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Supporting Text 

 

Force-velocity relationship for sliding motors.  

We assume that motor heads of the bipolar kinesins are characterized by a linear force -

velocity relation: 1m
m

vf F
V

 
= − 

 
 (Fig. 5), where v  is the velocity of the plus-end-

directed motor movement. 

 

Derivation of the motor - generated forces between antiparallel and parallel 

microtubules (MTs) in ipMT arrays.    

Let us first consider two overlapping antiparallel MTs crosslinked by a single motor (as 

in Fig. 3B upper ipMT array), such that the MTs are moving with velocities sliding, leftV  = Vl  

and sliding, rightV  = Vr  with their minus ends leading, to the left and right, respectively. In 

this configuration, the forces generated by two opposite motor heads are 

1 , 1l r
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 and have to be equal, because motor heads are 

connected by nonmotor domains. Solving this equality, we find that 
2

r lV Vv −
= , and 

therefore a force 1
2
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 
will be generated by each motor sliding apart two 

overlapping antiparallel MTs moving with velocities Vl and Vr. We do not analyze the 

associated motor transport, because we assume that the motors associate fast with overlap 

regions between pairs of MTs as they become available (1); therefore, the motor transport 

does not affect the number of engaged motors.  
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Next, let us consider two parallel MTs crosslinked by a motor [Fig. 3B, lower ipMT 

array, the two MTs at (left)], such that the MTs are moving with velocities 1V and 2V  (with 

minus ends leading), respectively. In this configuration, the forces generated by two 

opposite motor heads are 1,21m
m

v V
f F

V
+ 

= ± − 
 

 and have to be equal, because motor 

heads are connected by nonmotor domains. Solving this equality, we find that 

1 2

2m
V Vv V +

= − , and therefore a force of magnitude 2 1

2m
m

V Vf F
V
−

=  will be generated by 

each motor between two parallel crosslinked MTs, slowing down the faster MT and 

accelerating the slower one.  Because the force across each ipMT array is constant, in a 

given ipMT array the force generated by sliding motors in each overlap is the same, 

giving rise to Eq. 6, for example, for the lower ipMT array in Fig. 3B.    

 

Computer code. 

Describing the kinematic equations for each ipMT array together with the force - balance 

equation (Eq. 7) results in a large system of coupled differential equations. 

A computer code was developed to obtain the numerical solutions and generate 

simulations displayed as movies. An important part of the code is the random number-

generated stochastic variations of the model parameters and initial conditions.  There are 

nine ipMT bundles per spindle (Fig. 2C), and we assume that each one of these ipMT 

bundles contains 3-10 ipMT arrays, which in turn are composed of two to four 

interconnected MTs stretching between the poles (Fig. 3B).  Therefore, in our code, we 
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assume that there are typically 30-90 ipMT arrays composed of varying numbers of MTs 

per spindle. MTs in each ipMT array interact pair wise, and only one among all MTs 

facing each pole with their minus end is associated with that pole, whereas the other(s) 

are not. In the ipMT arrays composed of 3 MTs (Fig. 3B, middle ipMT array), the middle 

MT that is not associated with either one of the poles overlaps and interacts with the two 

others, which are associated with the poles and do not overlap nor interact directly with 

each other. In the ipMT arrays with 4 MTs, the configuration is similar to that shown in 

Fig. 3B, lower ipMT array.  The initial position of the MT ends in each ipMT array is 

computed using random number generators, giving rise to an average antiparallel overlap 

of ≈ 1 µm, and an average parallel overlap of ≈ 2.5 µm.         

 

At each computational step, with ∆t corresponding to 1 sec, we solve the kinematic 

equations for each ipMT array and the force - balance equation simultaneously based on 

the current parallel and antiparallel overlaps between the ipMTs. The force across each 

ipMT array (fi in Fig. 3B) is an unknown variable at each time step. Also, the velocities of 

individual MTs in each ipMT array (vi in Fig. 3B) are unknown, and they are computed at 

each time step. The total force generated by sliding motors in the spindle is obtained by 

summing up the force for all ipMT arrays and this is balanced by the drag force acting on 

the poles.  

 

This leads to a well - posed problem of linear algebra, which is solved at every time step 

to find the velocities of all MTs comprising each ipMT array, and the velocity of the 
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spindle poles. The plus and minus ends of individual MTs in each ipMT array are then 

updated using the newly computed velocities, whereas all plus ends undergo dynamic 

instability calculated using the scheme described in Sprague et al. (2), and the minus ends 

of those MTs associated with the poles are shortened through depolymerization at 

prescribed rates (stochastic variations superposed on an average rate depolyV − ). Finally, new 

overlap lengths are computed for the updated configurations, and all calculations are 

repeated at the next step.  Parameters are listed in Table 2, and the specific values used 

are given in the figure legends.  Because only order of magnitude values of most model 

parameters are published, in the simulations, we chose the values giving the best fit to the 

data (Table 2).  

 

Corresponding simulations demonstrate that the average antiparallel overlap of all ipMT 

arrays in the central spindle changes slowly, whereas the antiparallel overlap between 

individual ipMT arrays whose ends grow/shrink stochastically due to dynamic instability 

changes rapidly.  On the other hand, the average parallel overlap of all ipMT arrays 

within the same half-spindle increases very fast, whereas their plus ends also undergo 

dynamic instability. The increase in the extent of parallel overlap results in stronger 

shearing/accelerating effects, and thereby equalizes the velocities of all MTs in the same 

half-spindle, so the initially small differences in tubulin dimer velocities diminish fast in 

early anaphase B and do not play a significant role in the speckle velocity dispersal.  
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Estimates on pole - pole separation rate and the sliding motors’ operating regime.  

Here, to complement the numerical results obtained, we consider the oversimplified 

spindle (Fig. 3A), for which the corresponding force - balance and kinematic equations 

can be solved analytically.  The system of three equations (Eqs. 1-3), describe the 

dynamics of the spindle poles and ipMTs.  In this simplified configuration with N 

identical ipMT arrays composed of pairs of MTs emanating from the poles and 

overlapping antiparallel over a distance L(t) at the equator, all MTs slide at the common 

rate Vsliding(t) and we have (combining Eqs. 1 and 3):  

( )sliding
sliding depoly1 µm

m

V
k N LF V V

V
− 

− = − 
 

, where sliding depoly( )V V −−  is the rate at which the 

poles diverge from the spindle equator, or equivalently, half the rate of  pole separation. 

Solving this force - balance equation yields the sliding rate: 

sliding depoly
α 1

1 α 1 αm
LV V V

L L
−= +

+ +
, where α 10/µm

µ
m

m

kNF
V

= ≈ is an important parameter 

representing the ratio of the maximal motor generated force to the maximal viscous drag 

force per unit overlap length. If we assume that the ipMT overlap remains in the order of 

a micron (or few microns), αL is large (a few tens), therefore α ~ 1
1 α

L
L+

 whereas 

1 ~ 0
1 αL+

, and consequently, sliding takes place at a rate almost equal to the “free” 

sliding rate: sliding mV V≈ ,  indicating that motors operate against an almost negligible 

resistance.  This estimate, based on the assumption that an overlap in the order of a 

micron is maintained throughout anaphase B, illustrates how the sliding rate can remain 

near its unloaded velocity in this rigid and idealized spindle geometry.  If we also assume 
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that an overlap in the order of a micron is maintained throughout metaphase/anaphase A, 

this estimate also predicts that the poleward flux rate in metaphase/anaphase A is the 

same as half the rate of pole separation in anaphase B, mV≈ , as observed (3).  In addition, 

this estimate also illuminates how the overlap changes during anaphase B as long as it 

remains larger than or in the order of a micron.  The overlap between antiparallel ipMTs 

decreases due to sliding but increases due to mean net polymerization of the plus ends: 

( )poly sliding2dL V V
dt

+= − .  Therefore, as long as the overlap remains larger than or in the 

order of a micron, it changes at a rate poly2 ( )mV V+≈ −  during anaphase B.  On the other 

hand, when L  becomes small during the course of anaphase B, such that αL << 1, then 

α ~ 0
1 α

L
L+

 whereas 1 ~ 1
1 αL+

, and consequently slidingV  ≈ depolyV − = 0, indicating that 

motors operate near stall, because the depolymerization is turned off at the onset of 

anaphase B (i.e. depolyV −  = 0). The dynamics of the motors’ transition from the unloaded 

regime to the stall regime is seen in Fig. 4E (dotted - dash curve), where both the average 

depolymerization rate and the net polymerization rate are equal to zero, and pole - pole 

separation is severely hindered (at t ≈ 20 sec) when the antiparallel overlap length 

decreases and fluctuates near zero (due to dynamic instability).       

 

How do KLP3A motors regulate the switch from the metaphase/anaphase A steady 

state to anaphase B?  

We propose that KLP3A inhibition interferes with the suppression of flux by influencing 

the ratio of KLP10A motors to ipMT minus ends at the poles. In control spindles, KLP3A 
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forms robust ipMT bundles which are “fed” into the poles. In preanaphase spindles these 

ipMTs are depolymerized at the poles because the ratio of KLP10A to ipMT ends is high, 

but at anaphase B onset this ratio falls as KLP10A activity is inhibited. In KLP3A-

inhibited embryos, ipMT bundles are less robust and the number of ipMT ends is lower, 

meaning that the actual ratio of residual KLP10A to ipMTs remains high even after 

anaphase B onset, and thus depolymerization and flux persist.  

  

In the model results shown in Fig. 4, we incorporated the effect of KLP3A inhibition 

directly as a reduction in the suppression of KLP10A-dependent depolymerization at 

anaphase B onset.  Here, we investigate the above - described mechanism for KLP3A 

action in our model, by incorporating the effect of KLP3A inhibition in anaphase B 

through a reduction in the number of ipMT arrays, a corresponding increase in viscous 

resistance per sliding motor, and a corresponding increase in the ipMT minus end 

depolymerization rate determined by the ratio of residual KLP10A molecules to ipMT 

minus ends.  To determine the rate of depolymerization in KLP3A - inhibited embryos 

with reduced numbers of ipMTs, we use a piecewise linear function between the number 

of active KLP10A motors per minus end and the mean depolymerization rate depolyV −  (Fig. 

6). Until the number of active KLP10A motors per minus end reaches the critical value, 

rc, the mean depolymerization rate is zero, then, as the number of active KLP10A motors 

per minus end increases, the mean depolymerization rate increases linearly.  When the 

ratio reaches the saturation level, rs, the mean depolymerization reaches its maximal rate 

(the pre-anaphase B flux rate), which is limited either by sliding or by the number of 

motors that can fit onto the minus end, and remains at this maximal value despite further 



 - 8 - 

 

increases in the number of active KLP10A per minus end.  This is the simplest function 

which represents the mechanism described above.  Based on previous studies on another 

MT depolymerase (4), we assume that, in this linear dependence, the maximal 

depolymerization rate is attained for rs ~ 10, and rc ~ 1.  We further assume that in the 

control embryo, the ratio of active KLP10A number per minus end is greater than rs ~10 

during preanaphase B and is reduced to rc ~1 at anaphase B onset when KLP10A is 

downregulated.  In our model, we consider decreasing numbers of ipMTs (from N = 40- 

4), representing various degrees of the effect of KLP3A inhibitors.  As shown in Fig. 7, 

the results of these simulations are in good agreement with our experimental data on the 

flux - anaphase B relationship (Fig. 1C).  In addition, our model results suggest that the 

experimental data on KLP3A - inhibited embryos are best accounted for by spindles in 

which the number of ipMTs has been reduced significantly.   

 

An alternative simple hypothesis that we considered in detail is that KLP3A motors 

simply change the effective outward force driving the poles apart, either by acting as 

ipMT sliding motors themselves or by augmenting the force generated by other ipMT 

sliding motors such as KLP61F (5). However, this alternative model does not explain the 

slope of the inverse linear relation between flux and spindle elongation (Fig. 1C), because 

a decrease in the outward force and sliding rate after KLP3A inhibition would result in 

lower rates of spindle elongation but would also decrease the flux rate. This is revealed 

by computer simulations of a model that assumes that KLP3A inhibition affects the 

number and efficacy of the force generators; this leads to a decrease in the rate of spindle 

elongation associated with a decrease in poleward flux rates (data not shown).   
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Another alternative hypothesis is that KLP3A motors might change the effective outward 

force driving the poles apart by augmenting the astral pulling forces.  This possibility 

would explain the inverse linear relationship between the spindle elongation and the 

poleward flux rates, but only if KLP10A - driven depolymerization at the poles persists in 

anaphase B and the astral pulling rate in control embryos is exactly equal to the ipMT 

sliding rate (see below).  However, this possibility was not further explored, because 

ipMT sliding by KLP61F, and not astral pulling, is the prominent mechanism during the 

first half of anaphase B (6) and in addition, the KLP3A motors are localized in the 

interzone (7) and therefore are unlikely to act on astral MTs.   

 

Fluctuations/ variance in anaphase B rate. 

To analyze the variance in the anaphase B rate, let us first consider the simplified 

situation, in which two ipMT arrays composed of antiparallel MT pairs connect the 

spindle poles. The poleward fluxes and the mechanical characteristics of the motors 

sliding the two ipMT arrays differ. The first pair of MTs depolymerize at the poles with 

rate 1
fV , whereas the second pair depolymerize with rate 2

fV . Two KLP61F motors slide 

the respective pairs. The forces generated by the motors are ( )ζ i i
i s mF V V= − , i=1, 2, where 

i
sV are the sliding velocities, i

mV are the free sliding motor rates, and ζ is the slope of the 

motors’ linear force - velocity relation. The poles are separating with rate aV , and the 

kinematic constraints on the rates of MT sliding, free motor sliding, and pole separation 

are: ( ) ( )1 1 2 22 2s f s f aV V V V V− = − = . In addition, the force - balance equation in the regime 
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where viscous resistance is negligible compared to motor forces is: 1 2 0F F+ ≈ . Solving 

these three linear equations demonstrates that the average sliding rate is equal to the 

average free sliding motor rate,
1 2 1 2

2 2
s s m mV V V V+ +

= , and that the anaphase B rate is given 

by 
1 21 2

2
2 2

f fm m
a

V VV VV
 ++

= −  
 

. In the general case, when there are many MT pairs 

depolymerizing at the minus ends with variable rates and crosslinked by multiple sliding 

motors characterized by varying free sliding rates and force - velocity slopes, a similar 

analysis assuming independence of the variability of the number of motors per MT and 

other stochastic variables shows that the average sliding rate is equal to the average free 

sliding motor rate s mV V= , and the anaphase B rate is given by ( )2a m fV V V= − . 

This characterizes a single spindle and allows us to estimate the variance in the 

fluctuations of the pole-pole separation rate as α
MT

var[ ]var[ ]var[ ] 4 fm

m

VVV
N N

 
= + 

 
. Here mN  

is the total number of motors, and NMT is the total number of ipMT arrays in the spindle. 

There is no direct data on the variance of the motor sliding rates, but assuming that it is of 

the same order as the observed variance of the motor sliding rates in different spindles, 

then 
2

3
2

µmvar[ ] ~ 10
secmV − . Using the available estimates of 

2
3

MT2

µmvar[ ] ~ 10 , ~ ~ 100
secf mV N N− , we estimate that the standard deviation of the 

anaphase B rate of a single spindle is very small, less than µm0.01
sec

, in agreement with 

the law of large numbers (8).  Such small fluctuations in the rate of pole separation would 
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not be detectable in our time - lapse images.  Indeed, linear fits to the pole - pole distance 

as a function of time of individual spindles are excellent.  

 

Variance in speckle rates.  

We undertook a quantitative analysis of the variance in flux rates, because such analysis 

can potentially provide significant insights into the underlying mechanisms (9). Our 

analysis points to several sources of the observed variance, however, in our current data, 

the relationship between variance and mean in the flux rates is not convincing enough to 

make forceful conclusions about the source of the variance.   In our model, we 

incorporated the factor that was pointed out to be most plausible as a result of the analysis 

below,  and the variance in flux rates in our results (Fig. 4 C and D) is in very good 

agreement with the experimental data (Fig. 1 B and C).   

 

Possible sources of the deviations in flux rates are first, velocity variance due to the 

motor-dependent “shearing”/“acceleration”, a consequence of parallel MTs within ipMTs 

(refs. 1, 10; Fig. 3D); however, our analysis and computer simulations suggest that 

variance due to this factor is insufficient to explain the large variance observed and that 

its contribution is insignificant.  Secondly, stochastic fluctuations in the elementary rate 

constants of mechanochemical coupling by the ipMT sliding motors (10-12) are another 

possible source of variance. Our analysis, including computer simulations, suggests that 

this factor’s contribution is significant, but it cannot by itself explain the large dispersal 

in the flux rates. 
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A third source may be variance in the minus end depolymerization rate, which is the most 

plausible and provides the most significant contribution to the observed variance.  The 

variance in the depolymerization rate may, in turn, be influenced by several factors (13):    

(i) One such factor is simple Poisson fluctuations in the number of subunits disassembled 

from the MT minus ends at the centrosome. If r is the average number of tubulin rings 

(tubulin dimers × 13) disassembled per second at the minus end, then the average 

depolymerization rate is flux δV r= , where δ is the size of the tubulin dimer. The 

variance in displacement is a linear function of time, and the variance of the rate 

measured over time T is 
2

2

[ ( )] δσv
Var X T r

T T
= =  (14). Thus, with the average flux rate 

over all inhibited and control spindles flux
µm~ 0.03
sec

V , δ = 0.008 µm, and assuming that 

a tubulin dimer remains in a speckle on average for a time T~5 sec, the flux rate variance 

due to Poisson fluctuations in the number of subunits dissembled would be ~
2

4
2

µm10
sec

− , 

smaller, but of the same order of magnitude, as observed.  (ii) Finally, fluctuations in the 

number of KLP10A motors that depolymerize MT minus ends at the poles could also 

contribute to the observed variance in flux rates. If each KLP10A motor induces 

depolymerization with constant rate depolyv ,  the total number of working KLP10A motors 

is M and the number of minus ends is N, then the probability that a motor will bind to a 

given MT is p=1/N.  Then the average number of motors per minus end is M/N = n, and 

this number fluctuates according to the binomial distribution (8) with variance Mp(1-

p)=M/N(1-(1/N)) ~ n. Therefore, the average flux rate is n depolyv , and its variance is 

2
depolynv . In this case, the variance to flux ratio is equal to depolyv . The variance in measured 
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flux velocities ranges from 0 to 0.0013 µm2/sec2, with a mean value σv ~ 0.0003 

µm2/sec2. Using this value and <Vflux> ~ 0.03 µm/sec, we estimate depolyv ~ 0.01µm/sec.   

Note, that this analysis predicts that the variance in flux is the increasing linear function 

of its mean: depoly flux fluxσ 0.01v v V V= ≈ . We tested this prediction by plotting the 

experimentally measured variances in flux as a function of the mean flux rate and found 

that the variance and the mean correlate linearly with coefficient ≈ 0.006 of the same 

order of magnitude as the predicted coefficient ≈ 0.01. However, the statistical 

significance of this linear fit is not high enough to be confident in the numerical value of 

the slope, so further work is required to test this prediction and also to evaluate the 

influence of unavoidable experimental imprecision, for example, in tracking the positions 

of moving speckles that could also contribute to the fluctuations in the observed flux 

rates. 

 

In the simulations (Figs. 4-7 and Movies 1-7), we varied both the mean depolymerization 

and polymerization (growth and shrinkage) rates and their variances as follows. The 

variance of these rates, due to Poisson fluctuations in the number of dimers, is equal to 

σ2=δ(mean rate)/2τ  over time τ.  Correspondingly, at each computational time step, we 

displaced the minus and plus ends of the MTs by the distance 2σ randncx t∆ = ∆ ⋅ ⋅ , 

where 0.1t∆ =  is the time step (corresponding to 1 sec in real time), σ2
c is the 

corresponding computational value of the variance (0.01-0.1), and randn is a random 

number generated by MATLAB (Mathworks, Natick, MA) distributed according to the 

standard normal distribution.   
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To investigate the effect of stochastic fluctuations in the number of motors per unit 

length, the effective viscous drag coefficient, the maximal motor force, and the free 

sliding motor velocity on the variance of flux rates, we varied them at each step 

according to the normal distributions with variances 10, 100 pN sec/µm, 1 pN and 0.03 

µm/sec, respectively. Finally, we simulated individual tubulin dimers in different MTs 

moving poleward with varying rates, assumed that 10 or more fluorescent dimers 

correspond to a speckle (15), and compared trajectories of dimers and speckles. We 

found that the statistical behavior of the individual fluorescent dimers and of the speckles 

were the same.  

 

Investigation of alternative mechanisms for anaphase spindle elongation. 

We have addressed the feasibility of several alternative molecular mechanisms for 

anaphase B spindle elongation by using computer simulations and/or evaluating their 

compatibility with previous experimental evidence. 

 

1. Polymerization Ratchet 

Could the outward force be generated by polymerizing MTs at the midzone rather than by 

the sliding action of KLP61F motors? The corresponding maximal force, namely 

hundreds of pN [a few pN per plus end (5)] would be sufficient, but the “free sliding” rate 

would be the polymerization rate, and such a model would predict that the anaphase B 
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rate is proportional to the polymerization rate. However, because it is unclear what these 

MTs push against, we did not simulate this possibility. 

 

2. Sliding against a spindle matrix 

A second possibility is that the outward force is generated by KLP61F motors acting on 

ipMTs associated with a spindle matrix rather than by sliding antiparallel ipMTs (16).  

We have investigated this mechanism in a force - balance model.  Under the assumption 

that KLP61F motors slide MTs against a hypothetical fixed spindle matrix, the forces, 

and thus the sliding velocities of MTs, depend on each one’s overlap with the spindle 

matrix, and not on the antiparallel overlap between MTs.  The associated force - balance 

equations involving MTs’ sliding velocities are similar to the ones described in our 

model.  We have investigated the case of a fixed spindle matrix extending between the 

spindle poles, as well as a matrix within a limited region in the central spindle (Movie 6).  

In this model, a separate force - velocity relationship exists for each pole.  MTs and 

motors in each half spindle develop a force and velocity depending on the number of 

MTs, matrix - MT overlaps, and viscous resistance of the corresponding pole, which may 

well result in large fluctuations in pole - pole elongation rate.  Thus, when the ipMTs 

slide against a fixed spindle matrix, as opposed to against one another, each pole would 

move independently at velocities related to their own molecular and biophysical 

parameters, which could potentially vary to a large extent (e.g. if the movement of one of 

the poles is hindered, the rate of pole - pole separation could be reduced by half) and lead 

to large fluctuations in anaphase B velocity, which are not observed. However, in a 

symmetric configuration (as in Movie 6) the poles move apart steadily and linearly, and 
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our simulations show that this model could, in principle, explain all the data (in particular 

the data in Fig. 1C), but it would not explain why KLP61F has evolved a bipolar 

structure.   

 

3. Astral MTs pulling the poles 

Finally, could motors at the cortex, for example dynein, generate the outward force by 

pulling on astral MTs?  To investigate this mechanism, we simulated anaphase B spindle 

elongation by astral MT pulling, and we could recover the flux/anaphase B data in Fig. 

1C, under the following assumptions. (i) The rate of pulling of dynein-like motors on 

astral MTs is exactly equal to the sliding rate of the KLP61F motors in control embryos.  

(ii) KLP10A continues to depolymerize MT minus ends that are pushed into the poles by 

KLP61F-driven sliding throughout anaphase.  (iii) MTs that do not have an antiparallel 

overlap are pulled apart with the poles, and KLP10A is inactive on these MTs.    

We compute the sliding velocities of ipMTs similarly as in the other mechanisms, and 

anaphase spindle elongation in this case starts when dynein-like motors on astral MTs 

start pulling the poles apart (Movie 7).  If we assume that KLP3A affects the pulling 

activity of dynein-like motors, and its inhibition leads to a reduction in the pulling rate, 

this model is able to explain the inverse relationship between the flux and anaphase B 

rates shown in Fig. 1C.  However, assumption (i), particularly, seems unlikely, and this 

model cannot explain how inhibition of KLP61F on ipMTs has the observed effect of 

abolishing anaphase B (6).  
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Additional note on KLP10A driven depolymerization rate and the shortening rate of 

ipMT minus ends at the poles.  

We assume that KLP10A motors remove tubulin subunits from the minus ends of ipMTs 

that are pushed by ipMT - MT sliding during preanaphase B.  Fluorescence Speckle 

Microscopy of 10 – µm - long metaphase - anaphase A spindles reveals that tubulin 

speckles move away from the equator and towards the pole at ≈ 0.05 µm/sec (Table 1). If 

we assume that the velocity of the speckles reflects the ipMT sliding rate, to maintain a 

steady - state pole - pole spacing during preanaphase B, a shortening rate of ipMT minus 

ends must occur at depolyV −  = 0.05 µm/sec.  This would imply that KLP10A motors must 

remove ≈ 80 (= 0.05 µm/sec × 1,000 × 8nm/ 13) tubulin subunits per second per MT at 

the poles.  These estimates are in reasonable agreement with biochemical studies on 

KLP61F and KLP10A-related motors (4, 17).  
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