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Supplementary information S1: Effect developmental conditions (brood size) on chick development 

and survival prior to the foraging cost manipulation 

We used general linear models to analyze the effect of the brood size manipulation on chick mass 

during growth. Birth nest and rear nest were included as random effects. All analyses were done in R, 

v. 2.15.2 or later [1] using function ‘lmer’ in the package ‘lme4’ (version 1.1-7, Bates et al. 2015). 

Residuals were checked for normality and homogeneity of variance.  Growing up in a large brood 

resulted in 1.4g (12%) lower mass at age 15 days, i.e. just before fledging (Fig. S1, N=477 2=71.4, 

p<0.0001) in agreement with earlier reports [3,4]. Growing up in large broods shifted the whole 

distribution of chick weights downwards (Fig. S1) as shown by the similar standard deviations of 1.4 g 

for both groups. The difference in weight was due to differential growth, because at the time of brood 

size manipulation there was no discernible difference in mass (N=523, 2=1.00, p=0.27). At age 120 

days (early adulthood), shortly before birds were housed in the experimental aviaries, individuals 

reared in large broods were 0.6g (4%) lighter than individuals reared in small broods (Fig. S1, N=508, 

2=15.1, p=0.0001). Standard deviations were similar for both groups (1.51 vs. 1.58 for small and large 

broods respectively). Thus growing up in poor developmental conditions impaired growth and this 

effect persisted into adulthood. Small and large broods thus reflect benign and harsh developmental 

conditions respectively.  

We tested if manipulated brood size affected chick survival up to adulthood (3 months), including all 

manipulated chicks in the breeding batches from which birds were allocated to the foraging cost 

manipulation (n= 877 chicks in 293 nests). Of the 422 young reared in small broods, 21 (5.0 %) died 

before the age of 3 months.  Of the 455 young reared in large broods, 41 (9.0%) died before the age of 

3 months. Although there was a mortality difference in the expected direction, it is statistically far from 

being statistically significant (logistic regression: z=0.31, p=0.76). More importantly, the absolute 

difference is small, and we therefore consider it safe to assume that there was no bias from selective 

disappearance of individuals from large broods before the start of the foraging cost experiment during 

adulthood. Furthermore, the direction of the mortality difference is such that this will have decreased 

the difference in phenotypic quality between birds reared in small and large broods, making our 

statistical tests more conservative. 
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Fig. S1 Birds reared in large broods attained a lower mass as chicks (age 15 days, just before fledging,) 

and as young adult (age 120 days, i.e. just before the start of the manipulation of adult conditions, i.e. 

the foraging treatment). Boxplots show median, first and third quartiles and whiskers show 95% 

confidence interval.   
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Supplementary information S2: Cox proportional hazard analyses 

To identify which covariates and/or random effects affected mortality in addition to the experimental 

we treatments we performed survival analyses using the counting process formulation of the Cox 

proportional hazard (CPH) model (Cox 1972; Andersen et al. 1993; Therneau and Grambsch 2000). The 

counting process formulation allows the coefficient to be estimated at each time point and thus time-

dependent covariates, such as age, can be included. Age was partitioned into ‘starting age’ and ‘time 

in treatment’, with day 1 for all birds being the day they started the foraging cost experiment, as 

advocated for randomized experiments [8]. Survival was checked daily and as time base we therefore 

used daily intervals. Deaths that occurred due to accidents (N=7) and birds still alive were right-

censored.  

Analyses were done in R, v. 3.2.1 [1] using function ‘coxme’ in the package coxme (version 2.2-3; 

Therneau 2012). To find the model best supported by the data, we used the function ‘dredge’ of the 

package ‘MuMIn’ [10].  In brief, this is a hypothesis-based approach that generates, given a global 

model, subset models that best fit the data. This makes it possible to assess model support for each 

hypothesis. Model support is shown here by ranking all subset models within six AICc of the best model 

fit.  CPH assumptions were checked for the best fitting models using scaled deviance and martingale 

residual plots [6,7]. 

There was potential non-independence at several levels in our data set (shared birth nest, genetic 

mother, genetic father, rear nest, rear mother, rear father, birth batch and aviary), which we checked 

for by entering these factors as random effect. Note however that the experiment was balanced with 

respect to all these effects, except aviary, because adult treatment was varied at the aviary level. We 

therefore performed all analyses with aviary as random effect, and subsequently tested effects of all 

other potential random effects by adding these one at the time to the final model. Adding other 

random effects to the final model in no case improved model fit or otherwise altered the conclusions.  
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Table S1 (next page) Cox proportional hazard analyses of manipulations effects on lifespan 

For birds from benign developmental conditions, there was little evidence that adult environment 

affected lifespan (Table S1A: ΔAICc=+0.7). In contrast, birds from harsh developmental conditions lived 

shorter in harsh than in benign adult environments (Table S1B: ΔAICc=-3.6). In the benign adult 

environment, the best fitting model did not include an effect of developmental conditions (Table S1C: 

ΔAICc≥+1.8). In the harsh adult environment, birds from benign developmental conditions live longer 

than birds from harsh developmental conditions (Table S1D: ΔAICc=-10.9). The interaction between 

the developmental conditions and adult environment obtained moderate support (Table S1E: 

ΔAICc≥1.2). For table 1E, only models within 6AICc of the best fitting model are shown. Values indicate 

model coefficients and are missing when the term was excluded from the model.  

 

Note that these are Cox proportional hazards models and model coefficients are therefore hazard 

ratios relative to a baseline hazard, which always is a benign group. A hazard ratio of one implies no 

effect and for example a hazard ratio of 1.37 for Devel. (manipulation during development) means that 

the hazard rate increases with 37% between benign and harsh developmental conditions. Note that 

there is no main effect Age since it is included in the baseline mortality curve. All models included 

aviary as random effect. Results indicating how best to include AgeStart can be found in Table S2. 

Abbreviations: Devel.: Developmental conditions (i.e brood size manipulation); Adult: adult conditions 

(i.e. foraging cost manipulation); AgeStart: age at start of the foraging treatment. Interaction terms are 

indicated by *.    
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Table S1A Experimental manipulations Age associated covariates [Year] df AICc ΔAICc weight 

Benign Devel.  Adult  AgeStart AgeStart  Adult     
Model  [Harsh]   * Age  *Age     

1    1.54 1.02   3 1824.1 0.00 0.49 

2  0.92  1.55 1.02   4 1824.7 0.67 0.35 

3  0.81  1.53 1.02  1.05 5 1826.4 2.34 0.15 

Table S1B Experimental manipulations Age associated covariates [Year] df AICc ΔAICc weight 

Harsh Devel.  Adult  AgeStart AgeStart  Adult     
Model  [Harsh]   * Age  *Age     

1  1.35  1.03 1.13   4 2212.5 0.00 0.62 

2  1.51  1.03 1.12  0.95 5 2214.1 1.62 0.28 

3    1.03 1.13   3 2216.1 3.61 0.10 

Table S1C Experimental manipulations Age associated covariates [Year] df AICc ΔAICc weight 

Benign Adult Devel.   AgeStart AgeStart Devel.      
Model [Harsh]    *Age *Age      

1    1.39 1.00   3 1940.1 0.00 0.56 

2 1.37   1.36 1.01 0.88  5 1941.9 1.80 0.23 

3 0.99   1.39 1.00   4 1942.1 1.99 0.21 

Table S1D Experimental manipulations Age associated covariates [Year] df AICc ΔAICc weight 

Harsh Adult Devel.   AgeStart AgeStart Devel.      
Model [Harsh]    *Age *Age      

1 2.53   0.97 1.23 0.79  5 2085.5 0.00 0.94 

2 1.48   1.00 1.20   4 2091.2 5.68 0.06 

3    1.03 1.21   3 2096.4 10.87 0.00 

Table S1E Experimental manipulations Age associated covariates [Year] df AICc ΔAICc weight 

All data Devel. Adult Devel. AgeStart AgeStart Devel. Adult     
Model [Harsh] [Harsh] *Adult  *Age *Age *Age     

1 1.56 0.91 1.48 1.17 1.09 0.83  9 4551.4 0.00 0.39 

2 1.95   1.18 1.09 0.82  8 4552.6 1.22 0.21 

3 1.95 1.13  1.17 1.09 0.82  8 4553.0 1.63 0.17 

4 1.56 0.92 1.48 1.17 1.09 0.83 1.00 10 4553.4 1.99 0.14 

5 1.95 1.18  1.18 1.08 0.82 0.98 9 4554.9 3.50 0.07 
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Table S2 Cox proportional hazard analyses to determine how to account for age at start of the experiment  

The model best fitting the data did not include experiment-specific AgeStart effects. In contrast, model support for including AgeStart was strong, since 

excluding AgeStart gave the worst possible model (ΔAICc =14.73; model 11). Age and AgeStart variables are per year. Further table specifications as in Table 

S1.  

Model AgeStart effects [Year] Experimental manipulations df AICc ΔAICc weight 

 AgeStart AgeStart AgeStart AgeStart AgeStart Devel. Adult Devel. Devel.     

  *Devel. *Adult *Devel.*Adult 
*Treat 

*Age [Harsh] [Harsh] *Adult *Age     
1 1.17    1.09 1.56 0.91 1.48 0.83 9 4551.4 0.00 0.27 

2 1.42     1.53 0.90 1.49 0.84 8 4552.3 0.87 0.18 

3 1.28 0.88   1.08 1.79 0.92 1.48 0.83 10 4552.8 1.42 0.13 

4 1.12  1.08  1.09 1.57 0.84 1.47 0.83 10 4553.2 1.82 0.11 

5 1.58 0.84    1.86 0.90 1.48 0.84 9 4553.3 1.84 0.11 

6 1.38  1.06   1.53 0.85 1.48 0.84 9 4554.2 2.78 0.07 

7 1.23 0.87 1.09  1.08 1.81 0.84 1.46 0.83 11 4554.6 3.19 0.06 

8 1.53 0.84 1.07   1.87 0.84 1.47 0.84 10 4555.1 3.69 0.04 

9 1.18 0.94 1.18 0.87 1.08 1.68 0.77 1.71 0.83 12 4556.5 5.08 0.02 

10 1.46 0.90 1.17 0.86  1.73 0.76 1.73 0.84 11 4557 5.55 0.02 

11      1.55 0.87 1.54 0.85 6 4566.1 14.73 0.00 
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Table S3 Cox proportional hazards analyses to show that sex dependent survival is independent of experimental manipulations 

There was considerable model support for female biased mortality in the six best fitting models and model fit deteriorated when sex was not included (ΔAICc 

=3.1; model 7). Yet, the female biased mortality seems most pronounced at older ages since the 3 best fitting models also include a sex*age interaction (ΔAICc 

≥1.8; model 4). In contrast, the model support sex-specific manipulation effects was weak: models 1 (best fitting) and 4 do not include interactions between 

sex and experimental manipulations. All ‘Age’ and ‘AgeStart’ terms are per year. Further table specifications as in Table S1.  

Model Sex specific effects [Male] Experimental manipulations AgeStart effects df AICc ΔAICc weight 

 Sex Sex Sex Sex Sex Devel. Adult Devel. Devel. AgeStart AgeStart     

 [Male] *Devel. *Adult *Devel.*Adult *Age [Harsh] [Harsh] *Adult *Age  *Age     
1 1.04    0.89 1.51 0.88 1.51 0.85 1.15 1.09 9 4548.3 0.00 0.27 

2 1.19 0.81   0.88 1.68 0.89 1.50 0.85 1.14 1.10 10 4549.3 1.03 0.16 

3 1.02  1.03  0.89 1.51 0.87 1.51 0.85 1.15 1.09 10 4549.7 1.42 0.14 

4 0.78     1.53 0.90 1.50 0.84 1.17 1.08 8 4550.1 1.83 0.11 

5 1.16 0.81 1.04  0.88 1.68 0.88 1.50 0.85 1.14 1.10 11 4550.7 2.40 0.08 

6 0.76  1.05   1.53 0.88 1.50 0.84 1.17 1.08 9 4551.4 3.12 0.06 

7      1.56 0.91 1.48 0.83 1.17 1.09 9 4551.4 3.13 0.06 

8 0.84 0.88    1.62 0.91 1.49 0.84 1.17 1.08 9 4551.7 3.42 0.05 

9 1.10 0.92 1.19 0.79 0.88 1.58 0.82 1.68 0.85 1.14 1.10 12 4552.4 4.09 0.04 

10 0.82 0.87 1.06   1.62 0.88 1.49 0.84 1.17 1.08 10 4552.9 4.67 0.03 

11 0.77 0.97 1.18 0.81  1.55 0.83 1.65 0.84 1.17 1.08 11 4554.7 6.45 0.01 
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Supplementary information S3: Comparison of parametric mortality model fits 

Table S4 Model selection results for parametric model fits using maximum likelihood approach of the 

R package fitdistrplus [11]. Shown numbers are AIC values (Akaike’s ‘An Information Criterion’ [12]). 

Results in bold are best fits. Multiple ‘best fits’ indicate that these models fit approximately equally 

well (ΔAIC<2; [12]). Consistent with Bayesian methods, the Gompertz function fitted the data better 

than the exponential function.  

  

Fitted model Hazard trend Experimental Group 

  BB HB BH HH 

Exponential constant hazard 322.3 320.5 295.1 338.2 

Weibull monotonic slope 311.7 317.7 294.5 340.1 

Gompertz exponential slope 305.1 315.9 285.8 337.7 

Gompertz-Makeham exponential slope with 'extrinsic' term 304.5 318.0 286.2 337.4 
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Supplementary information S4: Gompertz fits with R package BaSTA 

 

Fig. S2 Parameter trace plot of the MCMC optimization for Gompertz fits with BaSTA as in Fig 2. Settings 

were 4 parallel runs with 500,000 iterations, 100,000 burn in period and a thinning of 1000. 

Abbreviations: B: Benign and H: Harsh, in chronological order such that e.g. the HB group indicates 

harsh developmental followed by benign adult conditions. Note variation in Y-axes between panels. 
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Supplementary information S5:  Comparison of survival and mortality of the four experimental groups  

Fig. S3 Survival (A) and mortality (B) trajectories of the 4 experimental groups show that the HH group differs most from all other groups. Grey lines represent 

the benign adult environment, black lines the harsh adult environment, full and dotted lines show the benign and harsh developmental conditions respectively. 

Group abbreviations: B: benign conditions and H: harsh conditions, in chronological order, such that e.g. the BH group indicate benign developmental followed 

by harsh adult conditions.  
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Supplementary information S6: Sex-specific mortality trajectories 

Fig. S4 Survival curve and instantaneous mortality rate in relation to sex:  

(A) Proportion of birds surviving since entering the adult treatment. (B) Instantaneous mortality rate as a function of time in treatment. In panel (B), dots 

represent mortality data and lines show Gompertz fits.  (C) Posterior distributions of Gompertz parameters, showing that the sexes have very similar age 

independent mortality rate (Gompertz A, KLD=0.50) but that the rate of actuarial senescence is higher in females (Gompertz B, KLD=0.92). 
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Fig. S5 Parameter trace plot of the MCMC optimization for Gompertz fits with BaSTA as reported in Fig.S4. Settings were 4 parallel runs with 500,000 

iterations, 100,000 burn in period and a thinning of 1000. 
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