roughly 6,000), we instead 
used a sampling approach to determine the KS-test significance.  For FEM, the reduced 
SMITE model (SMITE-R), and the full SMITE model (SMITE-F), we computed 10,000 random 
samples of equal size to the identified modules and plot the significance.  On average, FEM 
module genes are not statistically different when compared to all FEM genes; whereas, 
SMITE-R and SMITE-F achieve a greater statistical significance.	



 

 

 

  

	

Figure S7:  We found the number of HpaII sites that were assayed for DNA methylation and 
DNA hydroxymethylation, and thus the number of p-values, associated with each gene, and we 
looked for the distribution of the number of p-values associated with high scoring genes for all 
genes, SMITE-F genes, SMITE-R genes, and FEM genes.  We find that the SMITE-F model 
outperforms the FEM model in terms of bias toward genes associated with more p-values, 
having a statistically significant different distribution (KS-test p-value <10-12). 

	



Appendix 1. R code for analyzing T. gondii HFF dataset with SMITE 

options(stringsAsFactors=FALSE) 

library(SMITE) 

library(data.table) 

#load modification p-values and curate data 

methylation <- as.data.frame(fread("SMITE_Meth.txt", header=TRUE, stringsAsFactors 
=FALSE)) 
methylation <- methylation[-which(is.na(methylation[,4])),] 
methylation[, 4] <- replace(methylation[, 4], methylation[, 4] == 0, min(subset(methylation[, 4], 
methylation[, 4] !=0 ), na.rm=TRUE)) 
methylation<-methylation[,c(1:3,5,4)] 

hydroxyl <- as.data.frame(fread("SMITE_Hydroxy.txt",header=TRUE,stringsAsFactors =F)) 
hydroxyl < -hydroxy[-which(is.na(hydroxy[,4])),] 
hydroxyl[, 4] <- replace(hydroxyl[,4], hydroxyl[, 4] == 0, min(subset(hydroxyl[, 4], hydroxyl[, 4] != 
0), na.rm=TRUE)) 
hydroxyl <- hydroxyl[,c(1:3,5,4)] 

#load gene expression p values 
genes <- read.table("SMITE_Exp.txt", header=TRUE, stringsAsFactors =FALSE) 

genes <- genes[-which(is.na(genes[, 3])), ] 
genes <- genes[-which(duplicated(genes[, 1])), ] 
genes[, 1] <- convertGeneIds(gene_IDs=genes[, 1], ID_type ="ensemble", ID_convert_to 
="symbol") 
genes <- genes[-which(is.na(genes[, 1])), ] 
genes <- split(genes, genes[, 1]) 
genes <- lapply(genes, function(i){ 

if(nrow(as.data.frame(i)) > 1){ 
I <- i[which(i[, 3] == min(i[, 3],na.rm=TRUE))[1], ] 
} 

return(i)})  
genes <- do.call(rbind, genes) 
genes <- genes[, -1] 
genes[, 2] <- replace(genes[, 2], genes[,2] == 0, min(subset(genes[, 2], genes[, 2] != 0), 
na.rm=TRUE)) 
genes[grep("-Inf", genes[, 1]), 1] <- (-1) 
genes[grep("Inf", genes[, 1]), 1] <- 1 
expression <- genes 
colnames(expression) <- c("effect","pval") 
 

#Create annotation with gene symbols and enhancers 

data(hg19_genes_bed) 
activeenhancers<-read.table("ActiveEnhancer.bed", header=F, stringsAsFactors =F) 
poisedenhancers<-read.table("PoisedEnhancer.bed", header=F, stringsAsFactors =F) 



Toxo_annotation <- makePvalueAnnotation(data=hg19_genes, 
otherdata=list(active_enhancers=activeenhancers, poised_enhancers=poisedenhancers), 
gene_name_col=5, other_tss_distance=20000) 

#fill in expression data 

Toxo_annotation <- annotateExpression(Toxo_annotation, expression, effect_col=1, 
pval_col=2) 

#fill in modification data 

Toxo_annotation <- annotateModification(Toxo_annotation, methylation, 
weight_by_method="Stouffer", weight_by=c(promoter="distance", body="distance", 
active_enhancers="distance", poised_enhancers="distance"), verbose=TRUE, 
mod_corr=TRUE) 

Toxo_annotation <- annotateModification(Toxo_annotation, hydroxyl, 
weight_by_method="Stouffer", weight_by=c(promoter="distance", body="distance", 
active_enhancers="distance", poised_enhancers="distance"), verbose=TRUE, 
mod_type="hydroxymeth", mod_corr=TRUE) 

#create a pvalue object that will count the effect of the h3k4me1 as bidirectional 

 Toxo_annotation <- makePvalueObject(Toxo_annotation, 
effect_directions=c(methylation_promoter="decrease", methylation_body="increase", 
methylation_active_enhancers="bidirectional", methylation_poised_enhancers="bidirectional", 
hydroxymeth_promoter="bidirectional", hydroxymeth_body="bidirectional", 
hydroxymeth_active_enhancers="bidirectional", 
hydroxymeth_poised_enhancers="bidirectional")) 

#normalize the pvalues compared to expression 

Toxo_annotation <- normalizePval(Toxo_annotation, ref="expression", method="rescale") 
 

#score with all four features contributing 

Toxo_annotation <- scorePval(Toxo_annotation, weights=c(expression=.1, 
methylation_promoter=0.04, methylation_body=0.01, methylation_active_enhancers=0.2, 
methylation_poised_enhancers=0.2, hydroxymeth_promoter=0.04, hydroxymeth_body=0.01, 
hydroxymeth_active_enhancers=.2, hydroxymeth_poised_enhancers=.2)) 

#load REACTOME  

load(system.file("data", "Reactome.Symbol.Igraph.rda", package="SMITE")) 

 #run Spin-glass using REACTOME network 

Toxo_annotation <- runSpinglass(Toxo_annotation, REACTOME, maxsize=100, 
num_iterations=1000, simplify=TRUE) 

#run goseq on individual modules to determine bias  



Toxo_annotation <- runGOseq(Toxo_annotation, coverage=read.table(system.file("extdata", 
"hg19_symbol_hpaii.sites.inbodyand2kbupstream.bed", package="SMITE"), stringsAsFactors = 
F), type="kegg") 

#search go seq output for keywords 

searchGOseq(Toxo_annotation, "Mapk") 

#Draw a network 

plotModule (Toxo_annotation, which.network=11, layout="fr") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 2.   R code for analyzing T. gondii HFF dataset with FEM 
 

#load FEM and dependencies 

library("igraph") 
library("marray") 
library("corrplot") 
library("graph") 
library("AnnotationDBI") 
library(FEM) 

#load a converting package because FEM requires Entrez IDs 
sym2eg<-AnnotationDbi::as.list(org.Hs.eg.db::org.Hs.egSYMBOL2EG) 

#Using a combination of bedTools and R we assembled for DNA methylation: 

#1) average of all effects within 200 bp from a gene TSS  
#2) if no effects were found, the average of effects over the first exon 
#3) if no effects were found, taking the average over 1,500 bp around the TSS  

#Read methylation data into R and merge it to make statM 

statM.1<-read.table("Epimods_Meth.genesoverlapping200bp.txt") 
statM.2<-read.table("Epimods_Meth.genesoverlapping1stExon.txt") 
statM.3<-read.table("Epimods_Meth.genesoverlapping1500bp.txt") 

# find average effects for 400bp region flanking gene tss 

statM.1<-statM.1[,c(5,10,11)] 
temp<-split(statM.1, statM.1[,1]) 
temp<-lapply(temp, function(x){ 
if(nrow(x)>1){ 
x[1,2]<-mean(x[,2],na.rm=T) 
x[1,3]<-min(x[,3],na.rm=T) 
x<-x[1,]} 
x}) 

statM.1<-as.matrix(do.call(rbind, temp)) 
if(any(is.na(statM.1[,2]))){statM.1<-statM.1[-which(is.na(statM.1[,2])),]} 

# find average effects for first exon 

statM.2<-statM.2[which(!statM.2[,5]%in%statM.1[,1]),] 
statM.2<-statM.2[,c(5,10,11)] 

temp<-split(statM.2, statM.2[,1]) 
temp<-lapply(temp, function(x){ 
if(nrow(x)>1){ 
x[1,2]<-mean(x[,2],na.rm=T) 
x[1,3]<-min(x[,3],na.rm=T) 
x<-x[1,] 



} 
x}) 

statM.2<-as.matrix(do.call(rbind, temp)) 

if(any(is.na(statM.2[,2]))){statM.2<-statM.2[-which(is.na(statM.2[,2])),]} 

# find average effects for 3000bp region flanking gene tss 

statM.3<-statM.3[which(!statM.3[,5]%in%statM.2[,1]),] 

statM.3<-statM.3[,c(5,10,11)] 
temp<-split(statM.3, statM.3[,1]) 
temp<-lapply(temp, function(x){ 

if(nrow(x)>1){ 
x[1,2]<-mean(x[,2],na.rm=T) 
x[1,3]<-min(x[,3],na.rm=T) 
x<-x[1,]} 
x}) 

statM.3<-as.matrix(do.call(rbind, temp)) 
if(any(is.na(statM.3[,3]))){statM.3<-statM.3[-which(is.na(statM.3[,2])),]} 
statM<-rbind(statM.1,statM.2,statM.3) 

#convert names to entrez 

M.entrez<-sapply(statM[,1], function(i){return(sym2eg[[i]])}) 
M.entrez<-lapply(M.entrez, function(i){if(length(i)>1){i<-i[1]}; if(length(i)==0){i<-NA};i}) 
M.entrez<-do.call(c, M.entrez) 
statM[,1]<-M.entrez 
statM<-statM[-which(is.na(statM[,1])),] 
rownames(statM)<-statM[,1] 
statM<-statM[,-1] 
statM<-as.data.frame(statM) 

#Read expression data into R to make statR 
statR<-read.table(“Epimods_Exp.txt") 

#convert gene names 

M.entrez<-sapply(statR[,1], function(i){return(sym2eg[[i]])}) 
M.entrez<-lapply(M.entrez, function(i){if(length(i)>1){i<-i[1]}; if(length(i)==0){i<-NA};i}) 
M.entrez<-do.call(c, M.entrez) 
statR[,1]<-M.entrez 
statR<-statR[-which(is.na(statR[,1])),] 
statR<-statR[-which(is.na(statR[,2])),] 

#for overlapping entrez genes take the minimum p value and the average t stat 

temp<-split(statR, statR[,1]) 
temp<-lapply(temp, function(x){ 
if(nrow(x)>1){ 
x[1,2]<-mean(x[,2],na.rm=T) 



x[1,3]<-min(x[,3],na.rm=T) 
x<-x[1,]} 
x}) 

statR<-as.matrix(do.call(rbind, temp)[,-1]) 

#Load graph 

load("Reactome.Symbol.Igraph.rda") 
REACTOME.df<-get.data.frame(REACTOME) 
M.entrez<-sapply(REACTOME.df[,1], function(i){return(sym2eg[[i]])}) 
M.entrez<-lapply(M.entrez, function(i){if(length(i)>1){i<-i[1]}; if(length(i)==0){i<-NA};i}) 
M.entrez<-do.call(c, M.entrez) 
 REACTOME.df[,1]<-M.entrez 

M.entrez<-sapply(REACTOME.df[,2], function(i){return(sym2eg[[i]])}) 
M.entrez<-lapply(M.entrez, function(i){if(length(i)>1){i<-i[1]}; if(length(i)==0){i<-NA};i}) 
M.entrez<-do.call(c, M.entrez) 

 REACTOME.df[,2]<-M.entrez 
REACTOME.df<-REACTOME.df[-which(duplicated(REACTOME.df)),] 
REACTOME.df<-REACTOME.df[-which(is.na(REACTOME.df[,1])),] 
 REACTOME.df<-REACTOME.df[-which(is.na(REACTOME.df[,2])),] 
REACTOME<-graph.data.frame(REACTOME.df, directed=F) 
REACTOME<-induced_subgraph(REACTOME,V(REACTOME)[igraph::degree(REACTOME) > 
0])  
REACTOME<-igraph::simplify(REACTOME) 
cl <- clusters(REACTOME) 
delete.clusters <- which(cl$csize < 100) 
vertices.to.remove <- which(cl$membership %in% delete.clusters)  
REACTOME <- delete.vertices(REACTOME, vertices.to.remove) 

#Find common genes between all 3 and subset 

if(any(is.na(statR[,1]))){statR<-statR[-which(is.na(statR[,1])),]} 
if(any(is.na(statM[,1]))){statM<-statM[-which(is.na(statM[,1])),]} 
graph_genes<-V(REACTOME)$name 
meth_genes<-rownames(statM) 
exp_genes<-rownames(statR) 
common_genes<-intersect(intersect(meth_genes, exp_genes), graph_genes) 

#subset datasets 
statR<-statR[which(rownames(statR)%in%common_genes),] 
statM<-statM[which(rownames(statM)%in%common_genes),] 
REACTOME<-induced_subgraph(REACTOME, common_genes) 
REACTOME<-
delete.vertices(REACTOME,subset(V(REACTOME)$name,igraph::degree(REACTOME)==0)) 
statM<-t(sapply(V(REACTOME)$name, function(i){statM[which(rownames(statM)==i),]})) 
statR<-t(sapply(V(REACTOME)$name, function(i){statR[which(rownames(statR)==i),]})) 

cl <- clusters(REACTOME) 
delete.clusters <- which(cl$csize < 100) 
vertices.to.remove <- which(cl$membership %in% delete.clusters)  



REACTOME <- delete.vertices(REACTOME, vertices.to.remove) 

graph_genes<-V(REACTOME)$name 
meth_genes<-rownames(statM) 
exp_genes<-rownames(statR) 
common_genes<-intersect(intersect(meth_genes, exp_genes), graph_genes) 

statM<-statM[which(rownames(statM)%in%common_genes),] 
statR<-statR[which(rownames(statR)%in%common_genes),] 
REACTOME<-induced_subgraph(REACTOME, common_genes) 

 statM<-as.data.frame(statM) 
 statM[,1]<-as.numeric(statM[,1]) 
 statM[,2]<-as.numeric(statM[,2]) 
 statM<-as.matrix(statM) 

statR<-as.data.frame(statR) 
 statR[,1]<-as.numeric(statR[,1]) 
 statR[,2]<-as.numeric(statR[,2]) 
 statR<-as.matrix(statR) 

#create input 

input<-list(as.matrix(statM), as.matrix(statR), get.adjacency(REACTOME)) 

 

#run FEM 

output<-DoFEMbi(statM.m=input[[1]], statR.m=input[[2]], adj.m=input[[3]],sizeR.v=c(8,100)) 
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