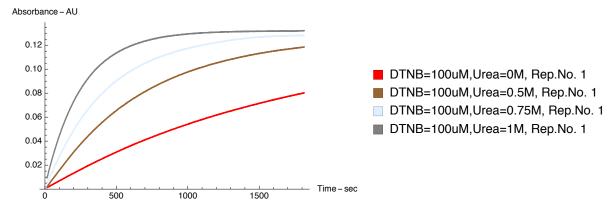

# Analysis of thiol reactivity data from *III3C* to determine open/close kinetics.

# Spectrophotometer Data

Importing SpecData at various [Urea] in .txt format :

```
FilePath = "/Users/riddhishah/Google
       Drive/Riddhi's Stuff/Final Data Collection/Data/III3C 110513/";
  ProteinConc = "10uM";
  ProteinName = "III3C";
  UreaConc = {0, 0.5, 0.75, 1};
  DTNBconc = 100;
  Nureas = Length[UreaConc];
  Nreps = \{1, 1, 1, 1\};
  Filenames = Table [FilePath <> ProteinConc <> ProteinName <>
       "_" <> ToString[DTNBconc] <> "uMDTNB_" <> ToString[UreaConc[[i]]] <>
       "M_R" <> ToString[j] <> ".txt", {i, Nureas}, {j, Nreps[[i]]}};
  RawSpecData = Table[Drop[Import[Filenames[[i, j]], "Data"], 2],
      {i, Nureas}, {j, Nreps[[i]]}];
  RawSpecDataF = Table[Cases[RawSpecData[[i, j]], {\_, \_?NumericQ}, \infty],
      {i, Nureas}, {j, Nreps[[i]]}];
  SpecDataSize = Table[Length[RawSpecDataF[[i, 1]]], {i, Nureas}];
  SpecData = Table[Flatten[
       {RawSpecDataF[[i, 1, k, 1]], Table[RawSpecDataF[[i, j, k, 2]], {j, Nreps[[i]]}]}],
      {i, Nureas}, {k, SpecDataSize[[i]]}];
  NdatSpec = Table[Length[SpecData[[i]]], {i, Nureas}];
  NrepsSpec =
     Table[Length[Select[SpecData[[i, NdatSpec[[i]]]], # # 0 &]] - 1, {i, Nureas}];
  SpecDataRep = Table[{SpecData[[i, j, 1]], SpecData[[i, j, k+1]]},
      {i, Nureas}, {k, Nreps[[i]]}, {j, NdatSpec[[i]]}];
  Specall1 = Flatten[Table[Flatten[{k, DTNBconc, UreaConc[[i]], SpecDataRep[[i, k, j]]}],
       {i, Nureas}, {k, Nreps[i]]}, {j, NdatSpec[[i]]}], 1];
3D Plot of the imported Spec Data
  ListPointPlot3D[Specall1[[All, All, 3;; 5]],
   PlotRange \rightarrow \{\{0, 5\}, \{0, 1800\}, \{0, 0.14\}\},\
   AxesLabel → {Urea - M , Time - sec , Absorbance - AU},
   PlotStyle -> {Red, Brown, LightBlue, Gray, Pink, Cyan, Magenta, Yellow,
      Green, Orange, Purple, Lighter[Purple, 0.5], Lighter[Pink, 0.5],
     Lighter[Blue, 0.5], Lighter[Black, 0.75], Lighter[Brown, 0.3]}]
```




## Addition of time lag into the imported SpecData

```
tLag = 15;
NtransientsSpec = Total[NrepsSpec];
NrowsSpec = Table[Length[Specall1[[i]]], {i, NtransientsSpec}];
SpecFinal = Table[
   Flatten[{Specall1[[i, j, 1;; 3]], Specall1[[i, j, 4]] + tLag, Specall1[[i, j, 5]]}],
   {i, NtransientsSpec}, {j, NrowsSpec[[i]]}];
SwatchLabelsSpec = Table["DTNB=" <> ToString[Specall1[[i, 1, 2]]] <>
    "uM,Urea=" <> ToString[Specall1[[i, 1, 3]]] <> "M, Rep.No. " <>
    ToString[Specall1[[i, 1, 1]]], {i, NtransientsSpec}];
```

## Plot of the edited SpecData

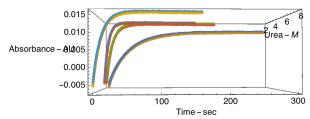
```
ListPlot[SpecFinal[[All, All, 4;; 5]], PlotRange \rightarrow {0, Automatic},
 PlotLegends → SwatchLegend[SwatchLabelsSpec],
 AxesLabel \rightarrow {Time - sec , Absorbance - AU},
 PlotStyle → {Red, Brown, LightBlue, Gray, Pink, Cyan, Magenta, Yellow,
   Green, Orange, Purple, Lighter[Purple, 0.5], Lighter[Pink, 0.5],
   Lighter[Blue, 0.5], Lighter[Black, 0.75], Lighter[Brown, 0.3]}]
```



# Create a fittable dataset for the SpecData & Plot it -' FittableDataSpec'

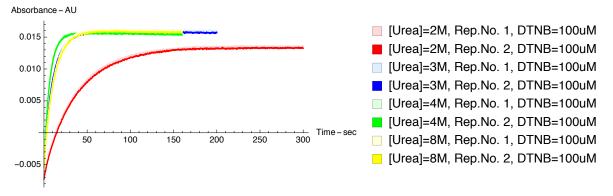
```
NtransientsSpecall = Length[Specall1];
NdatSpecall = Table[Length[Specall1[[i]]], {i, NtransientsSpecall}];
FittableDataSpec = Flatten[Table[SpecFinal[[i, j, 2;; 5]],
     {i, 1, NtransientsSpecall}, {j, NdatSpecall[[i]]}], 1];
ListPlot[FittableDataSpec[[All, 3 ;; 4]], AxesLabel → {Time - sec , Absorbance - AU}]
Absorbance - AU
 0.12
 0.10
 0.08
 0.06
 0.04
 0.02
                                              Time - sec
                                    1500
              500
                         1000
```

# Stop Flow Data


# Importing SF Data at various [Urea] & [DTNB] i n .csv format

```
I. Importing SF Data from 100 uM DTNB:
```

```
FilePath = "/Users/riddhishah/Google
    Drive/Riddhi's Stuff/Final Data Collection/Data/III3C_110513/";
ProteinConc = "10uM";
ProteinName = "III3C";
DTNBconc1 = 100;
UreaConcSF1 = {2, 3, 4, 8};
NureasSF1 = Length[UreaConcSF1];
Filenames =
  Table[FilePath <> ProteinConc <> ProteinName <> "_" <> ToString[DTNBconc1] <>
    "uMDTNB_" <> ToString[UreaConcSF1[[i]]] <> "M.csv", {i, NureasSF1}];
SFData = Table[Drop[Drop[Import[Filenames[[i]], "Data"], 29], -4], {i, NureasSF1}];
NdatSF = Table[Length[SFData[[i]]], {i, NureasSF1}];
NrepsSF =
  Table[Length[Select[SFData[[i, NdatSF[[i]]]], # # 0 &]] - 1, {i, NureasSF1}];
SFDataRep = Table[{SFData[[i, j, 1]], SFData[[i, j, k + 1]]},
   {i, NureasSF1}, {k, NrepsSF[[i]]}, {j, NdatSF[[i]]}];
SFall1 = Flatten[Table[Flatten[{k, DTNBconc1, UreaConcSF1[[i]], SFDataRep[[i, k, j]]}],
    {i, NureasSF1}, {k, NrepsSF[[i]]}, {j, NdatSF[[i]]}], 1];
NtransientsSF = Total[NrepsSF];
NrowsSF = Table[Length[SFall1[[i]]], {i, NtransientsSF}];
```

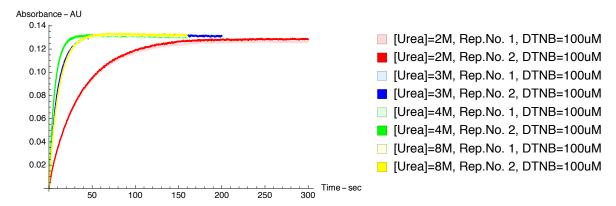

## 3D Plot of the imported 100uM DTNB SF Data

## ListPointPlot3D[SFall1[[All, All, 3;; 5]], PlotRange → Full, AxesLabel → {Urea - M , Time - sec , Absorbance - AU}]



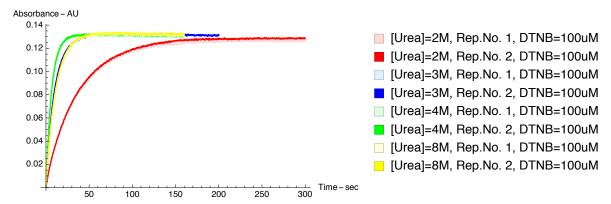
#### 2D Plot of the imported 100uM DTNB SF Data

```
SwatchLabels = Table["[Urea] = " <> ToString[SFall1[[i, 1, 3]]] <>
     "M, Rep.No. " <> ToString[SFall1[[i, 1, 1]]] <> ", DTNB=" <>
     ToString[SFall1[[i, 1, 2]]] <> "uM", {i, NtransientsSF}];
ListPlot[SFall1[[All, All, 4;; 5]], PlotRange → Full,
  PlotLegends \rightarrow SwatchLegend[SwatchLabels], AxesLabel \rightarrow \{ Time - sec , Absorbance - AU \}, 
 PlotStyle → {LightRed, Red, LightBlue, Blue, LightGreen, Green, LightYellow, Yellow}]
```




#### Ensuring that all SF Data for 100uM DTNB starts at time = 0

```
SFfinal1 =
  Table[Flatten[{SFall1[[i, j, 1;; 4]], 6.25 (SFall1[[i, j, 5]] - SFall1[[i, 1, 5]])}],
   {i, NtransientsSF}, {j, NrowsSF[[i]]}];
```

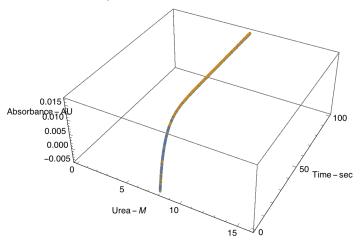

#### Plot of edited SF Data for 100uM DTNB

```
ListPlot[SFfinal1[[All, All, 4;; 5]], PlotRange → Automatic,
 PlotLegends → SwatchLegend[SwatchLabels], AxesLabel → {Time - sec , Absorbance - AU},
 PlotStyle → {LightRed, Red, LightBlue, Blue, LightGreen, Green, LightYellow, Yellow}]
```



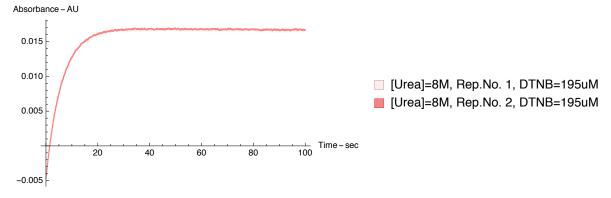
ListPlot::prng: Value of option PlotRange -> {Automatic} is not All,

Full, Automatic, a positive machine number, or an appropriate list of range specifications. >>




#### 2. Importing SF Data from 195 uM DTNB:

```
(*Import data from stopped flow*)
FilePath = "/Users/riddhishah/Google
    Drive/Riddhi's Stuff/Final Data Collection/Data/III3C_110513/";
ProteinConc = "10uM";
ProteinName = "III3C";
DTNBconc2 = 195;
UreaConcSF2 = {8};
NureasSF2 = Length[UreaConcSF2];
Filenames =
  Table[FilePath <> ProteinConc <> ProteinName <> "_ " <> ToString[DTNBconc2] <>
    "uMDTNB_" <> ToString[UreaConcSF2[[i]]] <> "M.csv", {i, NureasSF2}];
SFData2 = Table[Drop[Drop[Import[Filenames[[i]], "Data"], 29], -4], {i, NureasSF2}];
NdatSF2 = Table[Length[SFData2[[i]]], {i, NureasSF2}];
NrepsSF2 =
  Table [Length [Select [SFData2 [[i, NdatSF2 [[i]]]], # # 0 &]] - 1, {i, NureasSF2}];
SFDataRep2 = Table[{SFData2[[i, j, 1]], SFData2[[i, j, k + 1]]},
   {i, NureasSF2}, {k, NrepsSF2[[i]]}, {j, NdatSF2[[i]]}];
SFall2 = Flatten[Table[Flatten[{k, DTNBconc2, UreaConcSF2[[i]], SFDataRep2[
        i, k, j]]}], {i, NureasSF2}, {k, NrepsSF2[[i]]}, {j, NdatSF2[[i]]}], 1];
NtransientsSF2 = Total[NrepsSF2];
NrowsSF2 = Table[Length[SFall2[[i]]], {i, NtransientsSF2}];
```

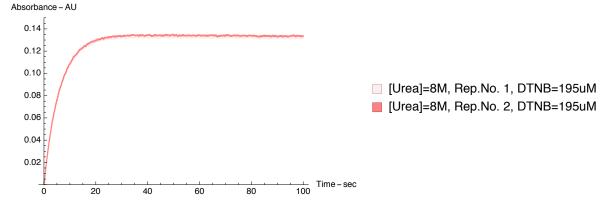

#### 3D Plot of the imported 195uM DTNB SF Data

 $\label{listPointPlot3D[SFall2[All, All, 3;; 5]], PlotRange $\rightarrow$ Full, $$$ AxesLabel → {Urea - M , Time - sec , Absorbance - AU}]



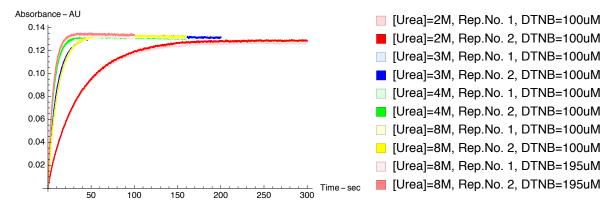
## 2D Plot of the imported 195uM DTNB SF Data

```
SwatchLabels2 = Table["[Urea] = " <> ToString[SFall2[[i, 1, 3]]] <>
     "M, Rep.No. " <> ToString[SFall2[[i, 1, 1]]] <> ", DTNB=" <>
     ToString[SFall2[[i, 1, 2]]] <> "uM", {i, NtransientsSF2}];
ListPlot[SFall2[[All, All, 4;; 5]], PlotRange \rightarrow Full,
 PlotLegends → SwatchLegend[SwatchLabels2],
 AxesLabel -> {Time - sec , Absorbance - AU} , PlotStyle → {LightPink, Pink}]
```



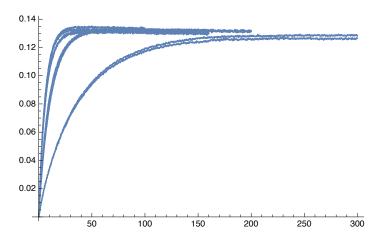

#### Ensuring that all SF Data for 195uM DTNB starts at time = 0

```
SFfinal2 =
  Table [Flatten [{SFall2[[i, j, 1;; 4]], 6.25 (SFall2[[i, j, 5]] - SFall2[[i, 1, 5]])}],
   {i, NtransientsSF2}, {j, NrowsSF2[[i]]}];
```


#### Plot of edited SF Data for 390uM DTNB

```
ListPlot[SFfinal2[[All, All, 4;; 5]],
 PlotRange \rightarrow \{0, 0.15\}, PlotLegends \rightarrow SwatchLegend[SwatchLabels2],
 PlotStyle → {LightPink, Pink}, AxesLabel → {Time - sec , Absorbance - AU}]
```

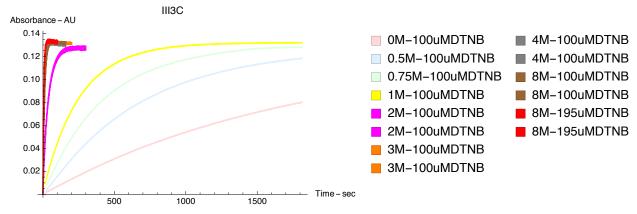



#### Combine and Plot all SFData - 'SFAllData'

```
SFAllData = Join[SFfinal1, SFfinal2];
NdatSFAllData = Length[SFAllData];
SwatchLabelsall = Table["[Urea] = " <> ToString[SFAllData[[i, 1, 3]]] <>
    "M, Rep.No. " <> ToString[SFAllData[[i, 1, 1]]] <> ", DTNB=" <>
    ToString[SFAllData[[i, 1, 2]]] <> "uM", {i, NdatSFAllData}];
ListPlot[SFAllData[[All, All, 4;; 5]], PlotRange → Full,
 PlotLegends → SwatchLegend[SwatchLabelsall],
 PlotStyle → {LightRed, Red, LightBlue, Blue, LightGreen, Green, LightYellow,
   Yellow, LightPink, Pink}, AxesLabel → {Time - sec, Absorbance - AU}]
```

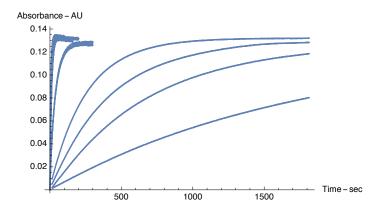


# Create a fittable dataset for SFData & Plot it - 'FittableDataSF'


```
Ntransients = Length[SFAllData];
NdatAll = Table[Length[SFAllData[[i]]], {i, Ntransients}];
FittableDataSF =
  Flatten[Table[SFAllData[[i, j, 2;; 5]], {i, Ntransients}, {j, NdatAll[[i]]}], 1];
ListPlot[FittableDataSF[[All, 3;; 4]]]
```



# Data fitting


## Combine Spec & SF Data:

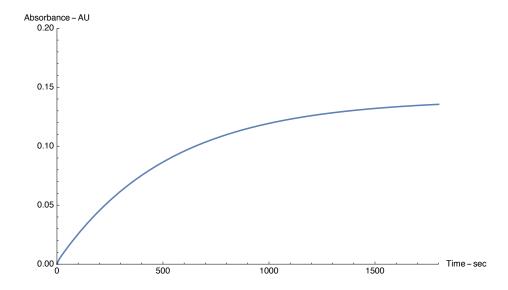
```
AllData = Join[SpecFinal, SFAllData];
NtransientsAll = Length[AllData];
NdatAllData = Length[AllData];
LabelsAllData = Table[ToString[AllData[[i, 1, 3]]] <> "M-" <>
    ToString[AllData[[i, 1, 2]]] <> "uM" <> "DTNB", {i, NdatAllData}];
III3Cplot = ListPlot[AllData[[All, All, 4;; 5]],
  AxesLabel → {Time - sec , Absorbance - AU}, PlotLabel → "III3C",
  PlotStyle → {LightRed, LightBlue, LightGreen, Yellow, Magenta,
    Magenta, Orange, Orange, Gray, Gray, Brown, Brown, Red, Red },
  PlotLegends → SwatchLegend[LabelsAllData]]
```



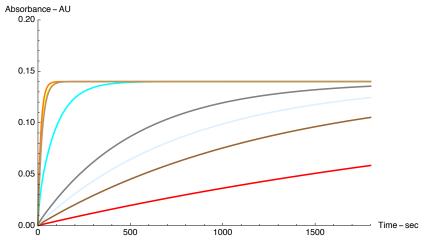
# Create a fittable dataset for Spec & SF Data - ' AllFittableData':

```
AllFittableData = Join[FittableDataSF, FittableDataSpec];
```




Export["AllfittableDAta3C.csv", AllFittableData, "Data"];

## Model for fitting the data:


```
Signal[Rconc_, Uconc_, t_] := Module[{kop, kcl, kchem},
  kop = Exp[Log[kop0] + mop * Uconc];
  kcl = Exp[Log[kcl0] + mcl * Uconc];
  kchem = Exp[Log[kchem0] - 0.1 * Uconc];
                 - kop
                 kop - kcl - kchem * Rconc * 10<sup>-6</sup> 0 ;
  RateMatrix =
  λvector = Eigenvalues[RateMatrix];
  Bmatrix = Transpose[Eigenvectors[RateMatrix]];
  InvBmatrix = Inverse[Bmatrix];
  ExpΛmatrix = DiagonalMatrix[Exp[\(\lambda\)vector t]];
  Keq = kop / kcl;
  P0 = \{1 / (1 + Keq), Keq / (1 + Keq), 0\};
  P = Bmatrix .ExpAmatrix .InvBmatrix.P0;
  P[[3]] AbsMax
```

Simulate fit of 'Combined SF & Spec Data to obtain the initial kop, kcl, mop, mcl, kchem & AbsMax values.

```
kop0 = 0.0009;
kc10 = 0.2;
mcl = -0.9;
mop = 1.4;
kchem0 = 1000;
AbsMax = 14\,000 \times 10^{-5};
Plot[Signal[100, 1, t], {t, 0, 1800},
  PlotRange \rightarrow \{\{0,\ 1800\},\ \{0,\ 0.2\}\},\ AxesLabel \rightarrow \{Time\ -sec\ ,\ Absorbance\ -\ AU\}]
```



```
Plot[{Signal[100, 0, t], Signal[100, 0.5, t], Signal[100, 0.75, t], Signal[100, 1, t],
  Signal[100, 2, t], Signal[100, 3, t], Signal[100, 4, t], Signal[100, 8, t]},
 \{t, 0, 1800\}, PlotRange \rightarrow \{\{0, 1800\}, \{0, 0.2\}\},\
 AxesLabel \rightarrow \{Time - sec, Absorbance - AU\},\
 PlotStyle → {Red, Brown, LightBlue, Gray, Cyan, Yellow, Orange, Lighter[Brown, 0.3]}]
```



Global fitting of the data to obtain the initial kop, kcl, mop, mcl, kchem & AbsMax values.

```
Unset[{kop0, kcl0, mcl, mop, kchem0, AbsMax, Rconc, Uconc, t}];
kop0init = 0.001;
kcl0init = 0.3;
mclinit = -1.00;
mopinit = 1.00;
kchem0init = 1000;
AbsMaxinit = 13\,000 \times 10^{-5};
Dynamic[{ev, st, kop0, kcl0, mcl, mop, kchem0, AbsMax}]
ev = 0; st = 0;
GlobalFit = NonlinearModelFit[AllFittableData, {Signal[Rconc, Uconc, t]
     (*,mcl<0&&mop>0&&kop0>0&&kcl0>0&&kchem>0)*)},
   {{kop0, kop0init}, {kcl0, kcl0init}, {mcl, mclinit}, {mop, mopinit},
     {kchem0, kchem0init}, {AbsMax, AbsMaxinit}}, {Rconc, Uconc, t},
   MaxIterations → 1000(*{Method→"NMinimize", Method->"SimulatedAnnealing"}*)];
```

# Parameter listing & analysis

Peek at best fit parameter values without doing error analysis

```
GlobalFit["BestFitParameters"]
\{ \texttt{kop0} \rightarrow \texttt{0.00189692} \texttt{,} \ \texttt{kcl0} \rightarrow \texttt{0.549814} \texttt{,} \ \texttt{mcl} \rightarrow -\texttt{0.779821} \texttt{,} \\
  mop \rightarrow 1.53215, kchem0 \rightarrow 2074.45, AbsMax \rightarrow 0.131449}
GlobalFit["ParameterConfidenceIntervalTable"]
```

Estimate standard error, t-statistic & P-values for each parameter (slow!)

```
Unset[{kop0, kcl0, mcl, mop, kchem0, AbsMax}];
GlobalFit["ParameterTable"]
```

Compute parameter correlation coefficients (slow!) Magnitudes  $> \pm 0.9$  indicate pairs parameters for whom changing one parameter value can be compensated for by a change in the other, with no reduction in goodness of fit. In other words, the values of both parameters are poorly determined, regardless of their estimated standard errors.

```
Unset[{kop0, kcl0, mcl, mop, kchem0, AbsMax}];
TableForm[Round[GlobalFit["CorrelationMatrix"], 0.01],
 TableHeadings \rightarrow {{"kop0", "kcl0", "mcl", "mop", "kchem0", "AbsMax"},
   {"kop0", "kcl0", "mcl", "mop", "kchem0", "AbsMax"}}]
```

|        | kop0  | kcl0  | mcl             | mop   | kchem0 | AbsMax |
|--------|-------|-------|-----------------|-------|--------|--------|
| kop0   | 1.    | 1.    | - 0 <b>.</b> 79 | -0.86 | 0.07   | -0.08  |
| kcl0   | 1.    | 1.    | -0.79           | -0.85 | 0.12   | -0.09  |
| mcl    | -0.79 | -0.79 | 1.              | 0.99  | 0.1    | -0.02  |
| mop    | -0.86 | -0.85 | 0.99            | 1.    | 0.06   | -0.02  |
| kchem0 | 0.07  | 0.12  | 0.1             | 0.06  | 1.     | -0.32  |
| AbsMax | -0.08 | -0.09 | -0.02           | -0.02 | -0.32  | 1.     |

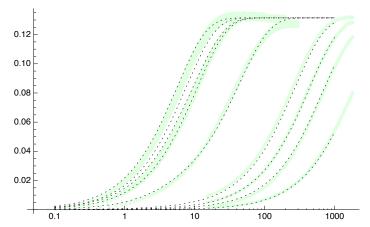
Determine the 'RSquared' value for the globalfit. The closer the result is to one the better the fit.

```
Unset[{kop0, kcl0, mcl, mop, kchem0, AbsMax}];
GlobalFit["RSquared"]
0.999776
```

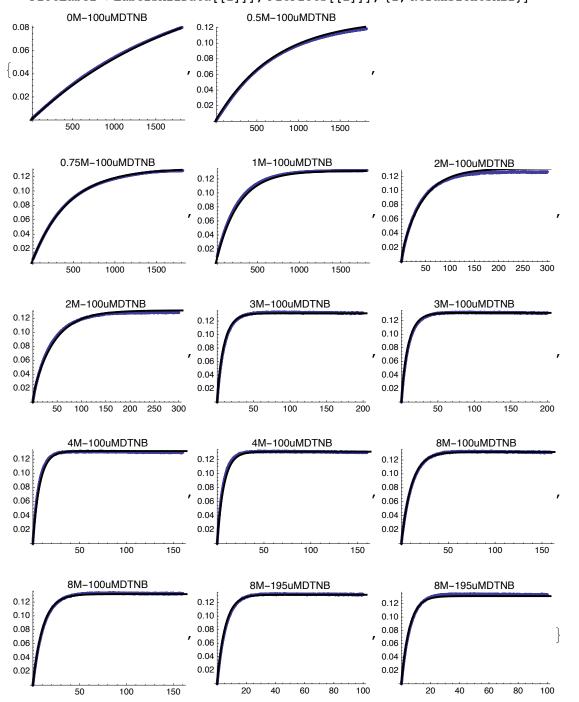
Determine the 'BIC' value for the fits. This parameter checks the model. It punishes you for added parameters in the model.

```
Unset[{kop0, kcl0, mcl, mop, kchem0, AbsMax}];
GlobalFit["BIC"]
-268017.
```

Apply best fit parameter values to each parameter variable so that they can be used for further analysis


```
kop0 = GlobalFit["BestFitParameters"][[1, 2]];
kcl0 = GlobalFit["BestFitParameters"][[2, 2]];
mcl = GlobalFit["BestFitParameters"][[3, 2]];
mop = GlobalFit["BestFitParameters"][[4, 2]];
kchem0 = GlobalFit["BestFitParameters"][[5, 2]];
AbsMax = GlobalFit["BestFitParameters"][[6, 2]];
```

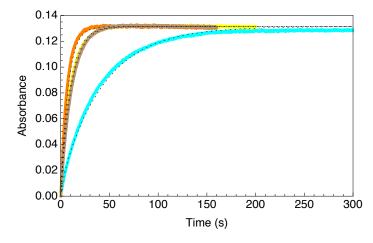
# Plot data and fitted Signal(t) transients to visualize goodness of fit


```
FitPlot = Table[
    LogLinearPlot[Signal[AllData[[i, 1, 2]], AllData[[i, 1, 3]], t], {t, 0.001, 1800},
      PlotStyle → {Black, Thick}, PlotRange → Full], {i, NtransientsAll}];
Table[Show[ListLogLinearPlot[AllData[[i, All, 4;; 5]],
     {\tt PlotLabel} \rightarrow {\tt LabelsAllData[[i]], PlotRange} \rightarrow {\tt Full, PlotStyle} \rightarrow \{{\tt Red, Thick}\}],
   FitPlot[[i]]], {i, NtransientsAll}]
           0M-100uMDTNB
                                              0.5M-100uMDTNB
 0.08
                                     0.12
                                      0.10
 0.06
                                     0.08
0.04
                                     0.06
                                     0.04
 0.02
                                     0.02
      20
           50 100 200 500 1000 2000
                                          20
                                               50 100 200 500 1000 2000
                                                                                     2M-100uMDTNB
          0.75M-100uMDTNB
                                                1M-100uMDTNB
                                                                          0.12
 0.12
                                     0.12
 0.10
                                                                          0.10
                                      0.10
                                                                          0.08
 0.08
                                      0.08
 0.06
                                     0.06
                                                                          0.06
 0.04
                                     0.04
                                                                          0.04
                                      0.02
 0.02
                                                                          0.02
                                          20
           50 100 200
                        500 1000 2000
                                                50 100 200
                                                            500 1000 2000
                                                                                 0.5 1.0
                                                                                                   50.000.0
                                                                                     3M-100uMDTNB
            2M-100uMDTNB
                                                3M-100uMDTNB
 0.12
                                      0.12
                                                                          0.12
 0.10
                                     0.10
                                                                          0.10
 0.08
                                     0.08
                                                                          0.08
 0.06
                                     0.06
                                                                          0.06
 0.04
                                     0.04
                                                                          0.04
 0.02
                                      0.02
                                                                          0.02
                          50.000.0
                                                                50.000.0
                                                                                            5.010.0
                                                                                                    50.000.0
         0.5 1.0
                  5.010.0
                                              0.5 1.0
                                                       5.010.0
                                                                                   0.51.0
            4M-100uMDTNB
                                                4M-100uMDTNB
                                                                                     8M-100uMDTNB
 0.12
                                      0.12
                                                                          0.12
 0.10
                                      0.10
                                                                          0.10
 0.08
                                     0.08
                                                                          0.08
                                     0.06
 0.06
                                                                          0.06
 0.04
                                     0.04
                                                                          0.04
 0.02
                                      0.02
                                                                          0.02
                    5.010.0
                            50.000.0
                                                        5.010.0
                                                                50.000.0
                                                                                            5.010.0
                                                                                                     50.000.0
           0.51.0
                                               0.5 1.0
                                                                                    0.5 1.0
            8M-100uMDTNB
                                                8M-195uMDTNB
                                                                                    8M-195uMDTNB
 0.12
                                      0.12
                                                                          0.12
 0.10
                                      0.10
                                                                          0.10
 0.08
                                      0.08
                                                                          0.08
                                     0.06
 0.06
                                                                          0.06
                                     0.04
                                                                          0.04
 0.04
                                      0.02
                                                                          0.02
 0.02
                                                 0.51.0
                                                         5.010.0
                                                                 50.000.0
                                                                                     0.51.0
                                                                                              5.010.0
                                                                                                     50.000.0
           0.51.0
                    5.010.0
                            50.000.0
```

```
FitPlot =
```

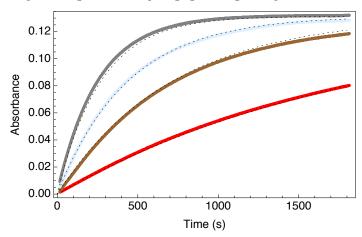
```
LogLinearPlot[{Table[Signal[100, Uconc, t], {Uconc, {0, 0.5, 0.75, 1, 2, 3, 4, 8}}],
    Signal[195, 8, t]}, \{t, .1, 1000\}, PlotStyle \rightarrow \{\{Dotted, Black\}\}\};
DataPlot = ListLogLinearPlot[AllFittableData[[All, 3;; 4]],
   PlotRange → All, PlotStyle → {{LightGreen}}];
Show[DataPlot, FitPlot]
```



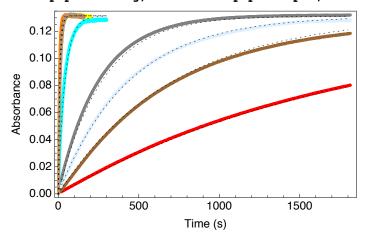

FitPlots = Table[Plot[Signal[AllData[[i, 1, 2]], AllData[[i, 1, 3]], t], {t, 0, 1800}, PlotStyle → {Black, Thick}, PlotRange → Full], {i, NtransientsAll}];  $Table[Show[ListPlot[AllData[[i, All, 4;; 5]], PlotRange \rightarrow \{Automatic\}, Allower = \{Automatic, Allower = \{A$  $\label{loss} \begin{center} PlotLabel \rightarrow LabelsAllData[[i]]], FitPlots[[i]]], \{i, NtransientsAll\}] \end{center}$ 



## Figure for research paper


```
Forpaper3CFig8SF1 = Drop[SFAllData, {1, 6, 2}];
Forpaper3CFig8SF = Drop[Forpaper3CFig8SF1, -3];
Forpaper3CSF = Forpaper3CFig8SF;
NdatForpaper3CSF = Length[Forpaper3CSF];
SwatchLabelsForpaper3CSF =
  Table[ToString[Forpaper3CSF[[i, 1, 3]]] <> "M ", {i, 4}];
Forpaper3CSFfig = ListPlot [Forpaper3CSF[[1;; 4, All, 4;; 5]],
   PlotRange \rightarrow \{\{0, 300\}, \{0, 0.14\}\}, (*PlotLegends \rightarrow Placed[SwatchLegend[National Placed]]\}
       SwatchLabelsForpaper3CSF, LegendLayout\rightarrow"Row"], {\{0.4,-0.2\}, \{0.4,-0.2\}}], *)
   PlotStyle → {Cyan, Yellow, Orange, Lighter[Brown, 0.3], Lighter[Purple, 0.5],
      Lighter[Blue, 0.5], Lighter[Brown, 0.3], Red, Blue, Yellow},
   AxesLabel → {Time - sec , Absorbance - AU} , Frame → True,
   FrameLabel → {"Time (s)", "Absorbance"(*,"FNIII 3C Stopflow data "*)},
   LabelStyle \rightarrow { (FontFamily \rightarrow "Arial"), 12},
   FrameTicks → {Automatic, Automatic, None, None}];
FitPlotsForpaper3CSF = Plot[{Signal[Forpaper3CSF[[1, 1, 2]], Forpaper3CSF[[1, 1, 3]],
      t], Signal[Forpaper3CSF[[2, 1, 2]], Forpaper3CSF[[2, 1, 3]], t],
     Signal[Forpaper3CSF[[3, 1, 2]], Forpaper3CSF[[3, 1, 3]], t],
     Signal[Forpaper3CSF[[4, 1, 2]], Forpaper3CSF[[4, 1, 3]], t]}, {t, 0, 300},
   PlotStyle → {{Dotted, Black}}(*,{Dashing[Large],Black},{Dashed,Black},
     {Dashing[Tiny],Black},{DotDashed,Black},{Dashing[{Large}],Black},
     {Dashing[{Small,Large}],Black}}*), PlotRange → Full(*,PlotLegends→
     Placed[LineLegend[{"Fit"}, LegendLayout \rightarrow "Row"], {{0.88,0.01}, {0.4,0.01}}]*)];
```

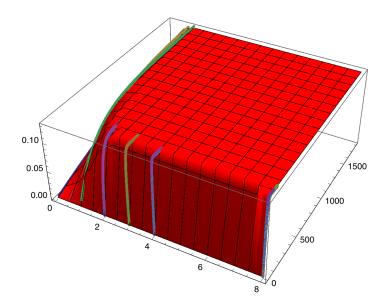
#### FigIII3CSF = Show[Forpaper3CSFfig, FitPlotsForpaper3CSF]




```
Forpaper3CSpec = SpecFinal;
NdatForpaper3CSpec = Length[Forpaper3CSpec];
 SwatchLabelsForpaper3CSpec =
              Table[ToString[Forpaper3CSpec[[i, 1, 3]]] <> "M", {i, 4}];
For paper 3 C Spec \texttt{fig} = \texttt{ListPlot} \big[ \texttt{For paper 3 C Spec} \big[ \texttt{[1;; 4, All, 4;; 5]} \big], \, \texttt{PlotRange} \rightarrow \texttt{Full}, \, \texttt{PlotRange} \rightarrow \texttt{Full}, \, \texttt{PlotRange} \rightarrow \texttt{Full}, \, \texttt{PlotRange} \rightarrow \texttt{Pull}, \, \texttt{PlotRange} \rightarrow \texttt{PlotRange} \rightarrow \texttt{Pull}, \, \texttt{PlotRange} \rightarrow \texttt{Pull}, \, \texttt{PlotRange} \rightarrow \texttt{Pull}, \, \texttt{PlotRange} \rightarrow \texttt{PlotRange} \rightarrow \texttt{Pull}, \, \texttt{PlotRange} \rightarrow \texttt{Pull}, \, \texttt{PlotRange} \rightarrow \texttt{Pull}, \, \texttt{PlotRange} \rightarrow \texttt{PlotRange} \rightarrow \texttt{Pull}, \, \texttt{PlotRange} \rightarrow \texttt{
                       (*PlotLegends→Placed[SwatchLegend[SwatchLabelsForpaper2CSpec,
                                         LegendLayout\rightarrow"Row"], {\{0.8, -0.15\}, \{0.8, -0.15\}\}], *)
                     PlotStyle → {Red, Brown, LightBlue, Gray, Pink, Cyan, Magenta, Yellow,
                                   Green, Orange, Purple, Lighter[Purple, 0.5], Lighter[Pink, 0.5],
                                 Lighter[Blue, 0.5], Lighter[Black, 0.75], Lighter[Brown, 0.3]},
                    AxesLabel → {Time - sec , Absorbance - AU} , Frame → True ,
                     FrameLabel → {"Time (s)", "Absorbance"(*, "FNIII 3C Spectrophotometer data"*)},
                    LabelStyle \rightarrow { (FontFamily \rightarrow "Arial"), 12},
                     FrameTicks → {Automatic, Automatic, None, None}];
FitPlotsForpaper3CSpec = Plot[
                      \{Signal[Forpaper3CSpec[[1, 1, 2]], Forpaper3CSpec[[1, 1, 3]], t],\\
                            Signal[Forpaper3CSpec[[2, 1, 2]], Forpaper3CSpec[[2, 1, 3]], t],
                            Signal[Forpaper3CSpec[[3, 1, 2]], Forpaper3CSpec[[3, 1, 3]], t],
                            Signal[Forpaper3CSpec[[4, 1, 2]], Forpaper3CSpec[[4, 1, 3]], t]}, {t, 0, 1800},
                     PlotStyle → {{Dotted, Black}}(*,{Dashing[Large],Black},{Dashed,Black},
                            {Dashing[Tiny],Black},{DotDashed,Black},{Dashing[{Large}],Black},
                            \{ \texttt{Dashing} \, [\, \{\texttt{Small} \, , \texttt{Large} \} \, ] \, \, , \, \texttt{Black} \, \} \, *) \, \, , \, \, \texttt{PlotRange} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{Full} \, (\, * \, , \texttt{PlotLegends} \, \rightarrow \, \texttt{PlotLegends} \, ) \, )
                            Placed[LineLegend[{"Fit"}, LegendLayout \rightarrow "Row"], {{0.3,-0.25}, {1,-0.25}}]*)];
```

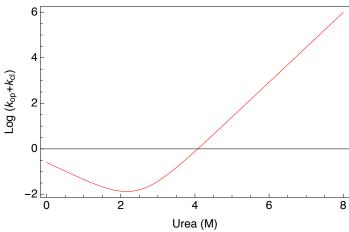
#### FigIII3CSpec = Show[Forpaper3CSpecfig, FitPlotsForpaper3CSpec]




## FigforpaperIII3CAll = Show[Forpaper3CSpecfig, Forpaper3CSFfig, FitPlotsForpaper3CSpec, FitPlotsForpaper3CSF]



```
FigIII3Clegends = LineLegend [{Directive[Red, Thick],
   Directive[Brown, Thick], Directive[LightBlue, Thick], Directive[Gray, Thick],
   Directive[Cyan, Thick], Directive[Yellow, Thick], Directive[Orange, Thick],
   Directive[Lighter[Brown, 0.3], Thick], Directive[Orange, Thick],
   Directive[Lighter[Purple, 0.5], Thick], Directive[Lighter[Blue, 0.5], Thick],
   Directive[Lighter[Brown, 0.3], Thick], {Dotted, Black}},
  {SwatchLabelsForpaper3CSpec[[1]], SwatchLabelsForpaper3CSpec[[2]],
   SwatchLabelsForpaper3CSpec[[3]], SwatchLabelsForpaper3CSpec[[4]],
   SwatchLabelsForpaper3CSF[[1]], SwatchLabelsForpaper3CSF[[2]],
   SwatchLabelsForpaper3CSF[[3]], SwatchLabelsForpaper3CSF[[4]]},
  LegendLayout \rightarrow "Row", LabelStyle \rightarrow { (FontFamily \rightarrow "Arial"), 12}
  ─ 0M ── 0.5M ── 0.75M ── 1M
    2M — 3M — 4M — 8M
```


## Plot data & fits in three dimensions (Signal vs. [urea] & t)

```
tMax = 1800;
FitPlots = Plot3D[Signal[100, i, t],
    \{i, 0, 8\}, \{t, 0, tMax\}, PlotStyle \rightarrow Red, PlotRange \rightarrow Full];
DataPlots = ListPointPlot3D[AllData[[All, All, 3;; 5]]];
Show[FitPlots, DataPlots]
```



# Plot simulated chevron plot (ln(kop + kcl) vs. [urea])

```
kop[Uconc_] := Exp[Log[kop0] + mop * Uconc];
kcl[Uconc_] := Exp[Log[kcl0] + mcl * Uconc];
kchem[Uconc_] := Exp[Log[kchem0] - 0.1 * Uconc]
III3CChevronPlot = Plot[Log[kop[Uconc] + kcl[Uconc]], {Uconc, 0, 8},
    \label{eq:frame_problem} \texttt{Frame} \rightarrow \texttt{True} \text{, } \texttt{FrameLabel} \rightarrow \{ \texttt{"Urea} \text{ (M)", "Log } (k_{op} + k_{c1}) \text{", None} \} \text{,}
   LabelStyle \rightarrow { (FontFamily \rightarrow "Arial"), 12},
    \texttt{FrameTicks} \rightarrow \{\texttt{Automatic}, \, \texttt{Automatic}, \, \texttt{None}, \, \texttt{None}\}, \, \texttt{PlotStyle} \rightarrow \, \texttt{Red}, \, \texttt{PlotRange} \rightarrow \, \texttt{All} \, \big]
```



# Compute $\beta_T$

$$\beta_{T} = mcl / (mcl - mop)$$
0.337298

# Compute meq

$$meq = .6 (mcl - mop)$$

```
-1.38718
```

```
Compute K_{eq(cl)}at [urea] = 0
```

```
Keq = kcl0 / kop0
289.845
```

# Compute $K_{eq(op)}$ at [urea] = 0

```
Keqop = kop0 / kcl0
```

0.00345012

# Compute C<sup>1/2</sup>

```
Log[Keqop] / (mcl - mop)
2.45218
```

# Compute $\Delta G_{op}$ at [urea] = 0

```
DeltaGop = .6 Log[kcl0 / kop0]
3.40161
```

# Compute number of residues exposed in TS for opening

```
meq = 374 + .11 ASA;
ASA = -907 + 93 Nres;
ResidueNo = Solve[meq == -1.38, Nres]
\{\{\mathtt{Nres} \rightarrow -26.9413\}\}
```

# Compute folded/closed state lifetime (in seconds)

```
Closedlifetime = 1 / kop0
```

527.17

# Compute folded/closed state halflifetime (in seconds)

```
Closedhalflifetime = 0.693 / kop0
365.329
```

# Compute open state lifetime (in seconds)

```
Openlifetime = 1 / kcl0
```

1.8188

# Compute open state halflifetime (in seconds)

# Openhalflifetime = 0.693 / kcl0

1.26043

# Error propogation in computed parameters

|         | . •                        |                 |             |                                     |
|---------|----------------------------|-----------------|-------------|-------------------------------------|
|         | Estimate                   | Standard Error  | t-Statistic | P-Value                             |
| kop0    | 0.00189692                 | 0.000024229     | 78.2914     | $5.2202203229 \times 10^{-1203}$    |
| kcl0    | 0.549814                   | 0.0101957       | 53.9261     |                                     |
| mcl     | -0.779821                  |                 |             | 2.2847892514 × 10 <sup>-1291</sup>  |
| mop     | 1.53215                    | 0.00660216      |             | $4.6959320602 \times 10^{-6452}$    |
| kchem0  | 2074.45                    | 2.24013         |             | $1.3967447643 \times 10^{-20568}$   |
| AbsMax  | 0.131449                   | 0.0000140488    | 9356.57     | 4.8787523498 × 10 <sup>-47706</sup> |
| R1 = 1  | / x;                       |                 |             |                                     |
| R2 = 1  | /у;                        |                 |             |                                     |
| R3 = y  | / x;                       |                 |             |                                     |
| R4 = .6 | Log[y/                     | x];             |             |                                     |
| R5 = .6 | 5 (y-x);                   |                 |             |                                     |
| R6 = 0. | 693/x;                     |                 |             |                                     |
| R7 = 0. | 693/y;                     |                 |             |                                     |
| R8 = x  | /у;                        |                 |             |                                     |
|         | / (y - x);                 |                 |             |                                     |
| _       | c = 0.000                  |                 |             |                                     |
|         |                            | ,<br>1956967241 | 45418`      | •                                   |
| -       |                            | 6021590997      |             | •                                   |
|         |                            | 5758674752      |             |                                     |
| acrtav  | - 0.009                    | 2,300/4/52      | .55012      | ,                                   |
| Error   | closed = 8                 | Sqrt[Power      | [D[R1,      | x] * deltax, 2]]                    |
|         |                            |                 |             |                                     |
|         |                            |                 |             |                                     |
|         |                            |                 |             |                                     |
| 0.0000  | $024 \sqrt{\frac{1}{x^4}}$ |                 |             |                                     |
|         | $\bigvee x^4$              |                 |             |                                     |
|         | -1601                      | - A - G ( ) =   |             |                                     |
| ErrorH  | laliclose                  | ea = Sqrt[F     | ower[D      | [R6, x] * deltax                    |
|         | Г                          |                 |             |                                     |
| 0.0000  | 016632                     | <u>+</u>        |             |                                     |
|         |                            | $x^4$           |             |                                     |
|         |                            |                 |             | 1 4-11- 011                         |
| Error   | pen = Sq:                  | rt[Power[D      | )[R2, y     | ] * deltay, 2]]                     |
|         |                            | _               |             |                                     |
| 0.0101  | 957 $\frac{1}{}$           | _               |             |                                     |
| 3.0101  | $.957\sqrt{\frac{1}{y^4}}$ |                 |             |                                     |
|         | V 2                        |                 |             |                                     |
| ErrorF  | [alfOpen                   | = Sart [Pow     | er[D[R      | .7, y] * deltay, 2                  |
|         | == > <b>F</b>              |                 |             | , , ,                               |
|         |                            | 1               |             |                                     |
| 0.0070  | 06562                      | <del>-</del>    |             |                                     |
|         | √ Y                        | 7 <sup>4</sup>  |             |                                     |
|         | ٧                          |                 |             |                                     |

ErrorKeq = Sqrt[Power[D[R3, x] \* deltax, 2] + Power[D[R3, y] \* deltay, 2]]

$$\sqrt{\frac{0.000103952}{x^2} + \frac{5.76 \times 10^{-10} y^2}{x^4}}$$

ErrorKeqop = Sqrt[Power[D[R8, x] \* deltax, 2] + Power[D[R8, y] \* deltay, 2]]

$$\sqrt{\frac{0.000103952 x^2}{y^4} + \frac{5.76 \times 10^{-10}}{y^2}}$$

ErrordeltaG = Sqrt[Power[D[R4, x] \* deltax, 2] + Power[D[R4, y] \* deltay, 2]]

$$\sqrt{\frac{2.0736 \times 10^{-10}}{x^2} + \frac{0.0000374228}{y^2}}$$

Errormeq = Sqrt[Power[D[R5, x] \* deltax, 2] + Power[D[R5, y] \* deltay, 2]] 0.00611743

ErrorBT = Sqrt[Power[D[R9, x] \* deltax, 2] + Power[D[R9, y] \* deltay, 2]]

$$\sqrt{\left(\frac{5.76\times10^{-10}\;y^2}{\left(-x+y\right)^4}+0.000103952\;\left(-\frac{y}{\left(-x+y\right)^2}+\frac{1}{-x+y}\right)^2\right)}$$

1. Closed state lifetime (in seconds)

ErrorClosed = 0.000024 
$$\sqrt{\frac{1}{x^4}}$$

6.66979

2. Open state lifetime (in seconds)

ErrorOpen = 0.010195696724145418 
$$\sqrt{\frac{1}{y^4}}$$

0.0337276

3.  $K_{eq(cl)}$  at[urea] = 0

$$\sqrt{\left(\frac{0.0001039522316907496}{x^2} + \frac{5.76000000000001 \times ^-10 y^2}{x^4}\right)}$$
6.5067

4.  $\Delta G_{op}$  at[urea] = 0

$$\sqrt{\left(\frac{2.07359999999997^**^{-10}}{x^2} + \frac{0.000037422803408669855^*}{y^2}\right)}$$

0.0134693

5. meq

**Errormeq** 

0.00611743

6. Closed state halflife (in seconds)

ErrorHalfClosed = 0.000016632 
$$\sqrt{\frac{1}{x^4}}$$

4.62217

7. Open state halflife (in seconds)

ErrorHalfOpen = 0.007065617829832774 
$$\sqrt{\frac{1}{y^4}}$$

0.0233732

8.  $K_{eq(op)}$  at[urea] = 0

ErrorKeqop = 
$$\sqrt{\left(\frac{0.0001039522316907496^{x^2}}{y^4} + \frac{5.76000000000001^{x^2-10}}{y^2}\right)}$$

0.0000774512

9. β<sub>T</sub>

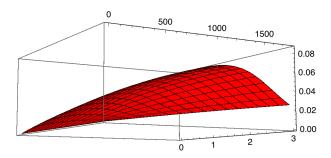
 $Error\beta_T =$ 

$$\sqrt{\left(\frac{5.76000000000001 \times ^{-}10 \text{ y}^{2}}{\left(-\text{x}+\text{y}\right)^{4}} + 0.0001039522316907496 \times \left(-\frac{\text{y}}{\left(-\text{x}+\text{y}\right)^{2}} + \frac{1}{-\text{x}+\text{y}}\right)^{2}\right)}$$

0.0000779885

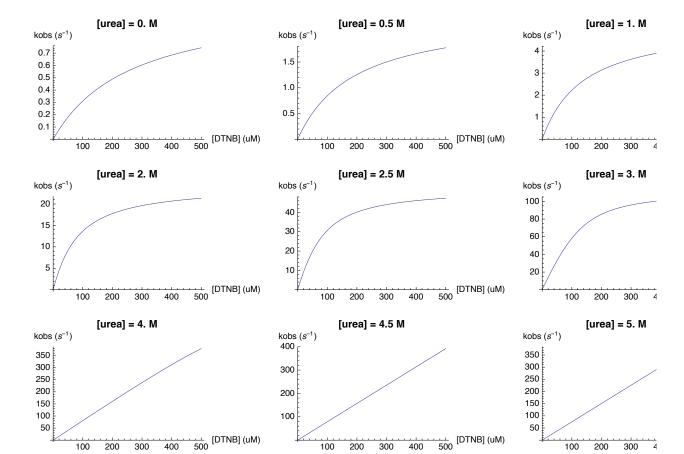
# Convert to output form & export as .pdf

## 1. Output form for all the parameters & associated statistics


```
Output3C = Grid[{{"Parameters at OM Urea", "Value", "Error"},
    \{"kop(s^{-1})", kop0, deltax\}, \{"kcl(s^{-1})", kcl0, deltay\},
    \{\verb"Closed state half-life(s)", Closedhalflifetime, ErrorHalfClosed\}\ ,
    {"Open state half-life(s)", Openhalflifetime, ErrorHalfOpen},
    \{"mcl", mcl, deltav\}, \{"mop", mop, deltau\}, \{"\Delta G_{op} (kcal/mol)", DeltaGop, \}
     \texttt{ErrorKeqop} \texttt{, \{"K_{eq\ (op)}\ ", Keqop, ErrorKeqop\}, \{"meq"\ \texttt{, meq, Errormeq}\},}
    \{"\beta_{\mathtt{T}}", \beta_{\mathtt{T}}, \mathtt{Error}\beta_{\mathtt{T}}\}, \{"\mathtt{Simulated Chevron Plot}", \mathtt{III3CChevronPlot}, ""\}\}
   Frame \rightarrow All, Alignment \rightarrow {Left}, Background \rightarrow
    {{None, None}(*{Gray,White,Gray,White,Gray,White,Gray,White}*)},
   ItemStyle → {{Automatic, Automatic, Automatic} (*{White, Automatic,
       White, Automatic, White, Automatic, White, Automatic, *)
      (*, \{\{4,2\}\rightarrow Blue, \{5,2\}\rightarrow Red\}*)\}, Spacings \rightarrow \{0.75, 1\}
```

| Parameters at OM Urea     | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Error        |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| $kop(s^{-1})$             | 0.00189692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000024     |  |
| kcl (s <sup>-1</sup> )    | 0.549814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0101957    |  |
| Closed state half-life(s) | 365.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.62217      |  |
| Open state half-life(s)   | 1.26043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0233732    |  |
| Mc1                       | -0.779821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00957587   |  |
| Mop                       | 1.53215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00660216   |  |
| △Gop (kcal/mol)           | 3.40161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0134693    |  |
| Keq (op)                  | 0.00345012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000774512 |  |
| meq                       | -1.38718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00611743   |  |
| $eta_{	exttt{T}}$         | 0.337298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000779885 |  |
| Simulated Chevron Plot    | Francisco (Roph-Kel) ( |              |  |

# Experimental simulation & design


Simulate transients as a function of [urea], with reagent concentration dependent on [urea]

```
Rconc[R_, UreaConc_] := R / 10<sup>UreaConc</sup>;
tMax = 1800;
Plot3D[Signal[Rconc[100, UreaConc], UreaConc, t],
 {UreaConc, 0, 3}, {t, 0, tMax}, PlotStyle → Red, PlotRange → Automatic]
```



# Simulate kobs vs. [R] curves at various [urea]

```
kobs[Rconc_, Uconc_] := Module[{kop, kcl, kchem},
   kop = Exp[Log[kop0] + mop * Uconc];
  kcl = Exp[Log[kcl0] + mcl * Uconc];
   kchem = Exp[Log[kchem0] - 0.1 * Uconc];
   Eigenvalues[RateMatrix]
kobsPlots = Table \left[ Plot \left[ -kobs \left[ 10^{-6} Rconc, Uconc \right] \right] \right] \left[ [2] \right] 600, \left\{ Rconc, 0, 500 \right\},
      PlotRange \rightarrow Full, AxesLabel \rightarrow \left\{ "[DTNB] (uM)", "kobs (s^{-1})" \right\}, 
     PlotLabel → Style["[urea] = "<> ToString[Uconc] <> " M",
        Bold, FontFamily → "Arial"] | (Uconc, 0, 5.5, 0.5) |;
k = 0;
GraphicsGrid[Table[k++;
   kobsPlots[[k]], \{i, 3\}, \{j, i, i+3\}], ImageSize \rightarrow 1000]
```



# Classification of kinetic regimes in diff Urea Conc

```
kop0 = kop0;
kc10 = kc10;
mop = mop;
mcl = mcl;
kop = Exp[Log[kop0] + mop * Uconc];
kcl = Exp[Log[kcl0] + mcl * Uconc];
kchem = Exp[Log[kchem0] - 0.1 * Uconc];
Uconc = DeleteDuplicates[Flatten[Join[UreaConc, UreaConcSF1]]]];
Rconc = 10^{-4};
kint = Rconc * kchem;
Regimes = Table \left[ If \left[ kcl \left[ \left[ i \right] \right] \ge 10 \left( kint \left[ \left[ i \right] \right] \right), "EX2", If \right] \right]
      10 (kcl[[i]]) \le kint[[i]], "EX1", "EXX", {i, Length[kcl]}], {i, Length[kcl]}];
Ureaconc = Flatten[{"Urea Conc(M)", Uconc}];
Regime = Flatten[{"Kinetic Regime", Regimes}];
(*EX2=kcl>>kint (10X>>1X)
EX1=kcl <<kint (1X <<10X)
EXX=Diff between kcl& kint<10X
EXX→EX1=EXX close to EX1
EXX→EX2=EXX close to EX2
Beyond E\.18X1:kobs=kint*)
OutputRegimes3C = Grid[{Table[Ureaconc[[i]], {i, Length[Ureaconc]}],
    Table[Regime[[i]], {i, Length[Ureaconc]}]}, Frame → All,
  Alignment → {Left}, Background → {{Gray, LightBlue, LightBlue,
      LightBlue, LightBlue, LightBlue, LightBlue, LightBlue, LightGreen}},
  ItemStyle \rightarrow {{White}, {Automatic}, {Blue}, {Green}}, Spacings \rightarrow {1, 1}]
```

| Urea Conc(M)   | 0   | 0.5 | 0.75 | 1   | 2   | 3   | 4   | 8   |
|----------------|-----|-----|------|-----|-----|-----|-----|-----|
| Kinetic Regime | EXX | EXX | EXX  | EXX | EXX | EXX | EXX | EX1 |

# Exporting data to .pdf format

```
Export["FigforpaperIII3Cfinal.pdf", FigforpaperIII3C];
Export["FigIII3Clegendsfinal.pdf", FigIII3Clegends];
Export["FigIII3CSpecfinalfit.pdf", FigIII3CSpec];
Export["FigIII3CSFfinalfit.pdf", FigIII3CSF];
Export["III3Cfinalparameters.pdf", Output3C];
Export["Forpaper3CAllfinalfit.pdf", FigforpaperIII3CAll];
Export["III3Ckineticregimefinal.pdf", OutputRegimes3C];
```