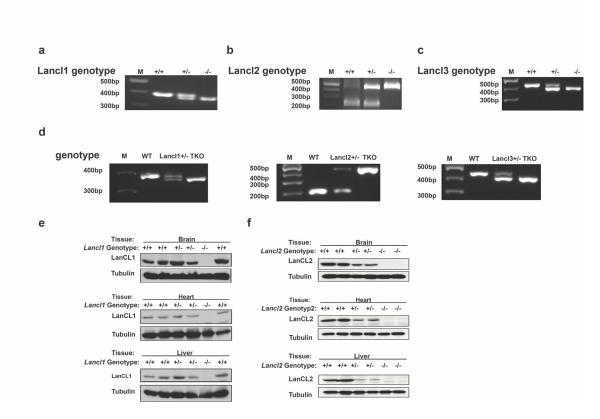
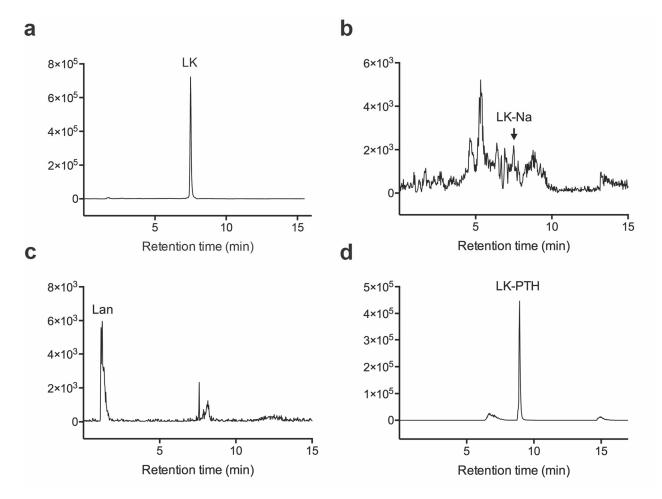
SUPPLEMENTARY INFORMATION


LanCL proteins are not involved in lanthionine synthesis in mammals

Chang He¹, Min Zeng², Debapriya Dutta¹, Tong Hee Koh¹,


Jie Chen²*, and Wilfred A. van der Donk¹*

¹Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America

²Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America

Supplementary Figure S1. LanCL1 KO mice genotyping and KO confirmation. (a-c) Genotyping results of single KO mice. Genotyping of **(a)** Lancl1-/-, **(b)** Lancl2-/- and **(c)** Lancl3-/- confirmed the generation of the corresponding single KO mice. For visualization purposes, a mixture of Lancl-/- and WT extracted DNA was used as Lancl+/- in panels a-c. **(d)** genotyping of TKO mice showed the complete deletion of all three Lancl genes. **(e-f)** Protein was extracted from brain, heart and liver tissue of Lancl1-/-, Lancl2-/- and wild type mouse with matched age and gender and subjected to western blotting. The complete deletion of LanCL proteins is seen in homozygous mice tissues.

Supplementary Figure S2. MRM chromatograms of LK and related metabolites in WT mouse brain. WT mouse brain was homogenized and deproteinated. The supernatant was completely dried under N₂ flow and dissolved in 400 µl of 30% acetonitrile. An aliquot of 5 µL was injected for LC/MS/MS analysis of LK, LK-Na and Lan. LK-PTH was from the HPLC fraction corresponding to the PITC derivatized endogenous LK in WT mouse brain. (a) MRM chromatogram of detected LK (transition of 190.1 \rightarrow 73.1). (b) MRM chromatogram of detected LK. Na (transition of 212.0 \rightarrow 168.1). (c) MRM chromatogram of detected Lan (transition of 202.0 \rightarrow 120.0). (d) MRM chromatogram of detected LK-PTH (transition of 307.1 \rightarrow 126.1).

CβS HOOC NH_2 S COOH + H₂O NH_2 OH HOOC HOOC NH2 L-serine Homocysteine L-cystathionine ŅΗ₂ NH_2 Y^{COOH} + H₂S ноос `S′ SH HOOC HOOC $\dot{N}H_2$ L-cysteine Homocysteine L-cystathionine COOH $_{+}$ H₂O $\xrightarrow{\text{CSE}}$ $\xrightarrow{\text{NH}_2}$ SH $_{+}$ HOOC NH_2 NH_3 HOOC $\dot{N}H_2$ L-cysteine L-cystathionine α -ketobutyrate b $\xrightarrow{\text{NH}_2} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NH}_2$ H₂O SH ЮH ноос HOOC L-serine L-cysteine L-lanthionine CβS/CSE HOOC[~] NH_2 NH_2 + H₂S SH SH HOOC L-cysteine L-cysteine L-lanthionine

а

Supplementary Figure S3. Lanthionine formation through alternative reactions in the transsulfuration pathway. (a) The classic transsulfuration pathway catalyzed by $C\beta S$ and CSE. (b) Alternative reactions catalyzed by $C\beta S$ or CSE that lead to lanthionine formation. When the substrates are two molecules of cysteine, H_2S is formed instead of H_2O .