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Materials and Methods 
Participants and experimental design 
28 participants (16 men; mean age 26) reported to be in good health with no history of 
neurological or psychiatric disease and with normal or corrected-to-normal eye vision 
participated in the fMRI experiment at the Oxford Centre for Functional MRI of the 
Brain (FMRIB). Each subject participated in 1-4 separate fMRI sessions, across two 
separate days, at least one week apart. 22 of them participated in both days, whereas 
the remaining 6 subjects participated only in the first day and did not return for the 
second testing day. We split in half the data of the subjects who were scanned only 
once for subsequent analyses that required cross-validation between separate session. 
In total, we acquired 94 separate datasets. One participant was excluded from all 
further analyses because he did not learn how to use the controller for navigation in 
abstract space. Four participants were trained less than the rest of the group. To avoid 
a confounding effect of the training regimes, we excluded them from the correlations 
with behavior. All remaining participants were included in further analyses with the 
exception of one participant who was excluded from the consistency analysis in the 
prefrontal cortex as a result of parameter estimates being more than 4 s.d. away from 
the group mean. Subjects were firstly trained outside the MRI scanner to navigate in a 
continuous abstract “bird space”. They had to remember which locations were paired 
with an outcome and then, on a separate day, they did the task in the scanner. We 
created two versions of the task in the scanner and half of the participants performed 
one version and the other half performed the other version. All participants gave 
written informed consent and were paid for participating, as approved by the ethics 
committee of the University of Oxford (ref. number 2013-171). 
 
Behavioral training 
We developed a set of novel tasks for navigation in an abstract space that were 
designed to be analogous to those used for navigation in a physical space. We trained 
the participants extensively to be able to navigate precisely in this abstract space. 
Using keyboard button presses, subjects learned to morph the birds, to explore the 
abstract space and learn the locations of the outcomes.  
Each location in this abstract space was represented by a bird stimulus. A trajectory 
through the bird space was equivalent to morphing one bird stimulus into another, that 
is, watching the neck and legs stretching vertically. The direction θ of the trajectory 
was the ratio between how much the neck and legs were changing relative to each 
other. Subjects were instructed to learn which bird shape was associated with each 
outcome and we purposefully did not instruct them that these associations could 
actually be organized in a continuous 2D “bird space”. Movie S1 illustrates a 
recording of the task and the rationale of our experimental design. 
 
Match task: 
Firstly, subjects played the match task where they were trained to use a controller to 
morph the bird silhouette shown on the left side of the screen to match the bird on the 
right side of the screen (Fig. S1). The two birds varied only in two dimensions: the 
lengths of the neck and legs. Thus, the participants could morph the bird by changing 
the lengths of the neck and legs. To ensure that participants integrated between these 
two dimensions simultaneously, we precisely instructed them to morph the bird by 
choosing the ratio between how much the neck and legs change relatively to each 
other only once and as correctly as possible (as opposed to changing the lengths of the 
neck and legs separately). To ensure that subjects did not do this task spatially, we 
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created a non-spatial controller for choosing this ratio. The participants pressed 
buttons on the keyboard to choose the ratio and then to morph the bird with that ratio. 
The morphing was continuous and they saw a bird shrinking or stretching its neck and 
legs. Each of the two black bars of the controller signified how much that dimension 
would change. If the black bar was positioned on the midline, the corresponding 
dimension did not change. The closer to the top line the bar was, the more that 
dimension would increase. Conversely, the closer to the bottom line the bar was, the 
more that dimension would decrease.  
 
 
Explore task: 
After the participants learned how to perform the match task correctly, they continued 
with the explore task (Fig. S2). In this game, subjects needed to find six outcomes 
(images of Santa Claus, a Christmas Tree, a gingerbread man, a sledge, a bell and a 
teddy-bear) by freely morphing the bird. Each outcome was associated with a 
different bird (Fig. 1A). Participants knew they found an outcome because it would 
pop up next to its associated bird. Critically, this ensured that subjects became 
familiar with the entire bird space and not just with the stimuli paired with outcomes 
and that they had a clear representation of what one unit distance on each axis (neck, 
legs) looked like. Thus, we did not simply train the participants on the mere 
associations between the six birds and the six outcomes (i.e. only the locations paired 
with outcomes in the abstract space). This approach is analogous to exploration tasks 
in open environments in rodents(29). Indeed, participants did not know a priori which 
birds were paired with outcomes, hence, they had to morph through many different 
unpaired birds to find the paired ones (i.e. they explored many locations in the 
abstract space that were not paired with outcomes).  
The locations of the outcomes were identical in all participants. This allowed us to 
identify learning patterns of the environment across participants, and rule out the 
possibility that inter-individual differences between participants were caused by the 
outcome locations. We carefully selected these locations to rule out any potential 
hexagonal arrangements.  
 
 
Collect task: 
When subjects knew the stimulus-outcome associations well, they continued to train 
with the “collect task”. In this task, we periodically tested their knowledge of the bird 
space by asking them to find specific outcomes from random start positions, by 
correctly choosing the neck:legs ratio only once. Thus, they had to recall the correct 
neck/legs ratio associated with that outcome, and generate the abstract trajectory to 
that bird correctly in one go.  
 
 
Recall task during scanning (Fig. 1): 
Subjects were trained with the version of the task that would also be used 
subsequently during scanning (Movie S1). During fMRI scanning, we wanted to 
present participants with a controlled set of trajectories, thus, we devised a task in 
which participants watched videos of birds morphing into different birds according to 
pre-defined neck:legs ratios. Each trial corresponded to one trajectory and consisted 
of several stages: morphing, imagination and, in a subset of trials, choice. During the 
morphing stage, the participants saw only a single trajectory in the abstract space. 
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Next, they were instructed to imagine the bird continued to morph with the same 
neck:legs ratio, for the same amount of time and the same speed, and recall if any of 
the imagined bird stimuli was associated with an outcome. This means they did not 
only need to estimate equivalents of angles of moving in space, but also equivalents 
of distances. In other words, we split the trajectories in half, and subjects saw the first 
half (visual morphing of the bird) and had to imagine the second half (imagined 
morphing of the bird). Finding grid-like representations during imagined navigation in 
physical space is indeed possible, as shown in a recent study(11). 
 
We deliberately designed the trajectories to sample the 360° space uniformly, across 
all trials, as well as separately for trials paired our unpaired with outcomes. 
 
Finally, subjects could choose one out of three possible outcomes (outcome 1, 
outcome 2 or no outcome) by pressing one out of three keys on a button box. To 
control for the effect of the outcomes, we designed two versions of the task. In one 
version, these outcomes were displayed during the entire duration of the trial and 
subjects made a choice immediately after the imagination period. In the other task 
version, participants only saw the outcomes at the end of the imagination period, with 
a 50% probability, and then were asked to make a choice. There were no significant 
differences between the two versions of the task, at either the neural or behavioral 
levels, therefore we pooled data from both versions. Overall, the accuracy on the task 
was 72.8 ± 1.02% (mean ± SEM across participants – chance is 33%), suggesting that 
they learned how to navigate the bird space. 
 
Post-scanning debriefings 
Even though the stimuli were not 2D spatial, it would have been possible for the 
subjects to solve the problem using conscious and explicit analogy to 2D space. Such 
a spatial strategy would go beyond the scope of previous reports of the function of 
grid cells but would retain space as a 2 dimensional anchor for the grid. Alternatively, 
subjects may have had no conscious knowledge of the spatial arrangement of the 
birds. To gain some handle on this interesting question, we asked subjects after 
scanning to describe the strategy they used to do the task and to remember the 
associations between the birds and the outcomes. For example, some strategies for 
remembering what bird gave the Christmas Tree were: visualizing the precise lengths 
of the neck and legs as a mental picture, using internal metrics such as the bird has 4 
units of neck and 1 unit of legs, verbally repeating in their minds “long neck, short 
legs”, finding similarities between the characteristics of the bird and the outcome such 
as the bird had a long neck (trunk) and short legs (base) like a true Christmas Tree 
and, also, finding similarities between different birds associated with outcomes (e.g. 
the Christmas Tree bird had longer neck but similar legs with the Teddy Bear bird). 
Thus, no participant described being aware that birds could be associated spatially, on 
a two-dimensional map. For certainty, we subsequently showed them the map of the 
abstract space (Fig. 1B) and asked them whether this spatial strategy was “easier”, 
“harder” or “the same” as their own strategy. Two participants reported that the 
spatial strategy had the same level of difficulty as their own strategy, however they 
clarified that their approach was not spatial and were unaware that the birds could be 
arranged into a 2D map. Everyone else reported that the spatial strategy was easier or 
harder than their own. Overall, no subject reported doing the task spatially. 
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MRI data acquisition  
We acquired T2-weighted functional images on a 3 Tesla scanner. We used a 
gradient-echo echo-planar imaging (EPI) pulse sequence that sets the slice angle of 
30° relative to the anterior-posterior commissure line, minimizing the signal loss in 
the orbitofrontal cortex region(30). We acquired 45 slices, 3mm thick, in an 
interleaved order. We used the following parameters: repetition time (TR) = 3000 ms, 
echo time (TE) = 30 ms, flip angle = 87°, field of view (FoV) = 192mm, voxel size = 
3 x 3 x 3 mm3. To correct for deformations in the inferior prefrontal cortex, we also 
acquired a field map with dual echo-time images covering the whole brain, with the 
following parameters: TR = 500 ms, TE1 = 5.19 ms, TE2 = 7.65 ms, flip angle = 60°, 
FoV = 224mm, voxel size = 3.5 x 3.5 x 3 mm3. To facilitate an accurate registration 
of the EPIs to the standard space, we also acquired a T1-weighted structural image 
using a magnetization-prepared rapid gradient echo sequence (MPRAGE) with the 
following parameters: TR = 2040 ms, TE = 4.7 ms, flip angle = 8°, FoV = 192mm, 
voxel size = 1 x 1 x 1 mm3. Stimulus presentation and subject button presses were 
registered and time-locked to the fMRI data. 
 
 
 
Data analysis 
We analyzed whole-brain MRI data with FMRIB’s Software library (FSL)(31) and 
we performed all the other analyses in Matlab. 
 
 
Behavioral analyses 
We tested for measures of learning during the “explore” task, where subjects 
navigated freely to look for the outcomes. We concatenated the data from all training 
sessions in each subject, and then split it into five equal parts (quantiles). We then 
computed the amount of time spent in each part of the environment during each 
quantile and plotted it as color-coded trajectory maps. We then estimated the amount 
of time spent navigating at the edges (“time at edges”) and at the locations paired with 
outcomes (“time at outcomes”), relative to the total time spent navigating. At the 
group level, we averaged these measures across participants. 
 
In the “collect” task, subjects were precisely instructed to find specific outcomes. We 
computed the mean number of transitions needed to find an outcome, in each trial. A 
perfect performance is equivalent to making only one transition to find the target 
outcome, thus, choosing the correct neck:legs ratio only once and generating the 
abstract trajectory to the target bird in one go. In contrast, a poor performance means 
making more than one transition. Therefore, we also computed the percentage of trials 
where participants made only one transition. Finally, a precise trajectory would have a 
small angle error, defined as the angle between the ideal trajectory angle and the angle 
of the first transition. Thus, we next computed the percentage of trials where 
participants had an angle error < 15°. 
 
In the recall task in the scanner, we computed the performance as percentage of 
correct responses in each scanning session.  
Pre-processing of functional images 
We segmented brain matter from nonbrain(32). We corrected functional data for 
motion artefacts and we removed low frequency signals using a high-pass filter at 
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1/100 Hz. We smoothed the data using a gaussian filter of 7 mm full width at half 
maximum and we corrected for slice time acquisition differences. We also corrected 
for geometric distortions in the EPI images using the acquired fieldmaps(33). We 
registered the EPI images to the high-resolution anatomical image using boundary-
based reconstruction and then we normalized them into standard space (Montreal 
Neurological Institute – MNI152) using non-linear registration. Because of the 
notable breathing- and susceptibility-related artefacts in the enthorinal cortex, we ran 
a separate analysis where we pre-cleaned the data with FMRIB's ICA tool, FIX 
(34,35).  
 
Measures of motion estimation 
We computed four parameters to assess motion in each participant and identify 
movements bigger than the voxel size (3mm). First, we computed the mean 
displacement, defined as the amount of head motion (sum of the absolute translational 
movement in the x, y and z directions) relative to the middle time point across the 
entire scanning session, averaged across all time points.  
 
Second, we examined the total displacement (TD) from the beginning to the end of 
the scanning session.  
 
Third, we examined the data for rapid movements because these are the ones that 
could have disrupted signal intensities. We computed the mean framewise 
displacement, as the amount of head motion relative to the previous time point, 
averaged across all time points. 
 
Finally, we computed the maximum framewise displacement (MaxFD) to address the 
concern of sudden movement more conservatively. We looked for subjects who 
moved more than 3mm at any time point.  
 
 
fMRI whole brain analyses 
After pre-processing, we modeled the fMRI time series using two general linear 
models (GLMs). Both models included regressors for the main effects of the 
morphing stage and the response stage of the trial and six nuisance regressors to 
account for motion-related artifacts. Each individual model had various parametric 
modulations of the regressors for the morphing stage (see below). All these regressors 
were convolved with the FSL default hemodynamic response function and filtered by 
the same high pass filter as the fMRI data before entering the GLM.  
 
GLM 1: hexagonal modulation analysis (Fig. 2): 
 
We created two parametrically modulated regressors(9): the sine and cosine of the 
direction of each trajectory in each trial, θ(t), with a periodicity of 60°, that is, 
sin(6θ(t)) and cos(6θ(t)). The factor 6 means that these regressors will produce 

coefficients with high amplitude β!"#! + β!"#!  for brain regions that are sensitive 

to hexagonal symmetry. To calculate the magnitude of the hexagonal modulation, we 
used an F test to investigate which brain regions were significantly modulated by a 
linear combination of these two regressors: βsin*sin(6θ) + βcos*cos(6θ). We then 
transformed this statistic to a Z-statistic in each subject, using an asymptotic 
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approximation (http://www.fmrib.ox.ac.uk/analysis/techrep/tr00mj1/tr00mj1/) and, 
together with a behavioral covariate, we performed a 1-sample t-test across the group.  
For visualization purposes, the statistic images were thresholded using clusters 
determined by Z-statistic = 3.1 and the supra-threshold clusters were corrected for 
family-wise error using a cluster significance threshold of p = 0.05. For the entorhinal 
cortex, we used a more lenient cluster forming threshold at Z = 2.3 and p = 0.05 
because this brain region is prone to signal loss and, thus, it is difficult to image with 
fMRI (see below for discussion of these tests).  
This test has the major benefit of identifying periodic signals across the whole brain 
without knowing the phase of these signals. However, although the reported clusters 
survive multiple comparison correction across the whole brain, this test is unusual and 
should not be used for statistical inference because it can overestimate the Z-scores. 
Thus, we used it instead as a method to identify informative brain regions that we 
could then use to create ROIs for subsequent unbiased tests. 
In detail, the first level statistic that is being brought to the group level relies on the 
mean and variance of the first-level estimates in such a way that mis-estimating the 
variance can cause a bias in the mean (for example if the variance is under-estimated, 
the F-statistic will be overestimated, and the expectation of the transformed Z-statistic 
will be greater than zero even in null data). Estimating unbiased variances from 
autocorrelated fMRI data is notoriously difficult. Therefore, the reader should be 
cautious in interpreting the results of this test as statistically significant. In the current 
manuscript, we use this test as a method for generating candidate regions of interest 
for tests that are certainly unbiased (consistency tests). This allows us to extract the 
grid angle from these ROIs in one dataset and test it in another. These subsequent 
tests do not use first level variances and are therefore unbiased tests performed with 
the standard fMRI GLM machinery.  
 
 
GLM 2: hexagonal consistency analysis (Fig. 3A): 
 
We created a parametric regressor cos(6[θ(t) – φ]), where θ(t) is the trajectory angle 
for each trial t within one session and φ is the grid angle from another session 
acquired on the same day(9,10) (Fig. S3). This regressor had higher values for grid-
like activity with the same grid angle as in the other session. Thus, if the trajectories 
from one session aligned with the predicted grid angle taken from a different session, 
then this regressor would have high values. This resulted in subject-specific parameter 
estimates for each experimental session.  
 
In the next stage, participant-specific linear contrasts of these parameter estimates 
were averaged across the experimental sessions and, together with a behavioral 
covariate represented by the behavioral accuracy, they were entered into a series of 
one-sample t-tests, each constituting a group-level statistical parametric map. The 
statistic images were thresholded using clusters determined by Z-statistic = 2.3 and 
the supra-threshold clusters were corrected for family-wise error using a cluster 
significance threshold of p = 0.05.  
 
To estimate the grid angle φ, we used a similar approach to the one for navigating in 
physical space(9). We first averaged the coefficients for the sine (βsin) and cosine 
(βcos) regressors across all voxels in the ROI. Then, we calculated the grid angle φ 
(varying between 0 and 59°) as arctan [(βsin/βcos)]/6 within regions of interest (ROIs), 
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where arctan was mapped into the 360° space, varying between -30° to 30°, according 
to the signs of βsin  and βcos. 
 
 
ROI analyses (Fig. 3-4) 
We defined all ROIs from the whole-brain quadrature filter analysis for hexagonal 
modulation (GLM 1 and Fig. 2), which was orthogonal to the contrasts of interest. 
This allowed statistical tests to be performed in an unbiased fashion. To make it clear 
why this is the case: in the null case, two scans that both had high hexagonal 
magnitude would have randomly oriented hexagonal phase (grid angle) and so all 
analyses that relied on aligned grid angle would result in mean zero signal. The ROIs 
were 5-mm spheres centered on the voxels with the highest hexagonal magnitude 
activity (GLM 1) in the ventromedial prefrontal (vmPFC) and the entorhinal cortex 
(ERH) (Fig. 2A). We used these ROIs as seeds for estimating the values of the grid 
angle and to test for grid angle consistency between separate experimental sessions.  
 
To examine the pattern underlying the hexagonal magnitude effect, we ran separate 
regression analyses for trajectories that were aligned and misaligned with the grid, 
using fMRI time series from the vmPFC and ERH ROIs. We aligned the trajectory 
angles to the grid angle φ and we split these aligned trajectories into 12 equal bins of 
30°. We thus created 12 separate regressors for trajectories that belonged to one of 
these 12 bins, resampled them at a resolution of 100ms and convolved them with the 
hemodynamic response function. To match the resolution of the fMRI timeseries, we 
then resampled the regressors to the duration of the fMRI repetition time. Next, we 
ran 12 separate regression analyses in each individual experimental session. The 12 
resulting regression coefficients were then averaged separately across various 
sessions, and expressed as mean ± sem (Fig. 3B-C and Fig. 4). Given our strong a 
priori hypotheses of hexagonal symmetry, we performed a t-test on the differences 
between the resulting betas aligned and misaligned to the grid angle φ, across 
subjects, to investigate if these differences were significantly different from zero. 
 
We tested for consistency within-day (Fig. 3), across-day (Fig. 4A), and all data 
combined within- and across-day (Fig. 4B-C). Again, to allow statistical unbiased 
testing, we aligned data from one session to the grid angle from the other session. 
 
 
 
Control analyses 
 
fMRI data: 
To test for the specificity of the six-fold symmetric sinusoidal modulation, we used 
the same approaches as above, but using control models with directional periodicities 
of 90°, 72°, 51.4° and 45° (that is, four-fold, five-fold, seven-fold and eight-fold 
rotational symmetry).  
 
 
 
 
 
  



 
 

9 
 

Supplementary Text 

Ruling out alternative explanations for the fMRI hexagonally symmetric signal 
 
The trial-by-trial fMRI activity resembles a periodic wave with six peaks only if the 
angles of the trajectories the participants are running at are sorted in an ascending 
order (modulo 60) from 0° to 360° (Fig. 1E, Fig. S4A). However, participants did not 
move along trajectories in a sorted order, but in a random fashion and the signal looks 
random when the order of the trajectory angles is shuffled (Fig. S4C). Moreover, the 
trial-to-trial fMRI activity is different from day-to-day in each participant because 
they navigated along various random angles in each day. These responses are also 
different from person-to-person because each subject has their own grid angle. For 
example, if two participants have grid angles at 30° from each other, then trajectories 
that are aligned in one person, thus leading to fMRI responses with big amplitudes, 
will be misaligned in the other person, leading to fMRI responses with low 
amplitudes.   
 
Therefore, potential confounds of this signal need not resemble a periodic wave with 
six peaks regardless of the order of the trials. Instead, the artifacts need to be 
consistently and significantly happening with a hexagonal periodicity that depends 
precisely on the order of the trajectories of moving in space, be aligned to one grid 
angle in one participant and to another grid angle in another participant. It is therefore 
unlikely that motion or physiological artifacts (such as breathing and heart rate) 
would cause the hexagonal pattern. For example, subjects would need to move more 
during aligned versus misaligned trajectories, according to the random order these 
trajectories are presented, which is different from day-to-day, and according to the 
orientation of the grid, which is different from person-to-person. The hexagonal 
pattern of fMRI activity is therefore difficult to explain with unspecific fMRI 
artefacts.  

 

 
Subject estimates of motion  

 
The average mean displacement across participants was 0.4 ± 0.043 mm, thus less 
than 1 voxel-diameter (3 mm). 
 
We found 7 subjects who had a total displacement > 3mm. This is a very conservative 
measure of subject movement as it penalizes many incremental movements that are 
well corrected by linear methods. Nevertheless, we tested using region of interest 
analyses whether our results survived the exclusion of these 7 subjects. Despite the 
inevitable loss of statistical power entailed by removal of data from more than 25% of 
the participants, we were able to confirm the majority our findings. All results 
presented except for two (the correlation between behavior and hexagonal consistency 
in vmPFC and the hexagonal consistency vmPFC within-day) remained significant in 
this re-analysis (Table S1). We next focused on measures of rapid motion of the kind 
that cause a bigger problem for fMRI. 
 
The average mean framewise displacement across participants was 0.031 ± 0.0045 
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mm, thus less than 3mm. Indeed, participants did not tend to make sudden head 
movements throughout scanning. 
 
We found that 3 subjects made 1-2 rapid head movements in one scanning session, as 
assessed by the maximum framewise displacement (MaxFD). It is very unlikely that 
these events could have potentially affected the observed hexagonally symmetric 
signal because they did not occur frequently, with hexagonal periodicity, and they 
would have needed to be precisely aligned with the grid angle. Despite this 
improbable situation, we tested again using region of interest analyses whether our 
results survived the removal of these 3 subjects. All the presented results remained 
significant in this re-analysis, except for one, which approached significance (the 
correlation between behavior and hexagonal signal modulation in vmPFC). 
 
To sum up, we re-analyzed data after excluding subjects who moved more than 3mm 
in the scanner. Although the occasional results changed when we remove these 
subjects, in each case the vast majority of assessments survived. The statistical tests 
from these two re-analyses, one that is common within FSL and SPM analysis 
standards (MaxFD) and another more conservative measure (TD) are presented in 
table S1.  
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Fig. S1. 
Example screenshot of the match task. Here, to morph the bird on the left into the one 
on the right, the neck needed to decrease more than the legs needed to increase. The 
correct neck:legs ratio to achieve this is shown on the controller on the left side of the 
screen (notice the position of the two black bars). 
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Fig. S2 
Example screenshot in the explore task where the subject found Santa Claus. 
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Fig. S3 
Estimation of the grid angle (reproduced with permission from Nature, Doeller et al, 
2010). 
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Fig. S4 
(A) The hexagonal symmetry pattern in the fMRI response becomes evident when the 
trajectory angles are sorted in an ascending order. (B) When the angles are ordered 
first as completely misaligned with the grid angle φ, then right in the middle between 
aligned and misaligned, and then completely aligned with the grid angle, the fMRI 
response will show a step-wise pattern, from a small response, to no change, and to a 
big response. (C) When shuffled randomly, the fMRI response also becomes random.  
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Fig. S5 
Distribution of trajectory angles. (A) Trajectory angles were evenly sampled across 
the 360° space (varying between 0°-360°). Histograms are shown for trajectory angles 
passing through all locations in conceptual space, and categorized as a function of 
passing through an outcome or not (Rayleigh’s test, p=1, p=0.626 and p=0.64, 
respectively). (B) To investigate the distribution of angles relative to hexagonal 
symmetry, we transformed the angles into a 60° space (varying between 0°-60°), 
using the modulo operation, which computes the remainder after division of the 
angles by 60. For example, a 70° trajectory in 360° space corresponds to a 10° 
trajectory in 60° space. We found that the trajectory angles were evenly sampled 
across the 60° space for all locations in sum, and separately for the locations paired 
and unpaired with outcomes (Rayleigh’s test, p=1, p=0.623 and p=0.637, 
respectively). 
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Fig. S6 
Analysis of the explore task at the group level (A-C) and in one representative subject 
(D-E). (A) Color-coded trajectory maps illustrating the amount of time spent in each 
part of the environment (yellow is maximum, dark blue is 0). Note how subjects first 
navigate in most parts of the abstract space, choosing random trajectories to find the 
outcomes, and spend most of their time near the boundaries of bird-space. As training 
progresses, (B) they spend less time at the edges (times at edges, quantile1 vs 
quantile5, t22=3.1776, ** p<0.01) and (C) more time navigating directly between 
locations paired with outcomes (time at outcomes, quantile1 vs quantile5, t22=-3.1773, 
** p<0.01). These results demonstrate that the identities of the birds paired with 
outcomes were well learnt in the subject cohort, conceptually equivalent to learning 
object locations in a 2D spatial environment. This means that subjects did not only 
need to indicate if an outcome occurred somewhere on the imagined trajectory, but 
also at which distance. (D) Trajectories (grey lines) with locations paired with 
outcomes (red circles) in one representative subject. (E) Corresponding color-coded 
trajectory maps. Note how this subject spends more time at the edges in quantile1 and 
explore more the lower area of the environment in quantile 2. 
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Fig. S7 
Measures of learning during the collect task. Participants made significant 
improvements in training day 2 compared to training day 1. (A) Subjects made fewer 
transitions (t33=-2.89, ** p<0.01) in day 2 than day1, and (B) the percentage of angle 
errors < 15° increased (t33=2.37, * p<0.5). 
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Fig. S8 
Learning in the recall task. Effects of fresh training on subsequent performance in the 
scanner. Participants made significantly more correct responses in day 2 compared to
day 1 (t41=3.89, *** p<0.001). 
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Fig. S9 
The brain network for navigation in physical space (A) and conceptual space (B). 
Abbreviations: ventromedial prefrontal cortex (vmPFC), entorhinal cortex (ERH), 
posterior cingulate cortex (PCC), posterior parietal cortex (PCC), temporal cortex 
(TC). A is adapted by permission from Nature, Doeller et al, 2010.  
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Fig. S10 
Same network of brain regions as in Fig. 2A from the main text, but whole-brain 
cluster corrected at a more lenient cluster threshold Z=2.3 and p<0.05, for illustrative 
purposes. Note that, as in the main text, this analysis is subject to potential bias 
caused by the mis-estimation of the autocorrelation of fMRI data(26).
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Fig. S11:  
The vmPFC consistency map (left and also shown originally in Fig. 3A) did not 
change after including a confound regressor that modeled out the effect of outcomes 
(right). 
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Test Presented 
in 

Value 
including 
subjects 
after motion 
correction 

Value 
excluding 
subjects with 
MaxFD > 
3mm 

Value 
excluding 
subjects with 
TD > 3mm 

Correlation between 
behavior and 
hexagonal signal 
modulation in 
vmPFC 

Fig. 2B r=0.432, 
p=0.039 

r=0.41, 
p=0.07* r=0.4, p=0.09* 

Correlation between 
behavior and 
hexagonal 
consistency in 
vmPFC 

Fig. 3A, 
right 

r=0.431, 
p=0.039 

r=0.49, 
p=0.02 

r=0.32, 
p=0.19** 

Hexagonal 
consistency 
vmPFC, within-day 

Fig. 3B, 
left 

t(26)=2.61; 
p<0.05 

t(23)=2.17; 
p<0.05 

t(20)=1.54, 
p=0.13** 

Control 
periodicities, 
vmPFC, within-day 

Fig. 3B 
,right All p>0.26 All p>0.3 All p>0.29 

Hexagonal 
consistency ERH, 
within-day 

Fig. 3C, 
left 

t(27)=2.36; 
p<0.05 

t(24)=2.3, 
p<0.05 

t(21)=2.65; 
p<0.01 

Control 
periodicities, ERH, 
within-day 

Fig. 3C, 
right All p>0.15 All p>0.18 All p>0.31 

Hexagonal 
consistency 
vmPFC, cross-day 

Fig. 4A, 
left 

t(20)=3.65; 
p<0.01 

t(17)=2.97; 
p<0.01 

t(15)=2.77, 
p<0.05 

Control 
periodicities, 
vmPFC, cross-day 

Fig. 4A, 
right All p>0.18 All p>0.3 All p>0.12 

Hexagonal 
consistency 
vmPFC, within- and 
cross-day 

Fig. 4B, 
left 

t(20)=3.41, 
p<0.01 

t(17)=2.66; 
p<0.05 

t(15)=2.35,p<0
.05 

Control 
periodicities, 
vmPFC, within- and 
cross-day 

Fig. 4B, 
right All p>0.29 All p>0.6 All p>0.54 

Hexagonal 
consistency, cross 
region ERH --> 
vmPFC 

Fig. 4C, 
left 

t(21)=2.04, 
p=0.053 

t(18)=2.21; 
p<0.05 

t(16)=2.32, 
p<0.05 

Control 
periodicities, cross 
region ERH --> 

Fig. 4C, 
right All p>0.8 All p>0.55 All p>0.25 
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vmPFC 

Table S1. 
Statistical tests from the data re-analyses after excluding participants who moved 
more than 3mm. *approaching significance, **no longer significant. 
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Movie S1 
Experimental design. Example trajectories for movement in bird-space at various 
orientations correspond to morphing of visual stimuli with specific neck:legs ratios. 
Note that the trajectories were dissociated from the properties of the visual scene, 
such that trajectories with the same orientation were formed by different stimuli, and 
trajectories with different orientations could pass through the same stimulus. We 
designed multiple trajectories in bird-space, and each trajectory corresponded to one 
trial. Participants had to choose what outcome (Christmas symbol) they received in a 
trial. They also had the option of choosing “nothing” (black square), meaning that the 
trajectory did not go through an outcome. We then looked for the hexagonal coding 
pattern, depending on whether the trajectories were aligned or misaligned with the 
grid.  
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