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Section 1 

S1.1 Replica Exchange Molecular Dynamics  

The 1YZB model [1,2] of JD was selected as starting point for the present work. The 1YZB model was 

solvated in a dodecahedron box where the minimum distance between the protein and the edge of the 

box was 1 nm, resulting in a molecular system of about 40000 interacting particles. 128 replicas were 

simulated for temperatures ranging from 300 K to 602 K in NVT ensemble, as done in several works in 

literature [3–5]. Temperatures are distributed following the exponential spacing law suggested by a 

number of paper [6,7], keeping the overlap of the potential energy distributions constant across the 

temperature space (Figure S2). The resulting exchange probability was 0.35. The exchange attempt time 

interval was set to 2 ps. Each replica was simulated for 50 ns, obtaining a cumulative simulation time of 

6.4 µs. It is worth noticing that JD secondary structure is highly conserved along the REMD trajectory at 

310K (Figure S2), with the exception of α2 and (partially) α3, in agreement with data coming from 

literature [8,9] 

 

Figure S1. Potential energy distribution among REMD simulations. Temperatures were distributed across the replicas in a 
geometric progression, i.e. with the same ratio used to scale each temperature from the one below it, keeping the overlap of 
the potential energy distributions constant across the temperature space. 
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Figure S2. Secondary structure probability calculated in case of a) Josephin Domain 1YZB model [1,2] compared with b) REMD 
trajectory snapshots at 310 K. JD secondary structure is highly conserved along the REMD trajectory at 310K, with the exception 
of α2 and partially α3. 
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S1.2 Thermodynamic and Kinetic Estimation 

In order to obtain a reliable estimate of the JD folding rates, the kinetic description developed by van 

der Spoel et al [10] was applied to the REMD trajectories, as described in the main text of this paper. 

The fraction of closed JD sampled along the REMD trajectories is reported in Figure S3a as function of 

simulation time. The red curve of Figure S3a is optimized according to Equation 5 reported in the main 

text of the present paper. This function depends on the mix of simulations and temperatures used in the 

analysis, and the results show that the red curve represents a good fit of the computational data (Figure 

S3a). From these data, together with the estimation of the forward and backward rate constants for 

folding, a theoretical melting curve was obtained (Figure S3b).  

 

Figure S3. a) Fraction of closed JD as a function of time (black curve), averaged over the first 30 ns of all 128 REMD simulations, 
compared with the fit (red curve) obtained by minimizing 𝛸2 (Equation 5 of the main text). b) The represented melting curve 
reports the fraction of closed JD as a function of temperature. 
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S1.3 Kinetics Estimation of the Josephin Domain Open-to-Closed Transition by 

Unbiased Molecular Dynamics  

The 1YZB[1,2] model was solvated in a dodecahedron box where the minimum distance between the 

protein and the edge of the box was 1 nm, resulting in a molecular system of about 40000 interacting 

particles. The net charge of the system was neutralized by the addition of Cl− and Na+ ions. The system 

was first minimized by 1000 steps of the Steepest Descent energy minimization algorithm and then 

equilibrated at a temperature of 310K [11] and 1 atm[12]. Then, 100 replicas of the system were created 

by associating to the system atoms initial random velocities from a Maxwell-Boltzmann distribution at 

310K. For each system a 20 ns unbiased MD was carried out for a total sampling time of 2 µs. 

The analysis of the scatter plot reporting each unbiased MD trajectory snapshot (Figure S4a) show the JD 

configuration sampled by unbiased MD in term of Radius of Gyration and α3-α5 distance. The kinetic 

description developed by Van Der Spoel and coworkers[10] was then applied to the MD trajectories for 

evaluating the folding kinetic constants. In detail, the red curve of Figure S4b was optimized according to 

Equation 5 reported in the main manuscript. 

Throughout the simulated time (20 ns) by unbiased MD simulations, only transitions from open to 

intermediate (O-I) and from intermediate to closed (I-C) arrangement were sampled. The fraction of JD 

closed arrangements reported as function of simulated time (Figure S4b).  

In agreement with kinetics reported in Figure 3 of the main manuscript and unbiased MD of our 

previous work[9], C-I and I-O transitions have not been detected throughout the 20 ns of the 100 MD. 

For this reason, in case of unbiased simulations, we were able to estimate only the forward rate 

constant (O-I and I-C). 

The above mentioned kinetic data, reported in Figure S5 (τO-I=88.4 ns and τI-C=5.8 ns), are in close 

agreement with the kinetic rate constants calculated by REMD simulations.  

Agreement between biased and unbiased simulations can be considered as a proof of the reliability of 

the kinetic estimation provided in the present work.  

 



Supporting Information to Thermodynamic and Kinetic Stability of the Josephin 
Domain Closed Arrangement: Evidences from Replica Exchange Molecular 
Dynamics 

6 

 

 

 

 

Figure S4. a) Each snapshot, taken from Classical MD trajectory at 310 K, is reported in figure in term of Radius of Gyration and 
α3-α5 distance. The NMR snapshots derived from the JD models available in literature are colored in red (2AGA), blue (2DOS), 
black (1YZB) and green (2JRI). b) Fraction of closed JD as a function of time (black curve), averaged over 20 ns of all 100 MD 
simulations, compared with the fit (red curve) obtained by minimizing X

2 
(Equation 5 of the main text). 

 

 

Figure S5. Forward rate constants for folding together with the activation energies at 310 K. Error estimates are given in 
parentheses. The error estimation was done by varying the cutoff for defining the protein folded state as done in a previous 
work[10]. In detail, we performed our kinetic analysis by changing of 0.02 nm the Radius of Gyration threshold to discern 
between open/intermediate, and intermediate/closed state. 

 

  

a) b)

Equilibrium properties at T = 310K

Activation energies
(kJ/mol)

Rate constant
(ns)

O-I 10.6 (0.2) 88.4 (13)

I-C 7.2 (0.1) 5.8 (0.4)
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