Journal of Anatomy - Evolutionary Morphology Online Supplement for

Body cavity volume reconstruction in terrestrial tetrapods

Marcus Clauss, Irina Nurutdinova, Carlo Meloro, Hanns-Christian Gunga, Duofang Jiang, Johannes Koller, Bernd Herkner, P. Martin Sander, Olaf Hellwich

Correspondence mclauss@vetclinics.uzh.ch

Figure S1. 3D skeleton reconstructions of early synapsids (incl. indications of the convex hull of the body cavity).

Basal synapsids/ mammal-like reptiles

Mall

Acinonyx

Archaeotherium

WII

as Di

1 m

1 m

Mammals

Bos gaurus

ann a

Dicerorhinus*

1 m

2 m

Giraffa

Agouti

Arctitis

Bos taurus*

30 cm

Caracal

Cervus*

Dinohippus

50 cm

Equus scotti

Felis

2 m Gomphotherium

Glossotherium

Cavia

Elephantulus

3

Phascolarctos

50 cm

Phascolonus

50 cm

Platygonus

Procavia

0 cm

2 m

50 cm

50 cm

m

50 cm

10 cm

Figure S2. 3D skeleton reconstructions of mammals (incl. indications of the convex hull of the body cavity). Reconstructions from this study, except *(from Sellers et al., 2012) and #(from Stoinski et al., 2011).

Figure S3. 3D skeleton reconstructions of birds (incl. indications of the convex hull of the body cavity).

Non-avian dinosaurs

Figure S4. 3D skeleton reconstructions of non-avian dinosaurs (incl. indications of the convex hull of the body cavity). Reconstructions from this study, except #(from Gunga et al., 2007), §(from Gunga et al., 2008), *(from Stoinski et al., 2011).

Figure S5. 3D skeleton reconstructions of reptiles and amphibia (incl. indications of the convex hull of the body cavity).

Specimen as taken	Species name in tree	Food ^a	Chew ^b	Femur length	Torso volume	Free-hull ratio	Mirrored/ split torso	Origin ^c	Source ^d	ID at Origin
				cm	cm ³					
Early synapsids										
Chiniquodon theotonicus (Belesodon magnificus)	Chiniquodon theotonicus	carn		16.45	25257.3	0.235	mirr	GPIT	1	RE-07112
Dimetrodon incisivus	Dimetrodon incisivus	carn		17.99	52310.0	0.084	-	GPIT	1	RE-07100
Edaphosaurus boanerges	Edaphosaurus boanerges	herb		18.54	38933.1	0.129	-	AMNH	1	7003
Keratocephalus moloch	Keratocephalus moloch	herb		32.31	591338.0	0.299	mirr	GPIT	1	RE-07102
Lycaenops ornatus	Lycaenops ornatus	carn		18.18	10442.8	0.199	-	AMNH	1	2240
Moschops capensis	Moschops capensis	herb		38.28	445972.0	0.167	-	AMNH	1	5552
Ophiacodon retroversus	Ophiacodon retroversus	carn		17.90	32421.0	0.127	mirr	AMNH	1	4155
Sauroctonus parringtoni	Sauroctonus parringtoni	carn		18.65	18277.5	0.207	-	GPIT	1	RE-07113
Stahleckeria potens	Stahleckeria potens	herb		45.02	867003.0	0.172	-	GPIT	1	RE-07106
Tetragonias (Dicynodon) njalilus	Tetragonias njalilus	herb		20.46	67309.0	0.258	-	GPIT	1	RE-08649
Mammals										
Acinonyx jubatus	Acinonyx jubatus	carn		23.23	5913.2	0.252	-	ZFMK	1	MAM 1931.0070
Coelogenys paca	Agouti paca	herb		10.22	2212.2	0.307	-	ZMUZ	1	10698
Ailurus fulgens	Ailurus fulgens	herb		10.93	1457.1	0.203	mirr	BNHM	1	8223
Amphicyon ingens	Amphicyon ingens	carn		53.85	167553.0	0.220	-	AMNH	1	FAM 68117/54262
Archaeotherium mortoni	Archaeotherium mortoni	herb		28.58	58047.3	0.254	-	AMNH	1	11323
Arctictis binturong	Arctictis binturong	herb		15.59	4726.7	0.337	-	BNHM	1	7553
Bison bison	Bison bison	herb		42.42	275565.0	0.093	-		2	
Blastoceros pampaeus	Blastocerus dichotomus	herb		22.96	16767.9	0.237	-	AMNH	1	11202
Bos gaurus	Bos frontalis	herb		56.48	545800.0	0.243	-	AMNH	1	18465
Bos taurus	Bos taurus	herb		37.37	145353.0	0.214	-		2	
Brontops robustus	Brontops robustus	herb		80.50	1569812.0	0.138	-	AMNH	1	518
Camelus dromedarius	Camelus dromedarius	herb		54.66	284066.0	0.163	-	DMUG	1	no ID
Canis canis	Canis lupus	carn		26.45	22138.5	0.193	split	DMUG	1	no ID
Caracal caracal	Caracal caracal	carn		17.13	2708.5	0.323	split	BNHM	1	10766
Castor canadensis	Castor canadensis	herb		11.40	5654.2	0.250	-	BNHM	1	1997

Table S1. Specimens used in this study, categories and measurements

(ctd.)

Specimen as taken	Species name in tree	Food ^a	Chew ^b	Femur length cm	Torso volume cm ³	Free-hull ratio	Mirrored/ split torso	Origin ^c	Source ^d	ID at Origin
Cavia porcellus	Cavia porcellus	herb		4.66	354.5	0.360	-	CZAEPW	1	no ID
Cephalophus niger	Cephalophus niger	herb		18.00	9507.9	0.244	-	BNHM	1	2493
Cervus elaphus	Cervus elaphus	herb		29.12	53778.3	0.196	-		2	
Choloepus didactylus	Choloepus didactylus	herb		16.87	5262.1	0.267	split	ZFMK	1	no ID
Dama dama	Dama dama	herb		21.17	21706.5	0.250	-	DMUG	1	no ID
Dicerorhinus sumatrensis	Dicerorhinus sumatrensis	herb		40.91	251521.0	0.073	-		2	
Diceros bicornis	Diceros bicornis	herb		43.14	364154.0	0.054	-	ZFMK	1	MAM 1934.0047
Dinohippus leidyanus	Dinohippus leidyanus	herb		33.51	73237.2	0.224	-	AMNH	1	17224
Elephantulus rozeti	Elephantulus rozeti	carn		2.41	14.7	0.285	-	BNHM	1	9159
Elephas maximus	Elephas maximus	herb		93.09	1323760.0	0.193	-	DMUG	1	no ID
Equus caballus	Equus caballus	herb		51.65	233771.0	0.114	-		2	
Equus scotti	Equus scotti	herb		41.07	209734.0	0.196	-	AMNH	1	10606
Felis catus	Felis silvestris	carn		12.64	1713.9	0.271	-	ZFMK	1	MAM 1986.0005
Nanger dama	Gazella dama	herb		24.89	24901.2	0.174	-	BNHM	1	1467
Giraffa camelopardalis	Giraffa camelopardalis	herb		49.87	295159.4	0.061	-	DMUG	1	no ID
Glossotherium robustus	Glossotherium robustus	herb		47.08	483877.0	0.139	-	AMNH	1	11277
Gomphotherium productum	Gomphotherium productum	herb		66.58	2739370.0	0.238	-	AMNH	1	10582
Gorilla gorilla	Gorilla gorilla	herb		38.25	43739.2	0.106	-	ZMUZ	1	11880
Herpestes brachyurus	Herpestes brachyurus	carn		7.28	676.7	0.269	-	ZMUZ	1	10328
Hexaprotodon liberiensis	Hexaprotodon liberiensis	herb		24.77	53075.2	0.180	-	DMUG	1	no ID
Hippopotamus amphibius	Hippopotamus amphibius	herb		48.91	475857.0	0.192	-	BNHM	1	2767
Hoplophoneus primaevus	Hoplophoneus primaevus	carn		21.35	9944.9	0.337	-	AMNH	1	1406
Hyaenodon horridus	Hyaenodon horridus	carn		21.92	12888.4	0.279	-	AMNH	1	1375
Hydrochaeris hydrochaeris	Hydrochaeris hydrochaeris	herb		19.87	23589.2	0.329	split	DMUG	1	no ID
Hystrix spp.	Hystrix cristata	herb		12.02	6234.3	0.273	-	DMUG	1	no ID
Paracerathrium tianshanensis	Indricotherium transouralicum	herb		124.63	4969740.0	0.259	-	BCNHM	3	no ID
Lama guanicoe	Lama guanicoe	herb		32.48	71884.6	0.230	-	ZMUZ	1	10814
Lemmus lemmus	Lemmus lemmus	herb		2.22	25.9	0.393	-	CZAEPW	1	no ID
Loxodonta africana	Loxodonta africana	herb		114.99	1546200.0	0.155	-		2	

10

(ctd.)

Specimen as taken	Species name in tree	Food ^a	Chew ^b	Femur length cm	Torso volume cm ³	Free-hull ratio	Mirrored/ split torso	Origin ^c	Source ^d	ID at Origin
Lutra lutra	Lutra lutra	carn		8.18	1841.2	0.198	split	BNHM	1	115
Mammut americanum	Mammut americanum	herb		110.36	3563910.0	0.285	-	AMNH	1	9951
Mammuthus jeffersoni	Mammuthus columbi	herb		127.38	2541860.0	0.213	-	AMNH	1	FAM 99927
Megaladapis edwardsi	Megaladapis edwardsi	herb		23.33	42604.3	0.258	-	AMNH	1	15868
Megaloceros giganteus	Megaloceros giganteus	herb		48.07	156848.0	0.229	-		2	
Merychippus quintus	Merychippus quintus	herb		28.14	38294.0	0.232	-	AMNH	1	14185
Metaxytherium floridanum	Metaxytherium floridanum	herb		17.20	279265.0	0.273	-	AMNH	1	26838
Myrmecophaga tridactyla	Myrmecophaga tridactyla	carn		22.46	10049.6	0.160	-	ZZ	1	no ID
Nasalis larvatus	Nasalis larvatus	herb		22.27	3223.0	0.305	-	ZFMK	1	MAM 1939.0042
Neohipparion affine	Neohipparion affine	herb		30.79	66395.5	0.268	-	AMNH	1	9815
Okapia johnstoni	Okapia johnstoni	herb		34.36	111079.0	0.099	-	BNHM	1	3940
Palaeoparadoxia tabatai	Palaeoparadoxia tabatai	herb		41.96	271982.0	0.240	-	AMNH	1	129177
Panthera leo	Panthera leo	carn		30.97	31630.9	0.249	-	DMUG	1	no ID
Panthera pardus	Panthera pardus	carn		25.07	14958.9	0.212	-	BNHM	1	273
Panthera tigris	Panthera tigris	carn		36.84	46061.8	0.208	-	DMUG	1	no ID
Pecari tajacu	Pecari tajacu	herb		17.68	12891.4	0.202	-	BNHM	1	1071
Phascolarctos cinereus	Phascolarctos cinereus	herb		12.96	2781.3	0.327	-	BNHM	1	6260
Phascolonus gigas	Phascolonus gigas	herb		33.80	168794.0	0.317	-	AMNH	1	129499
Platygonus leptorhinus	Platygonus compressus	herb		21.15	25493.9	0.207	-	AMNH	1	10388
Procavia capensis	Procavia capensis	herb		7.65	1488.4	0.356	-	ZMUZ	1	10850
Rangifer tarandus	Rangifer tarandus	herb		30.90	50442.0	0.100	-		2	
Smilodon floridanus	Smilodon fatalis	carn		39.34	59137.8	0.219	-	AMNH	1	FM 14398
Sus scrofa	Sus scrofa	herb		24.58	45418.0	0.180	-		2	
Tamandua mexicana	Tamandua mexicana	carn		7.70	865.3	0.245	-	BNHM	1	1257
Tapirus indicus	Tapirus indicus	herb		35.26	103340.0	0.149	-		2	
Tapirus terrestris	Tapirus terrestris	herb		29.90	50212.0	0.134	-	ZFMK	1	MAM 1934.0105
Toxodon burmeisteri	Toxodon platensis	herb		60.97	762687.0	0.143	-	AMNH	1	14943
Tragulus javanicus	Tragulus javanicus	herb		6.98	412.4	0.336	-	ZMUZ	1	11021
Ursus maritimus	Ursus maritimus	carn		41.98	72996.4	0.188	-		2	

(ctd.)

Specimen as taken	Species name in tree	Food ^a	Chew ^b	Femur length cm	Torso volume cm ³	Free-hull ratio	Mirrored/ split torso	Origin ^c	Source ^d	ID at Origin
Ursus spelaeus	Ursus spelaeus	herb		45.71	161547.0	0.128	-	AMNH	1	39416
Vombatus ursinus	Vombatus ursinus	herb		13.74	6447.2	0.215	-	ZMUZ	1	11068
Vulpes vulpes	Vulpes vulpes	carn		14.16	2358.6	0.220	-	ZFMK	1	MAM 1933.0126a
Wallabia spp.	Wallabia bicolor	herb		17.00	5361.8	0.337	split	DMUG	1	no ID
Otarid spp.	Zalophus californianus	carn		7.26	9898.8	0.148	-	DMUG	1	no ID
Birds										
Anser anser	Anser anser	herb		8.12	2626.3	0.127	-	DMUG	1	no ID
Apteryx owenii	Apteryx owenii	herb		8.61	396.9	0.230	-	BNHM	1	2344
Grus spp.	Grus grus	herb		16.23	4196.7	0.250	-	DMUG	1	no ID
Phoenicopterus roseus	Phoenicopterus roseus	carn		27.13	1194.0	0.229	-	DMUG	1	no ID
Rhea americana	Rhea americana	herb		20.53	12239.3	0.229	-	DMUG	1	no ID
Sagittarius serpentarius	Sagittarius serpentarius	carn		11.86	1334.9	0.206	-	DMUG	1	no ID
Struthio camelus	Struthio camelus	herb		32.22	73816.9	0.242	-	DMUG	1	no ID
Non-avian dinosaurs										
Allosaurus fragilis	Allosaurus fragilis	carn		84.28	774160.0	0.169	-	SMA	3	Big Al II
Atlasaurus imelakei	Atlasaurus imelakei	herb	nonchew	190.62	6535910.0	0.126	split	MMEM	3	no ID
Bactrosaurus johnsoni	Bactrosaurus johnsoni	herb	chew	81.00	505908.0	0.232	-	BCNHM	3	no ID
Datousaurus bashanensis	Datousaurus bashanensis	herb	nonchew	119.86	2829100.0	0.143	-	ZMNH	3	no ID
Diplodocus carnegii	Diplodocus carnegii	herb	nonchew	158.01	6693450.0	0.083	-	MNHB	3	no ID
Diplodocus longus	Diplodocus longus	herb	nonchew	144.33	3933920.0	0.127	-	NMSF	1	no ID
Anatotitan copei	Edmontosaurus annectens	herb	chew	118.17	1499110.0	0.201	-	AMNH	1	5886
Euoplocephalus tutus	Euoplocephalus tutus	herb	nonchew	66.54	1873940.0	0.261	-	NMSF	1	no ID
Gastonia burgei	Gastonia burgei	herb	nonchew	35.91	301690.0	0.280	-	USUEPM	1	no ID
Gigantspinosaurus sichuanensis	Gigantspinosaurus sichuanensis	herb	nonchew	67.36	775033.0	0.281	-	ZMNH	3	no ID
Brachiosaurus brancai	Giraffatitan brancai	herb	nonchew	197.46	17029000.0	0.101	-	MNHB	5	no ID
Iguanodon bernissartensis	Iguanodon bernissartensis	herb	chew	102.17	2242310.0	0.185	-	NMSF	1	no ID
Lufengosaurus huenei	Lufengosaurus huenei	herb	nonchew	56.38	339974.0	0.157	-	BCNHM	3	no ID
Mamenchisaurus constructus	Mamenchisaurus constructus	herb	nonchew	146.74	5709280.0	0.194	-	ZMNH	3	no ID
Mamenchisaurus jingyanensis	Mamenchisaurus jingyanensis	herb	nonchew	142.95	6206260.0	0.163	-	BCNHM	3	no ID
(ctd.)										

12

Specimen as taken	Species name in tree	Food ^a	Chew ^b	Femur length	Torso volume	Free-hull ratio	Mirrored/ split torso	Origin ^c	Source ^d	ID at Origin
				cm	cm³					
Omeisaurus yianfuensis	Omeisaurus yianfuensis	herb	nonchew	129.40	5695660.0	0.065	-	ZMNH	3	no ID
Plateosaurus engelhardti	Plateosaurus engelhardti	herb	nonchew	58.03	322912.0	0.102	-	GPIT	4	RE-07288
Protoceratops and rewsi	Protoceratops and rewsi	herb	chew	24.61	28244.8	0.456	-	BCNHM	3	no ID
Shunosaurus lii	Shunosaurus lii	herb	nonchew	90.41	1730150.0	0.106	-	ZMNH	3	no ID
Stegosaurus	Stegosaurus armatus	herb	nonchew	78.47	802276.0	0.236	mirr	SMA	3	Moritz
Stegosaurus stenops	Stegosaurus stenops	herb	nonchew	107.66	1425560.0	0.213	-	NMSF	1	no ID
Szechuanosaurus campi	Szechuanosaurus campi	carn		60.20	269308.0	0.143	-	ZMNH	3	no ID
Tenontosaurus tilletti	Tenontosaurus tilletti	herb	chew	71.65	411004.0	0.282	-	AMNH	1	FARB 3034
Triceratops elatus	Triceratops horridus	herb	chew	104.74	3113700.0	0.239	-	NMSF	1	no ID
Tyrannosaurus rex	Tyrannosaurus rex	carn		126.47	3762000.0	0.134	-	NMSF	1	no ID
Yandusaurus multidens	Yandusaurus hongheensis	herb	nonchew	15.80	4213.4	0.325	-	ZMNH	3	no ID
Yangchuanosaurus hepingensis	Yangchuanosaurus shangyouensis	carn		98.57	974264.0	0.167	-	ZMNH	3	no ID
Reptiles										
Iguana rhinolopha	Iguana iguana	herb		9.01	1012.1	0.271	-	BNHM	1	1260
Sphenodon punctatus	Sphenodon punctatus	carn		4.42	163.8	0.183	split	ZMUZ	1	no ID
Stenaulorhynchus stockley	Stenaulorhynchus stockley	herb		17.71	33364.7	0.197	-	GPIT	1	RE-07192
Trilophosaurus buettneri	Trilophosaurus buettneri	herb		23.88	11695.5	0.151	-	AMNH	1	7502
Varanus salvator	Varanus salvator	carn		13.18	13188.5	0.105	-	ZMUZ	1	no ID
Amphibia										
Diadectes phaseolinus	Diadectes phaseolinus	herb		18.75	72289.2	0.231	-	AMNH	1	4684
Eryops megacephalus	Eryops megacephalus	carn		19.46	32237.5	0.324	-	AMNH	1	4657

^abased on Walls (1981), Losos and Greene (1988), Rand et al. (1990), Weishampel et al. (1990), Reisz and Sues (2000), Reisz (2006), Wilman et al. (2014) and the Paleobiology Database (www.paleobiodb.org)

^bbased on Weishampel et al. (1990) and Wings and Sander (2007)

^cfor skeletons from sources 1, 3-5: AMNH American Museum of Natural History New York USA, BCNHM = Bejing Natural History Museum China, BNHM = Natural History Museum Basle Switzerland, CZAEPW = Clinic of Zoo Animals Exotic Pets and Wildlife University of Zurich Switzerland, DMUG = Anatomy Museum Department of Morphology Faculty of Veterinary Medicine Ghent University Belgium, MMEM = Moroccan Ministry of Energy and Mining Morocco, MNHB = Natural History Museum Berlin Germany, NMSF = Senckenberg Naturmuseum Frankfurt Germany, GPIT = Paleontological Collection University of Tübingen Germany, SMA = Sauriermuseum Aathal Switzerland, USUEPM = Utah State University Eastern Prehistoric Museum Price USA, ZFMK = Alexander Koenig Research Museum Bonn Germany, ZMNH = Zigong Museum of Natural History China, ZMUZ = Zoological Museum University of Zurich Switzerland, ZZ = Zurich Zoo Switzerland

^dSources: 1 = this study, 2 = Sellers et al. (2012), 3 = described in Stoinski et al. (2011), 4 = described in Gunga et al. (2007), 5 = described in Gunga et al. (2008)

Phylogenetic tree

The phylogenetic tree (Fig. S6) used in the PGLS analysis was constructed based on various sources. The topology was based on a combination of tree sources that included some of the most recent phylogenetic hypotheses. Due to the taxa selection of the present study, which was mainly driven by mounted skeleton availability and the logistics of obtaining their respective scans or photographs, it was not possible to build a supertree based on a character matrix because the taxa considered were too distantly related. Due to the sample, inevitably certain taxonomic groups (i.e., mammals) are more represented than others. The phylogeny includes both fossil and living tetrapods. The basic topology of tetrapod groups is based on tree of life project (Maddison and Schulz, 2007) supplemented with specific references.

Eryops megacephalus is here basal to all the other taxa as member of Temnospondyli (extinct group of primitive tetrapods) (Ruta et al., 2007). It is followed by *Diadectes phaseolinus*, the sister taxon of all the Amniota (Berman and Henrici, 2003). Within the Amniota an early split is recognised between the Diapsida and the Synapsida (represented by basal Eupleycosauria, therapsids, and mammals) (Benton, 2014).

Within Diapsida, the sample is characterized by a mix of extant and fossil Sauria. The presence of extant *Sphenodon*, *Iguana* and *Varanus* characterizes the split of Lepidosauriamorpha from Archosauriamorpha that include crocodiles (not present in our study), birds and their fossil relatives (i.e., dinosaurs). The position of *Sphenodon* relative to the other Squamata follows Pyron et al. (Pyron et al., 2013).

Within Archosauromorpha we positioned *Trilophosaurus* and *Stenaulorhynchus* basal to dinosaurs and birds after Ezcurra et al. (Ezcurra et al., 2014) who presented a recent updated phylogeny of Sauria. In their topology *Stenaulorhynchus* is not present however *Trilophosaurus* is positioned basal to Rhynchosauria (the group to which *Stenaulorhynchus* belongs).

Dinosauria is the other large clade of Archosauromorpha. Its topology is based on the supertree of Lloyd et al. (Lloyd et al., 2008) with the manual addition of extant Aves as from the topology in Xu et al. (Xu et al., 2014). The position of certain specific dinosaur taxa was updated such as that of *Datousaurus bashanensis* that is basal to Eusaropoda (Sekiya, 2011) and for *Szechuanosaurus campi* that is closely related to *Yangchuanosaurus* within theropods (Carrano et al., 2012). Modern bird topology was generated after Jetz et al. (Jetz et al., 2012), and Prum et al. (Prum et al., 2015) with respect to the position of the kiwi (*Apteryx owenii*) and the rhea (*Rhea americana*).

Within Synapsida, the position of primitive Eupelycosauria and the general topology of therapsids follows Sidor (Sidor, 2003). The historical *Beselodon magnificus* was updated as *Chiniquodon theotonicus* (member of Eucynodontia) (Abdala and Giannini, 2002), and *Scymnognathus parringtoni* was named *Sauroctonus parringtoni* (*Gebauer, 2014*).

For mammals the topology of extant taxa was generated following Bininda-Emonds et al. (Bininda-Emonds et al., 2007, Bininda-Emonds et al., 2008) with the addition of specific fossil branches after Raia et al. (Raia et al., 2013). A substantial addition was the inclusion of the fossil Notoungulate *Toxodon* and the Demostylia *Palaeoparadoxia*, whose taxonomic position was recently updated as basal members of Perissodactyla (Cooper et al., 2014, Welker et al., 2015). Following Cooper et al. (Cooper et al., 2014) for *Palaeoparadoxia* also allowed to place the ancient sirenid *Metaxytherium* as sister

taxon of Proboscidea. For fossil Xenathra we followed the topology presented by Gaudin (Gaudin, 2004). The position of Ferae (Carnivora and Creodonta) and basal ungulates follows Raia et al. (Raia et al., 2013) and Spaulding et al. (Spaulding et al., 2009) while the relationship of primates and extant rodents follows Bininda-Emonds et al. (Bininda-Emonds et al., 2007, Bininda-Emonds et al., 2008).

In order to date the tree we opted to combine multiple empirical and analytical approaches. Firstly we recorded first and last occurrence for each taxon with the assumption that last occurrence for all extant species is zero. To avoid bias in relation to scattered information. we employed the palaeodb website the (http://fossilworks.org/?page=paleodb) to record species' time ranges. When a particular species was not present in the database, we used the genus range or conservatively stratigraphic clues based on the literature. We then employed the script 'timePaleoPhy' from the R package 'paleotree' (Bapst, 2013) to constrain time of divergence of taxa based on their stratigraphic occurrences. This script follows the same method proposed by Brusatte et al. (Brusatte et al., 2008) to date the supertree of fossil dinosaurs. In addition, we constrained the tree internal nodes based on Kepska et al. (Ksepka et al., 2015). The list of nodes and their respective dates (Table S2) was compiled after searching the fossil calibration database that includes some but not all of the internal nodes for our topology.

Table S2. Time of divergence provided for different nodes in the tree. Dates are conservatively based on the maximum nodal age reported on the website <u>http://fossilcalibrations.org/</u> developed by Ksepka et al. (Ksepka et al., 2015). All the other internal nodes ages were set to 'NA' and automatically generated using the script timepaleophy (Bapst, 2013).

Node #	Node label	Time
1	Tetrapoda	351
3	Amniota	332.9
11	Theria	169.6
14	Boreoeutheria	164.6
15	Euarchontoglires	164.6
16	Rodentia	66
19	Primates	66
25	Whippomorpha	66
29	Bovidae	28.1
56	Carnivora	66
73	Xenarthra	164.6
76	Afrotheria	164.6
78	Sirenia	66
79	Proboscidea	23.03
83	Marsupialia	131.3
89	Diapsida	295.9
90	Archosauromorpha	255.9
92	Dinosauria	235
93	Ornitischia	230
105	Sauropodomorpha	232
120	Palaeognathae	86.8
122	Neognathae	86.8
123	Neoaves	60.2
125	Lepidosauria	252.7
126	Squamata	209.5

Figure S6. Phylogenetic tree (also available as supplementary nexus file)

Outliers

Three outliers were eliminated from the dataset used in the main study after visual inspection: the flamingo (*Phoenicopterus*), the sirenian (*Metaxytherium*) and the sea lion (*Zalopus*) (Fig. S7). In the case of the flamingos, we can only speculate that its typical diet - shrimp and algae caught in the filter system of the beak (Zweers et al., 1995) - is so small and requires so little processing that a particularly small gastrointestinal tract and coelomic cavity is feasible, and/or that flamingos have particularly long legs for their body volume. In the case of the marine mammals, it is plausible that the different mechanical constraints of their lifestyle leads to systematically different proportions of limbs and torso (Jones and Pierce, 2016).

Figure S7. Visual outlier inspection: exclusion of the flamingo (combination of very long femur and very small torso) and two marine mammals (combination of very short femurs and very voluminous torsos)

Considerations about body mass in relation to torso volume

While the necessity to control for body size is self-evident, the answer to the question about which proxy is most suitable is not. Body mass is the most common basis against which other morphological and physiological measures are compared (Peters, 1983, Calder, 1996, Sibly et al., 2012). However, the volume of the torso represents a major proportion of overall body mass. Therefore, differences in torso volume most certainly are reflected in body mass differences already. On the other hand, we could hence predict that we could use body mass itself as a proxy for 'torso volume', and the relationship of body mass to femur length should resemble that of torso volume to femur length.

For the testing of these hypotheses, a valid dataset is required where all measurements are taken from the same, healthy individuals. In particular, when using body mass in this way, the feeding status of the animals used for the measurement is critical. To our knowledge, the largest dataset on femur length and body mass is presented by Campione and Evans (2012); however, the methods do not indicate a protocol about the feeding status, i.e. the degree of gut fill, in the animals. In particular in herbivores, gut fill represents a constant, relevant proportion of body mass (Clauss et al., 2013) that is considered the reason for their larger torso volumes. Using the elephant as an example, Clauss et al. (2005) demonstrated how the feeding status of animals whose body mass and gut fill are measured can influence the position of a species in comparative datasets. To date, most likely, no completely reliable large data collection on body mass and femur length exists. However, it is noteworthy that in the data evaluated by Campione and Evans (2012), there is a difference in the femur length-body mass relationship between Carnivora (i.e., mainly carnivores) and Ungulata (i.e., mainly herbivores) that could indicate that, at comparable femur length, Ungulata have higher body masses than Carnivora - a finding that would corroborate the prediction made above. Campione and Evans (2012) demonstrate that femur circumference is better related to body mass than femur length; for the question of our study this means that femur circumference would probably be a less suitable proxy as it equalizes differences in body mass at similar stature.

To perform an explorative test of these considerations, we compiled body mass data for the extant mammals, birds and reptiles of our dataset from a single source - the Animal Diversity Web (www.animaldiversity.org, accessed 25.05.2016). We consistently collected the mean (or calculated it from the minimum and maximum provided), even if in some cases the data given did not appear intuitively correct, added it to our own dataset (Table S1), and performed analyses using the same methods as outlined in the main text.

There was a linear relationship (scaling including the exponent of 1.0 in the 95%CI) between torso volume and body mass, with no influence of diet (Table S3). In contrast, there was an expected cubic scaling for the relationship of body mass and femur length, and diet was a significant factor, suggesting that for similar femur lengths, herbivores have higher body masses than carnivores (Table S4).

Table S3. Results of statistical analyses according to Torso volume = a (factor) Body mass^{*b*} (and the corresponding factor*Body mass interaction) in Ordinary Least Squares (OLS) and Phylogenetic Generalized Least Squares (PGLS) for extant mammals, birds and reptiles (n=63)

Stats	λ	a		b		factor [#]	interaction†	
		(95%CI)	р	(95%CI)	р	(95%CI)	р	р
						Diet		
OLS	(0)	384	< 0.001	0.94	< 0.001	1.07	0.680	n.s.
		(286, 515)		(0.88, 1.00)		(0.77, 1.48)		
PGLS	0	384	< 0.001	0.94	< 0.001	1.07	0.681	n.s.
		(286, 515)		(0.88, 1.00)		(0.77, 1.48)		

this is only an explorative analysis with Body mass estimates that have no connection to the Torso volume data generated in this study Torso volume in cm³, Body mass in kg

[#]factor coding: Diet (carnivore = 0, herbivore = 1)

†models were calculated with interaction term first; if this was not significant, the model was again calculated without the interaction term; estimates for the factor in this table always represent the models where either the interaction was significant or excluded

Table S4. Results of statistical analyses according to Body mass = a (factor) Femur length^{*b*} (and the corresponding factor*Femur length interaction) in Ordinary Least Squares (OLS) and Phylogenetic Generalized Least Squares (PGLS) for extant mammals, birds and reptiles (n=63)

Stats	λ	а		b		factor [#]	interaction†	
		(95%CI)	р	(95%CI)	р	(95%CI)	р	р
						Diet		
OLS	(0)	0.004	< 0.001	2.98	< 0.001	1.75	0.005	n.s.
		(0.002, 0.007)		(2.78, 3.19)		(1.20, 2.55)		
PGLS	0	0.004	< 0.001	2.98	< 0.001	1.75	0.005	n.s.
		(0.002, 0.007)		(2.78, 3.19)		(1.20, 2.55)		

this is only an explorative analysis with Body mass estimates that have no connection to the Femur length data generated in this study Body mass in kg, Femur length in cm

[#]factor coding: Diet (carnivore = 0, herbivore = 1)

†models were calculated with interaction term first; if this was not significant, the model was again calculated without the interaction term; estimates for the factor in this table always represent the models where either the interaction was significant or excluded

References

- Abdala F, Giannini NP (2002) Chiniquodontid cynodonts: systematic and morphometric considerations. *Palaeontology*, 45, 1151-1170.
- Bapst DW (2013) A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. *Methods Ecol Evol*, 4, 724-733.

Benton MJ (2014) Vertebrate palaeontology, Wiley Blackwell, Oxford UK.

- **Berman DS, Henrici AC** (2003) Homology of the astragalus and structure and function of the tarsus of Diadectidae. *J Paleontol*, **77**, 172-188.
- Bininda-Emonds ORP, Cardillo M, Jones KE, et al. (2007) The delayed rise of present-day mammals. *Nature*, **446**, 507-512.
- Bininda-Emonds ORP, Cardillo M, Jones KE, et al. (2008) Corrigendum: The delayed rise of present-day mammals. *Nature*, **456**, 274.
- **Brusatte SL, Benton MJ, Ruta M, Lloyd GT** (2008) Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. *Science*, **321**, 1485-1488.
- Calder WA (1996) *Size, function and life history,* Havard University Press, Cambridge, MA.
- Campione NE, Evans DC (2012) A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. *BMC Biol*, 10, 60 (21 pages).
- **Carrano MT, Benson RB, Sampson SD** (2012) The phylogeny of Tetanurae (Dinosauria: Theropoda). *Journal of Systematic Palaeontology*, **10**, 211-300.
- Clauss M, Robert N, Walzer C, Vitaud C, Hummel J (2005) Testing predictions on body mass and gut contents: dissection of an African elephant (*Loxodonta africana*). *Eur J Wildl Res*, **51**, 291-294.

- **Clauss M, Steuer P, Müller DWH, Codron D, Hummel J** (2013) Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. *PloS One*, **8**, e68714.
- Cooper LN, Seiffert ER, Clementz M, et al. (2014) Anthracobunids from the middle Eocene of India and Pakistan are stem perissodactyls. *PloS One*, **9**, e109232.
- Ezcurra MD, Scheyer TM, Butler RJ (2014) The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. *PLoS One*, **9**, e89165.
- Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. *Zoological Journal of the Linnean Society*, 140, 255-305.
- Gebauer EVI (2014) Re-assessment of the taxonomic position of the specimen
 GPIT/RE/7113 (*Sauroctonus parringtoni* comb. nov., Gorgonopsia). In *Early evolutionary history of the Synapsida* (eds Kammerer CF, Angielczyk KD, Fröbisch
 J), pp. 185-207. Dordrecht: Springer.
- Gunga H-C, Suthau T, Bellmann A, et al. (2007) Body mass estimations for *Plateosaurus engelhardti* using laser scanning and 3D reconstruction methods. *Naturwiss*, 94, 623-630.
- Gunga H-C, Suthau T, Bellmann A, et al. (2008) A new body mass estimation of Brachiosaurus brancai Janensch, 1914 mounted and exhibited at the Museum of Natural History (Berlin, Germany). Fossil Rec, 11, 28-33.
- Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. *Nature*, **491**, 444-448.

- Jones KE, Pierce SE (2016) Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling. *J Evol Biol*, **29**, 594-601.
- Ksepka DT, Parham JF, Allman JF, et al. (2015) The Fossil Calibration Database a new resource for divergence dating. *Syst Biol*, **64**, 853-859.
- Lloyd GT, Davis KE, Pisani D, et al. (2008) Dinosaurs and the Cretaceous terrestrial revolution. *Proc R Soc B*, **275**, 2483-2490.
- Losos JB, Greene HW (1988) Ecological and evolutionary implications of diet in monitor lizards. *Biol J Linn Soc*, 35, 379-407.
- Maddison DR, Schulz K-S (2007) The tree of life web project. http://tolweb.org. *last* accessed 20032016.
- Peters RH (1983) *The ecological implications of body size*, Cambridge University Press, Cambridge.
- **Prum RO, Berv JS, Dornburg A, et al.** (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. *Nature*, **526**, 569-573.
- Pyron RA, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. *BMC Evolutionary Biology*, 13, 93.
- Raia P, Carotenuto F, Passaro F, et al. (2013) Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Coenozoic mammals. *Proc R Soc B*, 280, 20122244.
- Rand AS, Dugan BA, Monteza H, Vianda D (1990) The diet of a generalized folivore: *Iguana iguana* in Panama. *Journal of Herpetology*, **24**, 211-214.

- Reisz RR (2006) Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution? J Exp Zool, 306B, 261-277.
- **Reisz RR, Sues HD** (2000) Herbivory in late Paleozoic and Triassic terrestrial vertebrates. In *Evolution of herbivory in terrestrial vertebrates: Perspecitves from the fossil record* (ed Sues HD), pp. 9-41. Cambridge: Cambridge University Press.
- Ruta M, Pisani D, Lloyd GT, Benton MJ (2007) A supertree of Temnospondyli:
 cladogenetic patterns in the most species-rich group of early tetrapods. *Proc R Soc B*, 274, 3087-3095.
- Sekiya T (2011) Re-examination of *Chuanjiesaurus anaensis* (Dinosauria: Sauropoda) from the Middle Jurassic Chuanjie Formation, Lufeng County, Yunnan Province, southwest China. *Memoir of the Fukui Prefectural Dinosaur Museum*, **10**, 1-54.
- Sellers WI, Hepworth-Bell J, Falkingham PL, et al. (2012) Minimum convex hull mass estimations of complete mounted skeletons. *Biol Lett*, **8**, 842-845.
- Sibly RM, Brown JH, Kodric-Brown A (2012) Metabolic ecology. A scaling approach.). Chichester, UK: Wiley-Blackwell.
- **Sidor CA** (2003) Evolutionary trends and the origin of the mammalian lower jaw. *Palaeobiol*, **29**, 605-640.
- **Spaulding M, O'Leary MA, Gatesy J** (2009) Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. *PLoS One*, **4**, e7062.
- **Stoinski S, Suthau T, Gunga H-C** (2011) Reconstructing body volume and surface area of dinosaurs using laser scanning and photogrammetry. In *Understanding the life of*

- *giants The biology of the sauropod dinosaurs* (eds Klein N, Remes K, Gee CT, Sander M), pp. 94-115. Bloomington: Indiana University Press.
- Walls GY (1981) Feeding ecology of the tuatara (Sphenodon punctatus) on Stephens Island, Cook Strait. New Zealand Journal of Ecology, 4, 89-97.
- Weishampel DB, Dodson P, Osmolska A (1990) *The dinosauria*, University of California Press, Berkeley.
- Welker F, Collins MJ, Thomas JA, et al. (2015) Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. *Nature*, **522**, 81-84.
- Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) Elton traits 1.0: Species-level foraging attributes of the world's birds and mammals. *Ecology*, 95, 2027.
- Wings O, Sander PM (2007) No gastric mill in sauropod dinosaurs: new evidence from analysis of gastrolith mass and function in ostriches. *Proc R Soc B*, **274**, 635-640.
- Xu X, Han F, Zhao Q (2014) Homologies and homeotic transformation of the theropod 'semilunate' carpal. *Scientific Reports*, **4**, 6042.
- Zweers G, de Jong F, Berkhoudt H (1995) Filter feeding in flamingos (*Phoenicopterus ruber*). *Condor*, **97**, 297-324.