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Supplementary Figure 1. Funnel plots of all SNPs from (A) the conservative and (B) the expanded 
instrument set. SBP associations have been corrected by effect allele frequency as described by Bowden 
et al. previously.1 Red vertical line denotes combined GRS effect estimate from all SNPs. 
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Supplementary Figure 2. Egger regression plots for the conservative and expanded genetic 
instruments. The slope of the regression line is the egger regression estimate for the effect of SBP on 
T2D risk (in log odds per mmHg). The y-intercept of the regression an estimate of the level and 
direction of bias present in the typical GRS or inverse-variance weighted estimate due to pleiotropy. A 
negative y-intercept in this case indicates that any bias present in this analysis will result in 
underestimation, rather than overestimation, of the causal effect size. 
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Supplementary Figure 3. Egger Regression results from n=10000 simulated datasets of SNP 
association data based on our conservative instrument. All figures are in log-odds per millimeter of 
mercury. (A) Distribution of Egger Regression effect estimates. Horizontal line marks the true effect of 
SBP on T2D as set in the simulation. (B) Distributions of Egger Regression bias estimates. Horizontal 
line marks zero bias. 
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Supplementary Figure 4. Simulation analysis for sample ascertainment and analysis conditions from 
SBP genome-wide association studies. Results from n=1000 simulated GWAS of 150,000 individuals 
after adjusting for BMI, excluding diabetes cases, or both, under a model in which both BMI and SBP 
effect type 2 diabetes risk. (A) SBP association estimates for a representative SNP in our conservative 
instrument (rs6015450). The red horizontal line denotes the true effect size. (B) Mean error in effect 
estimates over n=13 SNPs used in conservative instrument. 
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Supplementary Figure 5. Simulation results from n=1000 simulated GWAS generated as in 
Supplementary figure 4, but under a model in which only BMI effects T2D risk and SBP does not. (A) 
SBP association estimates for a representative SNP in our conservative instrument (rs6015450). The red 
horizontal line denotes the true effect size. (B) Mean error in effect estimates over n=13 SNPs used in 
conservative instrument. 
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Supplementary Figure 6. Positive control experiment example of confounding due to Collider bias for 
BMI, using a representative SNP exclusively associated with SBP. Data shown are effect estimates (in 
standard deviations of BMI) from n=1000 simulated datasets of 150,000 individuals, based on a model 
in which both SBP and BMI have an effect on T2D risk. 
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Supplementary Table 1. Summary of SNP Sets 
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Supplementary Table 2A. Summary for Genotype Risk Score analysis 
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Supplementary Table 2B. Summary of results heterogeneity analysis 
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Supplementary Table 2C. Summary of results for Regression-based causal inference analysis 
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Supplementary Table 3. GRS calculations and raw data for expanded instrument of n = 28 SNPs 
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Supplementary Table 4. GRS calculations and raw data for conservative instrument of n = 13 SNPs 
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Supplementary Table 5. Parameters used to generate bias in Egger Regression simulations. 
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Supplementary Table 6. Percent of simulations under each bias distribution which reported that bias 
was present in the analysis (two-tailed t-test with p threshold < 0.05). 
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Supplementary Table 7. Simulation results for casual effect estimate via instrumental variable 
weighted regression (IVW) and Egger Regression (ER) modeling a pro-diabetic drug use among 
hypertensive subjects. 95% CI represents the error on the mean. *Based on 10,000 simulations. Results 
reported in units of change in log odds of T2D risk per SD change in SBP. Analysis performed is Egger 
Regression. 
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Analyzing Egger Regression performance through simulation 
Since the use of Egger Regression for Mendelian Randomization studies is a relatively novel technique1, 
we sought to better understand the behavior of this analytical tool through simulation. Using our 
conservative instrument as a baseline, simulated n=10,000 datasets for analysis by adding noise and bias 
to the T2D association of each SNP: 
 

 
 
Where α is the true effect of SBP on T2D risk (set in these simulations at 0.02 log-odds increase per 
mmHg), J  is the T2D association estimate for the jth SNP generated for a given simulation, J


 is the 

actual estimated SBP association, and JS


 is the true standard error in T2D association for that SNP. By 

adjusting the upper and lower limits of the uniform distribution for the added bias, we were able to 
generate datasets affected by different levels and directions of pleotropic bias. The parameters for bias 
added are listed in Supplementary Table 5. 
 
From each these simulated datasets, we ran Egger regression analyses and estimated the power to detect 
bias. The complete R code (v3.3.0) used to simulate and analyze these datasets is available at 
https://github.com/raikens1/T2D_MR/. Using this set-up, we found that Egger regression power to 
detect negative bias is limited (Supplementary Table 6). Egger Regression effect estimates have a 
higher variance when bias is at play (6 x 10-4 under negative bias compared with 3 x 10-4 with no bias, 
F-test p = 2 x 10-16). However, the effect estimates from this test are still correct on average 
(Supplementary Figure 3, two-tailed t-test for significant error under negative bias: p = 0.45). 
 
In Silico Test for bias due to adjustment in the primary scan 
 
In order to understand whether adjustment for adiposity in the primary scan resulted in bias in our GRS, 
we simulated GWAS under two different causal models: 
 

A. Both BMI and SBP affect T2D risk 
B. BMI, but not SBP, affects T2D risk 

 
Under each causal model, we used the MR_predictor simulation engine described previously2 to 
generate n=1000 sets of genotype and phenotype from 150,000 individuals. To construct our 
simulations, association of SBP with BMI3, and BMI-associated T2D risk4 were drawn from the 
literature, and the T2D prevalence was tuned to give a realistic case/control ratio in simulation (targeting 
a 9.8% diabetes prevalence, in agreement with estimates by Cowie et al.5).We then used the Plink 
analysis toolset (v1.07)6,7 to generate linear SBP association estimates for each of the 13 SNPs in our 
conservative instrument set over n=1000 simulations. As a summary statistic, we observed the 
distribution of the mean error over all SNPs, as: 
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where that γj and γij-hat respectively represent the actual SBP association of the jth SNP and the estimate 
for that association generated from the ith simulation (where the association for a given SNP is always 
relative to the blood-pressure-increasing allele). Mean errors were tested for significance using a 
twosided t-test in R (v3.3.0). The code used to run plink and MR_predictor and the relevant 
MR_predictor input files are available at https://github.com/raikens1/T2D_MR/, and the MR_predictor 
simulation toolset and documentation are additionally available online 
(http://coruscant.itmat.upenn.edu/mr_predictor/). 
 

We found in both scenarios that, even when certain corrections in the primary scan did result in 
statistically significant bias, the magnitude of this change was sufficiently small compared to our 
estimated SBP associations that it could not be expected to have any notable effect on our final result 
(Supplementary Figures 4 and 5). 
 

As an additional check, we sought to demonstrate that our simulation framework was sufficient 
to detect strong collider bias if it did indeed arise (collider bias has been illustrated previously8). Since 
high BMI is known to cause high blood pressure9–11, adjusting for SBP in a linear association analysis 
will cause SBP-related SNPs to falsely associate with BMI. We used the PLINK toolset to perform these 
association analyses for n=1000 simulated datasets under the model that both SBP and BMI increase 
type two diabetes risk. When SBP was used as a covariate in these analyses, we found that simulations 
tended to report a false BMI association for SNPs related exclusively to SBP (Supplementary Figure 
6). 
 
In Silico Test for bias due to pro-diabetic antihypertensive use in GWAS cohorts 
 

Since evidence suggests that various antihypertensive medications (namely beta-blockers and 
thiazide diuretics) are linked to increased type 2 diabetes risk, we considered the possibility that the 
putative link between SBP and type 2 diabetes risk can be explained by the use of diabetogenic 
antihypertensive use by the subjects of our GWAS cohorts. If hypertensive subjects used an anti-
hypertensive medication that increased diabetes risk, we would expect our risk score to be positively 
biased. This is because we expect, based on genotype, a log-additive increase in drug use on a liability 
scale (with respect to blood pressure). Put another way: each genetic variant increases the chance of 
crossing the hypertension liability threshold by a small amount. Each variant thus increases drug use 
amount proportional to the SBP effect. This applies to each SNP: weaker-effect SBP SNPs have lower 
chance for antihypertensive use, while stronger SBP SNPs will contribute a greater chance. Individuals 
will carry a random collection of these variants. However, the impact of drug use on type 2 diabetes risk 
is the same (the magnitude of the effect does not change by genotype). This is analogous to systemic, 
positive bias from unmeasured confounding, which can be measured and subsequently accounted for by 
Egger Regression. 
 

We performed a simulation experiment to verify this intuition. We generated 33K cases and 33K 
controls, the equivalently powered effective symmetric sample size of our T2D study. Among simulated 
subjects, we assumed 60% of T2D cases were hypertensive (> 140 mmHg SBP), 30% of controls as 
hypertensive. These rough estimates were obtained from recent literature12,13. Then, we varied (from 0- 
100%) the percentage of hypertensive subjects that take a drug that increases T2D risk, and assumed that 
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this drug use increases T2D by 1.4-fold (according to a literature estimate for beta blockers14). This boils 
down to T2D subjects having a higher prevalence of an exposure (i.e., drug use) that increases the 
baseline risk for a subset of participants (i.e. hypertension). 
 

Simulations demonstrate a positive bias that grows in magnitude as the percent of pro-diabetic 
antihypertensive drug use among subjects who are hypertensive increases (see Supplementary Table 7, 
below). This effect also resulted in a corresponding reduction in the casual effect from the Egger 
Regression analysis, as one would expect in the presence of positive, directional confounding 
(Supplementary Table 7). This effect also does slightly increase the casual effect estimate from the 
GRS method (0.540 for no drug use to 0.556 for 100% drug use, Supplementary Table 7). Based on 
this analysis, we did not observe significant evidence of bias for either of our risk scores. Moreover, the 
direction of that term trended toward negative, rather than positive, contrary to what would be expected 
from this drug-confounding effect. While assumptions made here are unlikely to perfectly match the 
specifics of the contributing T2D cohort(s) to our study, the results support our intuition above: (i) that 
the direction of this type of bias should be positive, (ii) that Egger regression can identify (and adjust) 
for this effects, at least under this specific model, and (iii) that in the real data, we observed a trend in 
the opposite direction of this putative effect: negative rather than positive bias. 
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