1 Supplementary Materials and Methods

TABLE S1. Plasmids used in this work

Plasmid	Description	Reference
pUG72	Amp ^R , pUCori, loxP::URA3::loxP	25
pSH63	Amp ^R , pUCori, GAL1Prom, cre, TRP1, CEN/ARS	25
pME2791	pRS416GAL1 with GAL1Prom CYC1Term, URA3, CEN/ARS	75
pME2787	pRS426MET25 with MET25Prom. CYC1Term, URA3, 2µm	75
pME2624	MET25Prom, CYC1Term, URA3, 2 µm, ASC1	our collection
pME2532	MET25Prom, CYC1Term, URA3, 2 µm, Strep for C-terminal fusion	our collection
pME2536	MET25Prom, CYC1Term, URA3, 2 µm, Strep for N-terminal fusion	our collection
pME2834	MET25Prom, CYC1Term, URA3, 2 µm, ASC1-Strep	our collection
pME2835	MET25Prom, CYC1Term, URA3, 2 µm, Strep-ASC1	our collection
pASK- IBA7plus	AmpR, fl origin, Strep-tag, Xa cleavage site	IBA GmbH
pME4132	AmpR, f1 origin, Strep-Xa-ASC1	This work
pME4135	MET25Prom, CYC1Term, bla, URA3, 2 µm, Strep-Xa-ASC1	This work
pME4364	pME2791 with ASC1 and its native promoter (+500bp)	This work
pME4384	pME2791 with asc/R38DK40E (<i>asc1DE</i>) and its native promoter	
pME4124	pME2834 with asc1DE	This work
pME4386	pME4364 with asc1DE-D109Y	This work
pME4365	pME4364 with $asc1^{T12A}$	This work
pME4366	pME4364 with $asc1^{T12A}DE$	This work
pME4367	pME4364 with $asc1^{T12E}$	This work
pME4368	pME4364 with $asc1^{T12E}$ DE	This work
pME4025	pME2834 with $asc1^{T96A}$	This work
pME4370	pME2834 with asc1 ^{T96A} DE	This work
pME4026	pME2834 with $asc1^{T96E}$	This work
pME4371	pME2834 with asc1 ^{T96E} DE	This work
pME4027	pME2834 with asc1 ^{T99A}	This work
pME4372	pME2834 with asc1 ^{T99A} DE	This work

pME4028	pME2834 with $asc1^{T99E}$	This work
pME4373	pME2834 with $asc1^{T99E}$	This work
pME4029	pME2834 with $asc1^{T96A T99A}$	This work
pME4125	pME2834 with $asc1^{T96A T99A}$ DE	This work
pME4030	pME2834 with $asc1^{T96E T99E}$	This work
pME4374	pME2834 with $asc1^{T96E T99E}$ DE	This work
pME4385	pME4364 with asc1D109Y	This work
pME4120	pME2834 with asc1 ^{S120A}	This work
pME4375	pME4364 with asc1 ^{S120A} DE	This work
pME4121	pME2834 with $ascl^{S120E}$	This work
pME4122	pME2834 with $asc1^{T143A}$	This work
pME4395	pME4364 with $asc1^{T143A}$	This work
pME4376	pME2834 with $asc1^{T143A}DE$	This work
pME4396	pME4364 with $asc1^{T143A}$ DE	This work
pME4473	pME4364 with $asc1^{T143A}$ D109Y	This work
pME4123	pME2834 with $asc1^{T143E}$	This work
pME4387	pME4364 with $asc1^{T143E}$	This work
pME4377	pME2834 with $asc1^{T143E}$ DE	This work
pME4388	pME4364 with $asc1^{T143E}$ DE	This work
pME4474	pME4364 with $asc1^{T143E}$ D109Y	This work
pME4031	pME2834 with $asc1^{S166A}$	This work
pME4126	pME2834 with asc1 ^{S166A} DE	This work
pME4032	pME2834 with $asc1^{S166E}$	This work
pME4033	pME2834 with $asc1^{T168A}$	This work
pME4127	pME2834 with $asc1^{T168A}$ DE	This work
pME4034	pME2834 with $asc1^{T168E}$	This work
pME4035	pME2834 with $asc1^{S166A T168A}$	This work
pME4128	pME2834 with asc1 ^{S166A T168A} DE	This work
pME4036	pME2834 with asc1 ^{S166E T168E}	This work
pME4378	pME2834 with asc1 ^{Y250F}	This work
pME4379	pME2834 with asc1 ^{Y250F} DE	This work
pHK697	RPS2-GFP, URA3, CEN/ARS	76

4 TABLE S2. S. cerevisiae strains used in this work

For Asc1p phospho-site mutations that caused Asc1p-dependent phenotypes at least two
independent clones with individual strain designations were generated and tested. The only
exception is the *asc1*^{T12A}DE strain.

Strains	Genotype	Reference	
RH2817	MATα, ura3-52, trp1::hisG	19	
RH3263	MATα, ura3-52, trp1::hisG, leu2::hisG, Δasc1::LEU2	19	
RH3510	MATα, ura3-52, trp1::hisG, asc1-loxP SNR24	15	
Y02724	BY4741, Mat a, $his3\Delta 1$, $\Delta leu2$, $\Delta met15$, $\Delta ura3$, $YLR113w(HOG1)::kanMX4$	Euroscarf collection	
RH3500	MATα, ura3-52, trp1::hisG, Δasc1::URA3	This work	
RH3549, RH3550	MATα, ura3-52, trp1::hisG, asc1DE	This work	
RH3431	MATα, ura3-52, trp1::hisG, FLO8-myc ³ -TRP1	15	
RH3504	MATα, ura3-52, trp1::hisG, asc1-loxP SNR24, FLO8-myc ³ -TRP1	15	
RH3599	MATα, ura3-52, trp1::hisG, asc1DE, FLO8-myc ³ -TRP1	This work	
RH3623, RH3624, RH3625	MAT α , ura3-52, trp1::hisG, asc1 ^{T12A}	This work	
RH3626	MAT α , ura3-52, trp1::hisG, asc1 ^{T12A} DE	This work	
RH3627, RH3628, RH3629	MAT α , ura3-52, trp1::hisG, asc1 ^{T12E}	This work	
RH3630, RH3631	MAT α , ura3-52, trp1::hisG, asc1 ^{T12E} DE	This work	
RH3529	MAT α , ura3-52, trp1::hisG, asc1 ^{T96A}	This work	
RH3539, RH3540, RH3541	MAT α , ura3-52, trp1::hisG, asc1 ^{T96A} DE	This work	
RH3530	MAT α , ura3-52, trp1::hisG, asc1 ^{T96E}	This work	
RH3542, RH3543	MATα, ura3-52, trp1::hisG, asc1 ^{T96E} DE	This work	
RH3531	MATα, ura3-52, trp1::hisG, asc1 ^{T99A}	This work	
RH3611, RH3612, RH3613	MATα, ura3-52, trp1::hisG, asc1 ^{T99A} DE	This work	
RH3532	MATα, ura3-52, trp1::hisG, asc1 ^{T99E}	This work	
RH3614, RH3615, RH3616	MATα, ura3-52, trp1::hisG, asc1 ^{T99E} DE	This work	
RH3533, RH3534, RH3535	MATα, ura3-52, trp1::hisG, asc1 ^{T96A T99A}	This work	

RH3544, RH3545, RH3546	MAT α , ura3-52, trp1::hisG, asc1 ^{T96A T99A} DE	This work
RH3537, RH3538	MATα, ura3-52, trp1::hisG, asc1 ^{T96E T99E}	This work
RH3547, RH3548	MAT α , ura3-52, trp1::hisG, asc1 ^{T96E T99E} DE	This work
RH3551	MAT α , ura3-52, trp1::hisG, asc1 ^{S120A}	This work
RH3575, RH3576, RH3577	MAT α , ura3-52, trp1::hisG, asc1 ^{S120A} DE	This work
RH3574	MAT α , ura3-52, trp1::hisG, asc1 ^{S120E}	This work
RH3578, RH3579, RH3580	MAT α , ura3-52, trp1::hisG, asc1 ^{T143A}	This work
RH3584, RH3585, RH3586	MAT α , ura3-52, trp1::hisG, asc1 ^{T143A} DE	This work
RH3581, RH3582, RH3583	MAT α , ura3-52, trp1::hisG, asc1 ^{T143E}	This work
RH3587, RH3588, RH3589	MAT α , ura3-52, trp1::hisG, asc1 ^{T143E} DE	This work
RH3590	$MAT\alpha$, ura3-52, trp1::hisG, asc1 ^{S166A}	This work
RH3638	MAT α , ura3-52, trp1::hisG, asc1 ^{S166A} DE	This work
RH3591, RH3592	$MAT\alpha$, ura3-52, trp1::hisG, asc1 ^{S166E}	This work
RH3593, RH3594, RH3595	MAT α , ura3-52, trp1::hisG, asc1 ^{T168A}	This work
RH3639, RH3640	MAT α , ura3-52, trp1::hisG, asc1 ^{T168A} DE	This work
RH3596, RH3597	MAT α , ura3-52, trp1::hisG, asc1 ^{T168E}	This work
RH3598	MATα, ura3-52, trp1::hisG, asc1 ^{S166A T168A}	This work
RH3536	MAT α , ura3-52, trp1::hisG, asc1 ^{S166A T168A} DE	This work
RH3637	MATα, ura3-52, trp1::hisG, asc1 ^{S166E T168E}	This work
RH3635, RH3641, RH3642	MATα, ura3-52, trp1::hisG, asc1 ^{Y250F}	This work
RH3636, RH3643, RH3644	MATα, ura3-52, trp1::hisG, asc1 ^{Y250F} DE	This work
RH3487	MATα, ura3-52, trp1::hisG, Δarg4::URA3	This work
RH3489	$MAT\alpha$, ura3-52, trp1::hisG, Δ arg4::loxP	This work
RH3491	MATα, ura3-52, trp1::hisG, Δarg4::loxP, Δlys1::URA3	This work
RH3493	MATα, ura3-52, trp1::hisG, Δarg4::loxP, Δlys1::loxP	This work
RH3519	MATα, ura3-52, trp1::hisG, asc1-URA3 SNR24, Δarg4::loxP, Δlys1::loxP	This work
RH3520	MATα, ura3-52, trp1::hisG, asc1-loxP SNR24 Δarg4::loxP, Δlys1::loxP,	This work
RH3570	MATα, ura3-52, trp1::hisG, asc1DE, Δarg4::URA3	This work

RH3571	MATα, ura3-52, trp1::hisG, asc1DE, Δarg4::loxP	This work
RH3572	MATα, ura3-52, trp1::hisG, asc1DE, Δarg4::loxP, Δlys1::URA3	This work
RH3573	MATα, ura3-52, trp1::hisG, asc1DE, Δarg4::loxP, Δlys1::loxP	This work

8

9 Plasmid Construction

Plasmids used in this study are listed within Table S1. Plasmids pME2834 and pME2835 were 10 11 generated through amplification of ASC1 from the yeast genome using oligonucleotides that 12 introduced BamHI and HindIII restriction sites for cloning into plasmids pME2535 and pME2536 respectively. To generate plasmid pME4135, Strep-ASC1 was amplified from plasmid pME4132 13 introducing NheI and HindIII restriction sites for cloning into plasmid pME2835. Plasmid 14 15 pME4132 was obtained through insertion of the ASC1 gene into the pASK-IBA7plus plasmid (#2-1406-000, IBA GmbH) according to the provided instructions. Plasmid pME4364 is derived from 16 pME2791 and carries ASC1 under control of its native promoter (+500 bp upstream of ASC1 17 18 according to (77). ASC1 was amplified together with its promoter from genomic S. cerevisiae DNA 19 using oligonucleotides that introduced SacI and HindIII restriction sites for subsequent cloning. Plasmids carrying asc1 with codon exchanges were constructed via a two-step PCR strategy: In 20 the first reaction the codon exchange(s) was (or were) introduced within an oligonucleotide bearing 21 22 the mutated codon(s) in its center using an ASC1 wild-type carrying plasmid (pME2834 or 23 pME4364) as template. In the second PCR the complete *asc1* allele was amplified flanked by the 24 respective restriction sites for cloning into the parent vector (BamHI and HindIII restriction sites for cloning into pME2834 and SacI and HindIII restriction sites for cloning into pME2791). For 25 26 construction of plasmids pME4025-pME4036, pME4120-pME4128, pME4370-pME4374, and pME4376-pME4379 plasmid pME2834 served as the parent vector. Plasmid pME4364 served as 27

parent vector for plasmids pME4365-pME4368, pME4375, and pME4384. For plasmids comprising an R38D K40E codon exchange in combination with a phosphorylation site mutation either plasmid pME4124 or pME4384 was used as template for PCR. Alternatively, plasmids that already comprised a phosphorylation site mutation were used as template for the PCR and the R38D K40E mutation was introduced by using oligonucleotides bearing the respective codon exchanges. The plasmids served as templates for amplification of transformation cassettes to integrate the mutated *asc1* alleles into the yeast genome at its original locus.

35

36 *Yeast strains and growth conditions*

The S. cerevisiae strains used in this study are of the $\Sigma 1278b$ background and are listed Table S2. 37 Strains with codon-exchanges within the open-reading frame of ASC1 (RH3529-RH3551, 38 RH3574-RH3598, RH3611-RH3616, RH3623-RH3631, RH3635-RH3644) were obtained by 39 transformation of the $\Delta asc1::URA3$ strain (RH3500) with the respective asc1-alleles carrying 40 flanking regions identical to those of the ASC1 gene for homologues recombination. Transformants 41 were selected for their resistance against 5-fluoroorotic acid (0.5 mg/ml; #R0812, Thermo Fisher 42 Scientific) due to loss of the URA3 marker gene. Successful transformations were verified by PCR, 43 Southern blot (78), and sequencing of the ASC1 locus. Arginine or arginine and lysine auxotrophic 44 45 strains RH3487, RH3489, RH3491, RH3493, and RH3570-RH3573 derived from strains RH2817 and RH3549, respectively, and were generated by replacement of the genes ARG4 and LYS1 with 46 the recyclable loxP::URA3::loxP marker cassette that was amplified from plasmid pUG72 47 48 according to Gueldener et al. (25). For marker rescue strains were transiently transformed with plasmid-borne Cre-recombinase (pSH63). An arginine and lysine auxotrophic asc1SNR24 strain 49 was generated from the ASC1 wild-type $\Delta arg4::loxP \Delta lys1::loxP$ strain RH3493 as described by 50 Rachfall et al. (15): A loxP::URA3::loxP cassette was integrated in exon1 of ASC1 resulting in 51

strain RH3519. Subsequent rescue of the URA3 marker led to strain RH3520 with a loxP site in the 52 53 ASC1 ORF that abrogates the translation of the mRNA. For metabolic labeling with isotopicallylabeled arginine and lysine $\Delta arg4::loxP \Delta lys1::loxP$ strains RH3493, RH3520, and RH3573 were 54 used. Strain RH3599 expressing C-terminally 3xmyc-tagged Flo8p was constructed by 55 transformation of RH3549 according to Janke et al. (26). Transformations were performed using 56 57 the lithium acetate method (79). Strains were cultivated in liquid yeast nitrogen base medium (1.5 58 g/l YNB without amino acids and ammonium sulfate, 5 g/l ammonium sulfate, 2% glucose) containing the respective supplements or in yeast-extract peptone dextrose (YEPD) medium (2% 59 peptone, 1% yeast extract, 2% glucose). 2% agar was added for solid media. Experiment-specific 60 61 growth conditions are described in the respective paragraphs.

62

63 Supplementary References

Mumberg D, Müller R, Funk M. 1994. Regulatable promoters of *Saccharomyces cerevisiae*: comparison of transcriptional activity and their use for heterologous expression.
 Nucleic Acids Res 22:5767-5768.

Milkereit P, Strauss D, Bassler J, Gadal O, Kuhn H, Schutz S, Gas N, Lechner J, Hurt
 E, Tschochner H. 2003. A Noc complex specifically involved in the formation and nuclear
 export of ribosomal 40 S subunits. J Biol Chem 278:4072-4081.

70 77. Kleinschmidt M, Schulz R, Braus GH. 2006. The yeast *CPC2/ASC1* gene is regulated by
71 the transcription factors Fhl1p and Ifh1p. Curr Genet 49:218-228.

- 72 78. Southern EM. 1975. Detection of specific sequences among DNA fragments separated by
 73 gel electrophoresis. J Mol Biol 98:503-517.
- 74 79. Ito H, Fukuda Y, Murata K, Kimura A. 1983. Transformation of intact yeast cells treated
 75 with alkali cations. J Bacteriol 153:163-168.

1 TABLE S3. LC-MS-based identification of Asc1p-derived phospho-peptides

2 Phospho-sites with the highest post-translational modification (PTM) score are printed in black,

3 and all other putative phospho-sites within the peptides in gray.

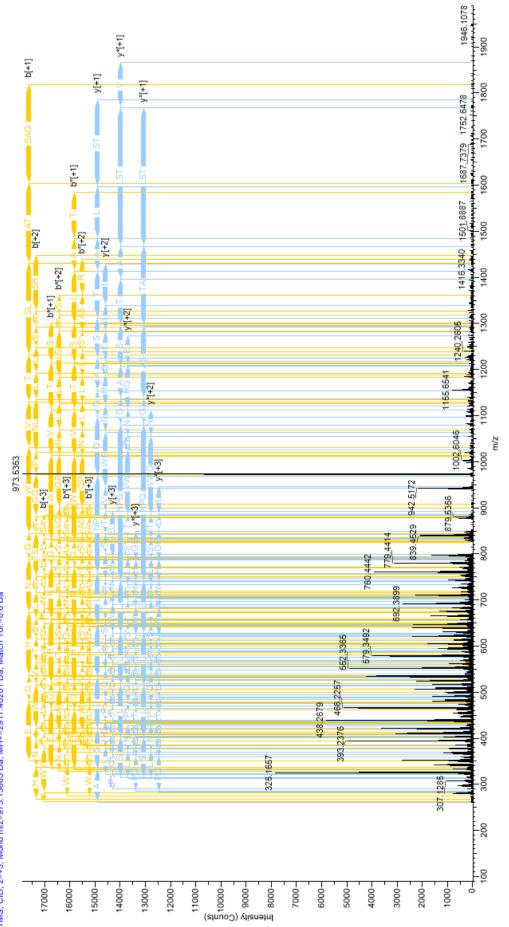
Amino acid	Position	Highest PTM score	Peptide sequence	Spectral counts	Higest Xcorr (SequestHT)	Highest IonScore (Mascot)	
Т	12	100.00					
Т	21	45.5					
S	22	33.3					
Т	25	60.1	G T LEGHNGWVTSLATSAGQPN LLLSASR	19	5.42	70	
S	26	39					
S	35	9.9					
S	37	79.6					
S	120	100					
S	124	0	KA <u>s</u>miisgsr	2	-	47	
S	126	0					
Т	143	100	GQCLA T LLGHNDWVSQVR	29	4.54	59	
S	152	0	GQCLA <u>I</u> LLGHNDWVSQVK	29	4.04		
S	166	100		101	4.07	100	
Т	168	100	ADDD S V T IISAGNDK VVPNEKADDD SVT IISAGNDK	121 25	4.87 4.37	108 60	
S	171	90		25	4.57	00	
Y	250	100					
Т	256	0.3	Y WLAAATATGIK	21	3.51	56	
Т	258	0					
S	291	77.4					
S	295	93.2			5.19		
Т	300	99.9	AAEPHAVSLAWSADGQ T LFAG YTDNVIR	17		91	
Y	305	0.6					
Т	306	0.2					

1 TABLE S4. Overview on proteome data evaluation with *Perseus*

2 Abbreviations: Prot = protein, vs. = versus

No.	Command	Description				
		asc1 and asc1DE	T143 phosphorylation-site mutant strains e.g. asc1 ^{T143A}			
1	Generic	proteinGroups.txt				
	matrix upload	normalized ratios etc.				
2.1	Filter rows	Remove rows with + in reverse col				
2.2	based on	Remove rows with + in potential co				
2.3	categorical columns	Remove rows with + in only identif	_			
3	Transform	Inverse ratios (1/x) when ASC1 is	not in the denominator			
4	Transform	$\log_2(x)$				
5	Normali- zation	Subtract column median of ratios				
6	Categorical annotation rows	Group biological replicates				
7	Reorder/ remove columns	Select Prot ratios of interest for the	e following steps			
8.1	Average groups	Calculate median of each group → protein ratio	Calculate mean of each group			
8.2	Combine expression columns	-	Calculation of difference between mean of $asc1^{T143A}/ASC1$ ratios and $ASC1^{Aux}/ASC1$ ratios \rightarrow protein ratio			
9	Change column type	Change numerical column with pro	otein ratio (steps 8.1 and 8.2) to			
10	Categorical annotation rows	Define column with protein ratio as	s own group			
11	One/Two sample(s) tests	One sample t-test, p value 0.01	Two sample t-test, p value 0.01 Prot ratios <i>asc1</i> ^{T143A} / <i>ASC1</i> vs. Prot ratios <i>asc1</i> ^{Aux} / <i>ASC1</i>			
12	Filter rows based on categorical columns	Keep rows with + (significant) from	step 11			
13	Filter rows based on valid values	Filter protein ratio (steps 8.1 and 8	.2) for values outside -0.26 to 0.26			

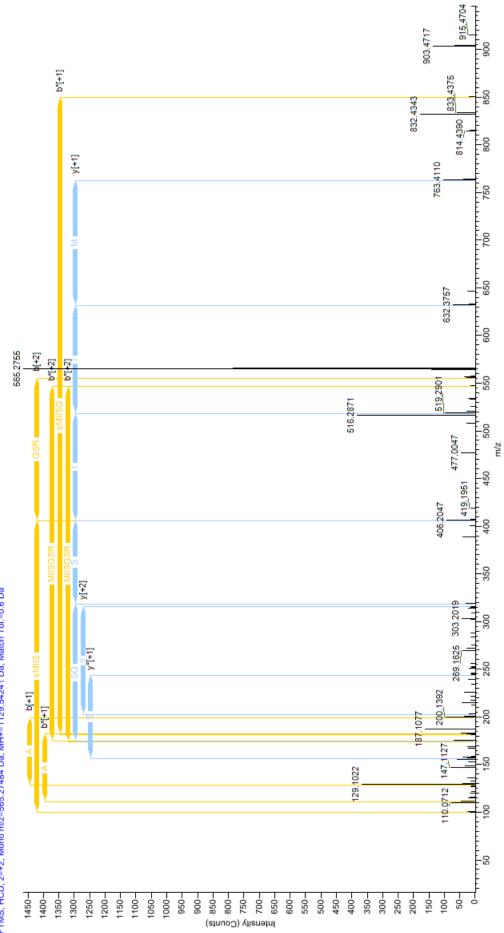
1 TABLE S5. Overview on phospho-proteome data evaluation with *Perseus*


2 Abbreviations: PP = phospho-peptide, Prot = protein, norm. = normalized, vs. = versus

No.	Command	Description					
		asc1	T143 phosphorylation-site mutant strains e.g. <i>asc1</i> ^{T143A}				
1	Generic	Phospho (STY)sites.txt					
	matrix upload	normalized ratios, localization probability etc.					
2.1	Filter rows	Remove rows with + in reverse column					
2.2	based on	Remove rows with + in potential co	ntaminant column				
	categorical						
0	columns	la ander te basse enbyenne enbyerne					
3	Expand site table	In order to have only one column pe	er sample				
4	Transform	Inverse ratios (1/x) when ASC1 is n	ot already in the denominator				
5	Transform	$\log_2(\mathbf{x})$					
6	Reorder/	Select PP ratios of interest for the fe	ollowing steps				
	remove		5 1				
	columns						
7	Matching	Matching PP ratios with respective					
	rows by	(in the case that a phospho-peptide					
	name	protein the median of the protein ra	,				
8	Categorical	Group PP ratios and Prot ratios for	biological replicates				
	annotation rows						
9	Average	Calculate median of each group	Calculate mean of each group				
0	groups	Calculate median of calon group	Calculate mean of caon group				
10.1	Combine	Normalization of PP ratios on Prot ratios:					
	expression	median PP ratios - median Prot rati	os				
	columns						
		\rightarrow phospho regulation					
10.2		-	Calculation of difference between				
			normalized PP ratios of asc1 ^{T143A} /ASC1 and				
			ASC1 ^{Aux} /ASC1				
			\rightarrow phospho regulation				
11	Change	Change numerical column with pho					
	column type	10.2) to expression column					
12	Categorical	Define column with phospho regula	ation as an own group for later				
	annotation	filtering of values					
	rows						
13	Categorical	Group PP ratios for biological replic	cates for the next step				
	annotation						
14	rows Filter rows	Filter for two valid PP ratios	Filter for one valid PP ratio				
14	based on	T INGETOE (WO VAILUEE TALLOS					
	valid values						
15.1	Two samples	t-test, p value 0.01	t-test, p value 0.05				
	tests	PP ratios vs. Prot ratios	PP ratios vs. Prot ratios				
			for asc1 ^{T143A} /ASC1				
15.2		-	t-test, p value 0.05				
			PP ratios asc1 ^{T143A} /ASC1 vs. PP				
10.1			ratios ASC1 ^{Aux} /ASC1				
16.1	Filter rows	Keep rows with + (significant) from	step 15.1				

16.2	based on	-	Keep rows with + (significant)
10.2	categorical		from step 15.2
	columns		
17	Filter rows	Filter phospho regulation (steps 10-	-12) for values outside
	based on	-0.26 to 0.26	
	valid values	0.2010 0.20	
Follov		performed for <i>asc1</i> ⁻ phospho-proteom	ne analysis for phosphorylated
		two corresponding prot ratios	
	from step 15.1		
18	One sample	t-test, p value 0.01	
	tests	only phospho-peptide ratios	
19	Filter rows	Discard rows with + (significant) fro	m step 15.1 (these candidates
10	based on	showed regulation of PP ratios with	
	categorical		
	columns		
20	Filter rows	Keep rows with + (significant) from	step 18
20	based on		
	categorical		
	columns		
21	Categorical	Group Prot ratios	
	annotation	\rightarrow proteome	
	rows	<i>p</i>	
22	Filter rows	Filter rows on three valid values in t	the proteome group, add
	based on	categorical column (assumption: les	
	valid values	not sufficient for two samples t-test	
23	Filter rows	Keep rows that were specified as d	
-	based on	(remaining candidates have less that	
	categorical	proteome group)	
	columns	, , , ,	
24	Filter rows	Filter rows on one valid values in pl	roteome group, add categorical
	based on	column	
	valid values		
		phosphorylated peptides with no	phosphorylated peptides with one
		corresponding Prot ratio	or two corresponding Prot ratio(s)
25	Filter rows	Keep rows that were specified as	Keep rows that were specified as
	based on	discarded in the previous step,	keep in the previous step, they
	categorical	they have no proteome values	have one or two proteome
	columns		value(s)
26	Change	Change numerical column with	-
	column type	PP median ratio (step 9.1) to	
		expression column	
27	Categorical	Define column with PP median	-
	annotation	ratio from the previous step as an	
	rows	own group for filtering of values in	
		the next step	
		\rightarrow phospho regulation with no	
		Prot value	
28	Filter rows	Filter phospho regulation with no	Filter phospho regulation (step
	based on	Prot value (step 27) for values	10.1) for values outside
	valid values	outside -0.26 to 0.26	-0.26 to 0.26

lower case t = phosphorylated residue

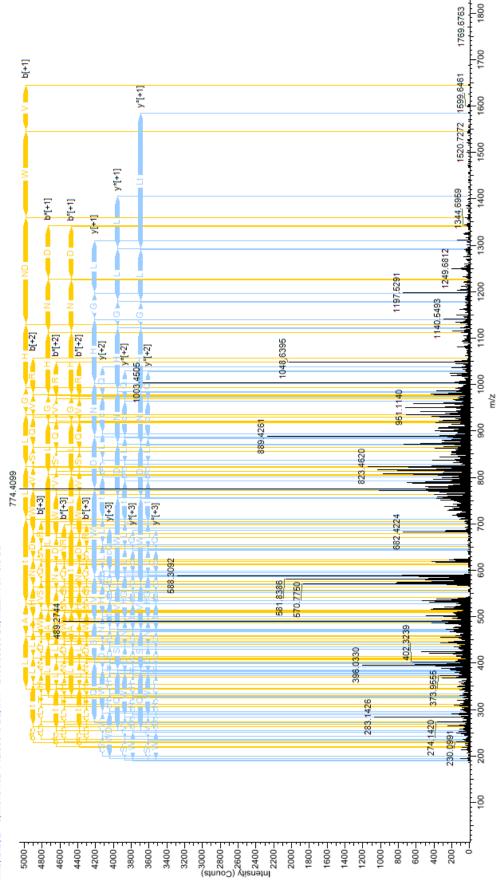


G[t [L]E]G[H]N]G[M]V]T]S]L]A[T]S]A[G]Q[P]N]L]L]L]S]A]S R]

(A) Annotated fragmentation spectrum of the peptide GTLEGHNGWVTSLATSAGQPNLLLSASR phosphorylated at T12 FIG. S1. Annotated fragmentation spectra of Asc1p phospho-peptides.

lower case s = phosphorylated residue

KS121_HCD_S120.raw #906 RT: 34.80 FTMS, HCD, z=+2, Mono m/z=565.27484 Da, MH+=1129.54241 Da, Match Tol.=0.6 Da



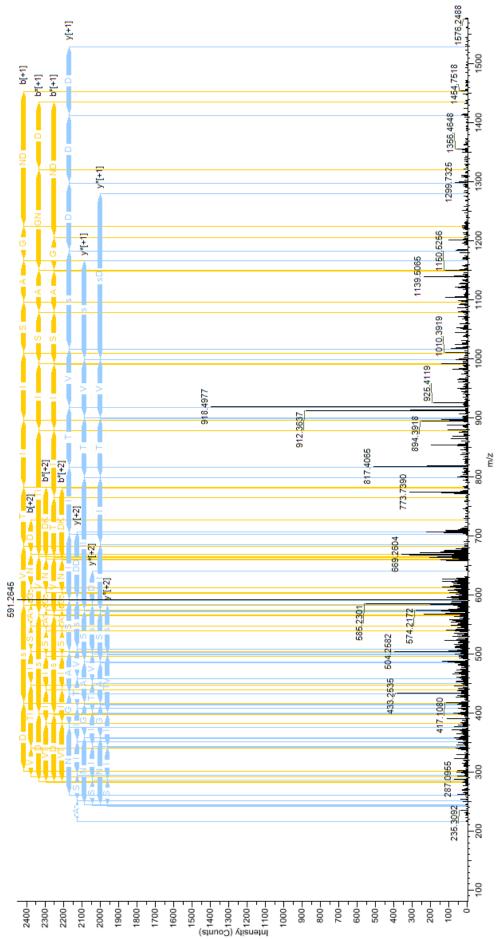
(B) Phosphorylated fragmentation spectrum of the peptide KASMIISGSR phosphorylated at S120

KJAJS [MII II [S]G SIRJ

lower case t/c = phosphorylated residue/carbamidomethylated cysteine

KS121_MSA_3.raw #7945 RT: 85.24 ITMS, CID, z=+3, Mono m/z=712.00018 Da, MH+=2133.98600 Da, Match Tol.=0.6 Da

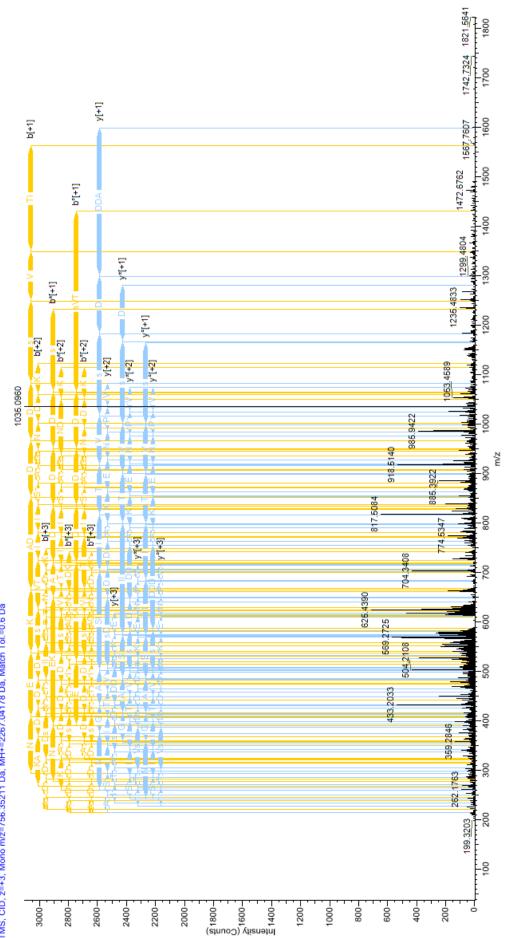
(C) Annotated fragmentation spectrum of the peptide GQCLATLLGHNDWVSQVR phosphorylated at T143


G[Q[c]L]A]t]L]L]G[H]N]D]W[V]S]Q[V]R]

1915.2323 1900

lower case s = phosphorylated residue

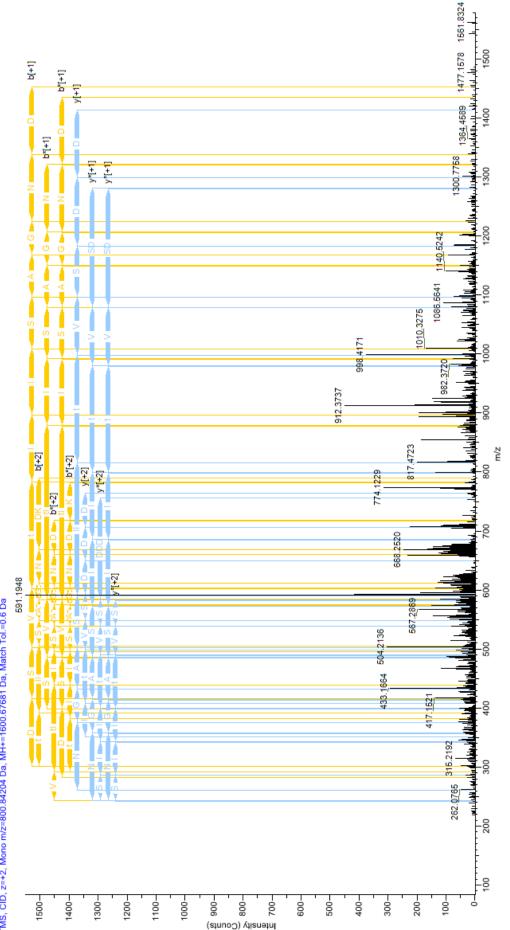
KS121_MSA_3.raw #4431_RT; 55.06 ITMS, CID, z=+2, Mono m/z=800.84229 Da, MH+=1600.67729 Da, Match Tol.=0.6 Da


(D) Annotated fragmentation spectrum of the peptide ADDDSVTIISAGNDK phosphorylated at S166

A [D[D]D]**s**]V]T]I]I]S]A[G]N]D] K

= fragment b-ions * = neutral loss of ammonia (-17 Da) [+1], [+
 = fragment y-ions ° = neutral loss of water (-18 Da) lower of the lower

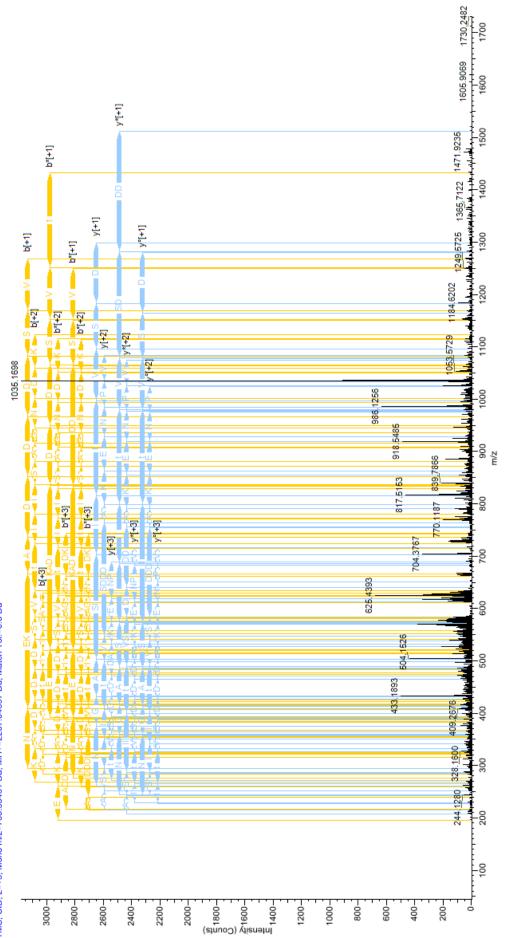
[+1], [+2], [+3] = charge states lower case s = phosphorylated residue


> KS121_MSA_3.raw #3947 RT: 50.92 ITMS, CID, z=+3, Mono m/z=756.35211 Da, MH+=2267.04178 Da, Match Tol.=0.6 Da

(E) Annotated fragmentation spectrum of the peptide VVPNEKADDDSVTIISAGNDK phosphorylated at S166

lower case t = phosphorylated residue

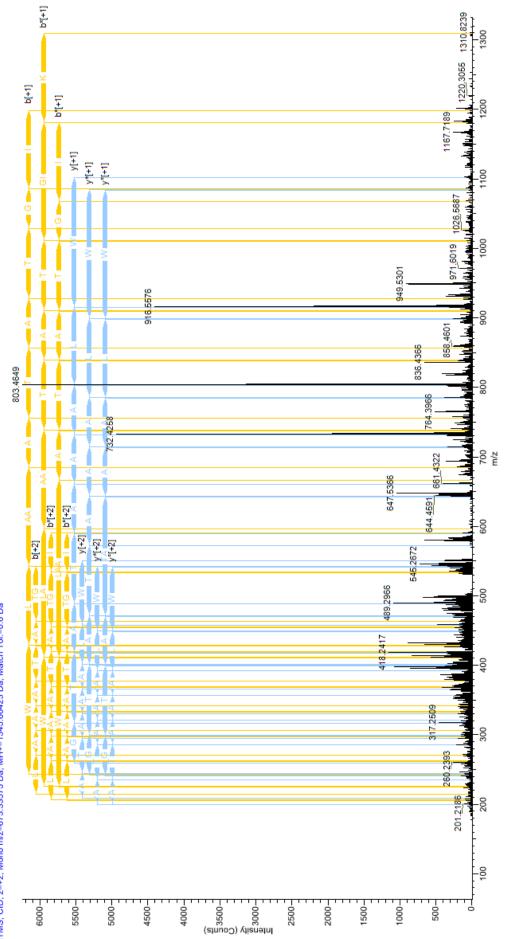
KS121_MSA_3.raw #4473 RT: 55.35 ITMS, CID, z=+2, Mono m/z=800.84204 Da, MH+=1600.67681 Da, Match Tol.=0.6 Da



(F) Annotated fragmentation spectrum of the peptide ADDDSVTIISAGNDK phosphorylated at T168

lower case t = phosphorylated residue

KS121_MSA.raw #3840 RT: 50.79 ITMS, CID, z=+3, Mono m/z=756.35431 Da, MH+=2267.04837 Da, Match Tol.=0.6 Da

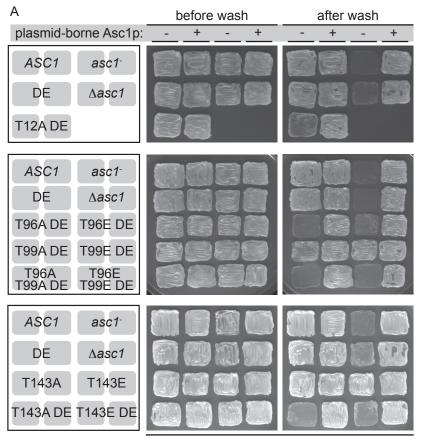


(G) Annotated fragmentation spectrum of the peptide VVPNEKADDDSVTIISAGNDK phosphorylated at T168

lower case y = phosphorylated residue

(H) Annotated fragmentation spectrum of the peptide YWLAATATGIK phosphorylated at Y250

<mark>ν_WLJAJAJAJTJAJTJGJI JK</mark>


lower case t = phosphorylated residue

KS121_HCD_4.raw #5265 RT: 86.24 FTMS, HCD, z=+3, Mono m/z=1014.14655 Da, MH+=3040.42508 Da, Match Tol.=0.6 Da

(I) Annotated fragmentation spectrum of the peptide AAEPHAVSLAWSADGQTLFAGYTDNVIR phosphorylated at T300

A AJEJPJHJAJVJSJLJAJWS A D G QItJLJFJAIGIYITJDINIVII IRJ

amino acid starvation

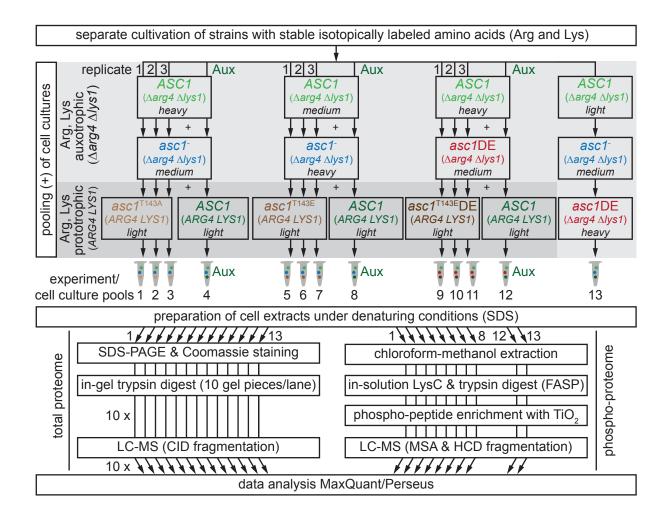

В	YNB control			YNB + cycloheximide				
plasmid-borne Asc1p:	- +		-		+			
ASC1				۲				
asc1-		\bigcirc					() .	
DE	Ŏ			۲				2
Y250F	•			۲		•	•	
Y250F DE	õ	۲		۲				
OD ₆₀₀	10 ⁻¹	10-2	10 ⁻¹	10-2	10 ⁻¹	10-2	10 ⁻¹	10-2

FIG. S2. Complementation of *ASC1* phospho-site mutant phenotypes by expression of plasmid-borne wild-type *ASC1*

³ Phospho-site mutants were transformed with a high-copy number plasmid carrying the wild-type ⁴ *ASC1* gene under the control of the *MET25*-promoter (*ASC1*, pME2624) or with the empty vector ⁵ (EV, pME2787) as control. The *ASC1* wild-type, *asc1⁻*, $\Delta asc1$ and *asc1DE* strains were ⁶ transformed with the same plasmids as further controls.

(A) Haploid adhesive growth at amino acid starvation caused by 10 mM 3-amino-1,2,4-triazole
(3-AT). Plasmid-transformed phospho-site mutants asc1^{T12A}DE, asc1^{T96A}DE, asc1^{T96E}DE,
asc1^{T99A}DE, asc1^{T96A T99A}DE, asc1^{T96E T99E}DE, asc1^{T143A}DE, and asc1^{T143E}DE and control strains
were patched on the 3-AT containing YNB plates and subjected to wash tests after 3 d of growth.
The asc1^{T99E}DE, asc1^{T143A}, and asc1^{T143E} strains, that are not impaired in adhesive growth, served
as additional controls. Plates are shown before and after the washing step.
(B) Drop dilution assay to evaluate cycloheximide sensitivity. Cell suspensions of plasmid-

13 (B) Drop dilution assay to evaluate cyclonexininde sensitivity. Cell suspensions of plasmid-14 transformed phospho-site mutant strains $asc1^{Y250F}$ and $asc1^{Y250F}$ DE and control strains were 15 applied onto YNB plates containing 0.15 µg/ml.

1 FIG. S3. Analysis of the Asc1p-dependent phospho-proteome

2 Peptide sample preparation for SILAC and LC-MS based Asc1p-dependent phospho-proteome 3 and proteome analyses. S. cerevisiae strains were cultivated in the presence of light, medium or heavy labeled arginine and lysine. Arrows indicate which strains were pooled and indicate the 4 5 number of replicates. Strains with the phospho-site T143 mutated were arginine and lysine prototroph and therefore cultivated in the presence of the naturally occurring light amino acids 6 (Arg⁰, Lys⁰). To distinguish between changes caused by the Asc1p mutations or differences in 7 arginine and lysine metabolism (prototroph ARG4 LYS1 strains versus auxotroph $\Delta arg4 \Delta lys1$ 8 strains), an *auxotrophy-control ASC1*^{Aux} (Aux) was included in the experiments that is an ASC1 9 wild-type strain prototrophic for arginine and lysine (ARG4 LYS1). In total, 13 independent cell 10 pools were obtained and subjected to the subsequent preparation of cell extracts. The protein 11 extracts were split in two and processed separately for the proteome and phospho-proteome 12 13 analyses as described in detail in the *Materials and Methods* section. For the phospho-proteome 14 analysis only protein extracts of experiments 1-8 and 12-13 were further processed. The encompassing set of data of the experiments and details about data analysis are compiled in the 15 16 Excel workbook Table S6 and Tables S4 and S5.