Supporting Information

Elucidating important sites and the mechanism for amyloid fibril formation by coarse-grained molecular dynamics

Ana Rojas, Nika Maisuradze, Khatuna Kachlishvili, Harold A. Scheraga,* Gia G. Maisuradze*

Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301

*To whom correspondence may be addressed. E-mail: [has5@cornell.edu;](mailto:has5@cornell.edu) gm56@cornell.edu

Author contributions: G.G.M. designed the research; A.R., N.M., K.K., and G.G.M. performed the research; A.R., N.M., K.K., and G.G.M. analyzed the data; and A.R., H.A.S., and G.G.M. wrote the paper.

Figure Captions

- **Figure S1.** The UNRES model of polypeptide chains. The interaction sites are peptide-bond centers (p), and side-chain ellipsoids of different sizes (SC) attached to the corresponding α -carbons with different "bond lengths", b_{SC} . The α -carbon atoms are represented by small open circles. The equilibrium distance of the C^{α} $\cdots C^{\alpha}$ virtual bonds is taken as 3.8 Å, which corresponds to planar *trans* peptide groups. The geometry of the chain can be described either by the virtual-bond vectors dC_i ($C^{\alpha_i}...C^{\alpha_{i+1}}$), $i = 1$, 2,..., N - 1 and dX_i (C^{α_i} ...sC*i*), $i = 2, 3, \ldots$, N - 1 (represented by thick dashed arrows, where N is the number of residues, or in terms of virtual-bond lengths, backbone virtualbond angles θ_i , $i = 2, 3, \ldots, N - 1$, backbone virtual-bond-dihedral angles γ_i , $i = 2, 3, \ldots, N - 1$ N - 2, and the angles α_i and β_i , $i = 2, 3, \ldots, N - 1$ that describe the location of a side chain with respect to the coordinate frame defined by $C^{\alpha_{i-1}}$, C^{α_i} and $C^{\alpha_{i+1}}$.
- **Figure S2.** Free-energy landscapes (in kcal/mol) along the first three PCs for the free monomer aggregation trajectory. All panels illustrate the same FEL. Panel A shows all points in the 3-D FEL space with free energy < 0 (kcal/mol), in which aggregation pathway is not clearly illustrated because of strong overlapping of points corresponding to diverse energies. Panel B illustrates the same 3D FEL with only the lowest free-energy points. The 3-D FEL illustrated in panel C is the same as 3-D FEL in panel B but from the top.
- **Figure S3.** Free-energy landscapes (in kcal/mol) along the first two PCs with representative structures at the minima for three different trajectories; i.e., (A) the free monomer binds to one of the chains of the fibril template completely; (B) the free monomer binds to two different chains of the fibril template at both parallel and antiparallel orientation; (C) the

free monomer does not bind to the fibril template at all.

Figure S4. Free-energy profiles (FEPs), $\mu(\theta)$ and $\mu(\gamma)$, along the θ and γ angles (panels A and B, respectively) for three different trajectories plotted in Figure S3. Black, red and green curves correspond to FEPs computed over the trajectories plotted in panels A, B and C of Figure S3, respectively. The black numbers pertain to FEPs along the θ and γ angles which include only residues of the loop; the red numbers pertain to FEPs along the θ and γ angles which include only residues of β -strands; the green numbers pertain to FEPs along θ and γ angles which include the residues from both loop and β -strands. The NMR-derived structural data are computed from the coordinates provided by Tycko for the structural model of an A β ₍₁₋₄₀₎ (Petkova et al¹³) (blue circles at the bottom of each panel).

Figure S1.

Figure S2.

Figure S3.

Figure S4A.

Figure S4B.