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1 Normalized Laplacian eigenvectors as path indicators

The null eigenvalues of the graph Laplacien matrices are associated with the number of connected com-
ponents [1, 2]. Specifically, a subset of vertices Ak ⊂ V is a connected component if (i) all intermediate
points that lie on a path between two vertices of Ak also belong to Ak and (ii) there is no connection
between the vertices of Ak and its complementary subset Ak.

Proposition 1. (Number of connected components and spectrum of Lrw). Let G be an undirected graph
with non-negative weights. Then the multiplicity k of the eigenvalue 0 of Lrw equals the number of
connected components A1, ...Ak in the graph. The eigenspace of 0 is spanned by the indicator vectors 1Ai

of those components.

For the case of finding k > 2 clusters, it can be shown that the k eigenvectors resulting from the spectral
decomposition of the normalized Laplacian matrix Lrw correspond to the solution of the relaxed NCut
minimization problem [3] (see main text, Methods)

The SCS-spectral phase of the SCS approach proposes to identify groups of vertices that are at a small
random walk distance from each other within the graph G based on the element values of the Laplacian
matrix eigenvectors. These subsets correspond to the best candidates for local subgraph reconstructions.
In the following we assume that vk is the k-th eigenvector of the normalized Laplacian matrix. We further
assume that vk is associated with the connected component Ak and that vk(i) is the ith element related
to vertex i. In the ideal case, i ∈ Ak ⇒ vk(i) = 1, otherwise vk(i) = 0 [1].

Proposition 2. (Similar eigenvector element values between connected vertices). Let G = (V,E) be a
weighted graph with connected components {Ak}. ∀i ∈ Ak,∀j ∈ V s.t. vk(j) > 0, then |vk(i) − vk(j)| =
0 ⇐⇒ j is path connected with i.

Sketch of Proof. The Laplacian eigenvalues λk can be computed by the Rayleigh quotient,

λk =
vTk Lrwvk

vTk vk
=

∑
i∼j

(
vk(i)− vk(j)

)2∑
i vk(i)2

. (1)

Based on Proposition 1 and Equation 1, (vk(i)− vk(j))2 = 0. Conversely, we assume that vertex j is not
path connected with i. Then, as i ∈ Ak, the vertex j cannot belong to the connected component Ak. As
the eigenvectors are indicators of the membership of each data points to the different communities, (vk(i)−
vk(j))2 6= 0. Proposition 2 is given in the ideal case, which corresponds to well-separated components.
Under small perturbations, it is expected that vk(i) ≈ vk(j) remains an indicator of a path between the
two vertices i and j. �
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If G is a connected graph, the positive elements of the k-th eigenvector encode information about at most
(k − 1) components.

Theorem 1. (Fiedler’s Nodal Domain). Let G = (V,E,w) be a weighted connected graph, and let L
be its Laplacian matrix. Let 0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of L and let v1, . . . , vn be the
corresponding eigenvectors. For any k ≥ 2, let Wk = {i ∈ V : vk(i) ≥ 0}. Then the graph induced by G
on Wk has at most k − 1 connected components.

Thus, for a connected graph G and k > 2, one can expect to observe |vk(i) − vk(j)| < ε while i and j
belong to difference clusters A and B. Yet, according to [4], if there exists a subset of vertices S at a
distance less than a step ρ ≥ 2 from A that separates A and B, then vk is such that

if i ∈ A, then vk(i) = 1,

if i ∈ B, then vk(i) = −1,

if i ∈ S, then − 1 + 2/ρ ≤ vk(i) ≤ 1− 2/ρ,

if i, j are adjacent vertices then |vk(i)− vk(j)| ≤ 2/ρ.

Taking ρ = 2 we obtain the case which is commonly used for separators. Hence, |vk(i)− vk(j)| is a
measure of the distance between the vertices i and j (algebraic distance [5]). This distance also reflects
the cluster assumption indicating that close data points are expected to lie within the same cluster.

Finally, elements of greatest magnitude found in each of the first k eigenvectors are expected to be
associated with variables involved in (nearly) connected components of G.

Proposition 3. (Dissimilar eigenvector element values between connected components). Let G = (V,E)
be a weighted graph with connected components {Ak}. ∀(i, j) ∈ Ak, ∀l ∈ Ah, h 6= k,min(|vk(i)−vk(l)|, |vk(j)−
vk(l)|) > |vk(i)− vk(j)|.

Sketch of Proof. The first k eigenvectors of the normalised Laplacian matrix are indicators of the variable
membership to each connected component. Furthermore, based on Proposition 2, one can establish that
the first k eigenvectors are piecewise constant functions on their related connected components. �

In summary, under ideal conditions, the first k eigenvectors of the normalized Laplacian matrix are the
indicator vectors of the k connected components. In practice, the magnitude and sign of the eigenvector
elements contain information on vertex membership strength to the corresponding component (Proposition
1, Appendix and main text, Methods). Furthermore, path-connected variables have similar eigenvector
elements (Proposition 2.), that are distinct from the element of vertices belonging to a different component
(Proposition 3.). Thus, subsets of nodes that correspond to large positive or negative eigenvector elements
(retrieved in the SCS-spectral step) correspond to dense subgraphs (to be reconstructed in the SCS-learn
step). These subgraphs associated to large eigenvector elements can be redundantly found in the first
eigenvectors [6]. However, higher eigenvectors can also be used to identify different subsets of connected
nodes, as observed in the context of anomalous graph detection [7].
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2 Complementary evaluations of SCS-spectral & SCS-learn

The SCS approach embeds multiple reconstruction methods in a spectral framework to learn possibly
oriented interactions from high-dimensional data by (i) combining the edges discovered from overlapping
subgraphs (SCS-spectral & learn phases) and (ii) computing consensus predictions (SCS-consensus phase).

2.1 SCS-spectral & SCS-learn evaluations at different subgraph sizes

For these evaluations, two oriented benchmark networks have been considered: the ANDES benchmark
network [8], composed of 223 nodes and 338 edges and the MUNIN benchmark network [9], composed of
1,041 nodes and 1,397 edges. Figure S6 provides the degree distribution of these networks. For ANDES, we
randomly sampled 5 datasets of sizes 150 (Figure S1) and 200 (Figure S2) to perform the experiments un-
der high-dimensional conditions, while we randomly sampled 5 datasets of sizes 935 for MUNIN (Figure S3).

The embedded reconstruction methods are 3off2 [10], a hybrid method that combines constraint-based
and scoring approaches based on multivariate information measures (Figures S1-S3, top row), a hill-
climbing algorithm using the Bayesian Dirichlet equivalent (BDe) score or the Bayesian Information
Criteria (BIC) (Figures S1-S3, middle row) and ARACNE [11], a mutual information-based approach (Fig-
ures S1-S3, bottom row). We also considered a random classifier in our SCS-spectral and SCS-learn step
evaluations (Figure S4).

Networks reconstructed in the SCS-learn phase based on the SCS-spectral subsets, are evaluated for differ-
ent subgraph sizes (from 1.5% to 14% of vertices for the ANDES benchmark network [8], and from 5% to
11% of vertices for the MUNIN benchmark network [9]) and an increasing proportion of eigenvectors (up
to 40%). Results are discussed in terms of F-score (2×Prec×Rec/(Prec+Rec)). True positive edges that are
falsely oriented are considered as false positive predictions (Figures S1-S3).

Alternative subset selections to the SCS-spectral phase were provided by spectral fuzzy C-means parti-
tioning, spectral K-means clustering and recursive bi-partitioning (see main text). Overlapping subsets
could be derived from the spectral fuzzy C-means partitioning. This alternative subset selection method
performed generally better in our experiments than the other alternative approaches. Thus, we provide
in this Appendix file comparisons of the SCS-learn step based on the SCS-spectral subsets with networks
reconstructed from subsets provided by spectral fuzzy C-means partitioning (Figures S1-S3, middle col-
umn). Results obtained from random subset selection are also given as a mere comparison (Figures S1-S3,
right column).

The association of the SCS-spectral and SCS-learn steps leads to higher F-score results as compared to
reconstructions obtained with spectral fuzzy C-means partitioning. This improvement is achieved for a
reasonable number of eigenvector and a large range of subgraph sizes, thus enabling a good trade-off
between reconstruction quality and required number of subgraphs (Figures S1-S3).

4



(a) ANDES, 3off2 subgraphs, N = 150 samples
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(b) ANDES, hill-climbing (BDe) subgraphs, N = 150 samples
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(c) ANDES, aracne subgraphs, N = 150 samples
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Figure S1: SCS-learn evaluations for ANDES benchmark network [223 nodes, 338 edges, 〈k〉 = 3.03]. F-score results for
an increasing proportion of eigenvectors (up to 40%) and different subgraph sizes (from 1.5% to 14% of vertices). Scores take
misorientations into account. Each point is an average over 5 datasets of n = 150 samples. Three learning algorithms are
embedded to reconstruct a network from subgraphs whose vertices are selected from the magnitude of eigenvector elements.
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(a) ANDES, 3off2 subgraphs, N = 200 samples
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(b) ANDES, hill-climbing (BDe) subgraphs, N = 200 samples
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(c) ANDES, aracne subgraphs, N = 200 samples
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Figure S2: SCS-learn evaluations for ANDES benchmark network [223 nodes, 338 edges, 〈k〉 = 3.03]. F-score results for
an increasing proportion of eigenvectors (up to 40%) and different subgraph sizes (from 1.5% to 14% of vertices). Scores take
misorientations into account. Each point is an average over 5 datasets of n = 200 samples. Three learning algorithms are
embedded to reconstruct a network from subgraphs whose vertices are selected from the magnitude of eigenvector elements.
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MUNIN, 3off2 subgraphs, N = 935 samples
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MUNIN, hill-climbing (BIC) subgraphs, N = 935 samples
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MUNIN, aracne subgraphs, N = 935 samples
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Figure S3: SCS-learn evaluations for MUNIN benchmark network [1,041 nodes, 1,397 edges, 〈k〉 = 2.68]. F-score results
for an increasing proportion of eigenvectors (up to 40%) and different subgraph sizes (from 5% to 11% of vertices). Scores
take misorientations into account. Each point is an average over 5 datasets of n = 935 samples. Three learning algorithms are
embedded to reconstruct a network from subgraphs whose vertices are selected from the magnitude of eigenvector elements.

7



2.2 Evaluations against random partition and random classifier

Networks reconstructed in the SCS-learn phase based on the SCS-spectral subsets, are compared to recon-
struction obtained (i) with a random partitioning embedding 3off2, hc or aracne methods (Figure S4,
green solid line) and (ii) with the SCS-spectral subset identification embedding 3off2, hc, aracne meth-
ods (Figure S4, red solid line) or a random classifier (Figure S4, orange solid line). Interestingly, the
detection of connected subsets with the SCS-spectral step provide a very slight Precision improvement of
the random classifier for the first few eigenvectors, showing that magnitude of the eigenvector elements
provide information of relevant part of the underlying graph.

subgraphs of m = 12 variables (5%), N = 150 samples

● ●
●

● ●

●
● ● ●

● ●

0.0

0.1

0.2

0.3

0.4

0.5

Precision

scaleNet { 3off2 }
scaleNet { random }
random { 3off2 }

●
● ● ●

●
● ● ●

● ● ●

●

●
●

●

●

●

●

●

●

●
●

●
● ● ●

●

● ●
●

●

●

●

Recall

●
●

●

●
● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●
●

● ●

●

Fscore

● ●
●

● ●
● ● ●

● ● ●

●

●

●

●

●

●
● ●

●

●
●

● ●
● ●

● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0.4

0.5
scaleNet { hc }
scaleNet { random }
random { hc }

●
● ● ●

●
● ● ●

● ● ●

● ● ●
● ●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●
● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●
● ●

● ●
●

●

● ●
●

● ●
● ● ●

● ● ●

●

●

●

●

●
● ● ●

●

●

●

● ●
● ● ●

● ● ● ● ● ●

0.0

0.1

0.2

0.3

0.4

0.5

% eigenvectors
0.0 0.1 0.2 0.3 0.4

scaleNet { aracne }
scaleNet { random }
random { aracne }

●
● ● ●

●
● ● ●

● ● ●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

0.0 0.1 0.2 0.3 0.4
% eigenvectors

●
●

●

●
● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ●

● ● ●
● ●

●

0.0 0.1 0.2 0.3 0.4
% eigenvectors

● ●
●

● ●
● ● ●

● ● ●

●

●

●

●

● ● ●
●

●

●

●

Figure S4: SCS-learn evaluations for ANDES benchmark network against random partition and classifier [223 nodes, 338
edges, 〈k〉 = 3.03]. F-score results for an increasing proportion of eigenvectors (up to 40%) and subgraph sizes m = 5%.
Scores take misorientations into account. Each point is an average over 5 datasets of n = 150 samples. Three learning
algorithms and a random classifier are embedded to reconstruct a network from subgraphs whose vertices are selected from
the magnitude of eigenvector elements.
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2.3 Coverage of the ANDES benchmark network with SCS-learn{3off2}

The SCS-spectral step retrieves subsets of vertices that are at a small random walk distance from each
other based on eigenvector elements. As shown by the SCS-learn Precision improvement (Figure 2, main
text; left column, red solid line), leading eigenvectors recover most of the relevant interactions. The
Recall improvement (Figure 2, main text; middle column, red solid line) also shows that the remaining
interactions are captured by non principal eigenvectors. Complementary statistics in Figure S5 show that
97% of the ANDES benchmark network can be recovered with 20,000 samples, and 62% with 150 samples,
using 40% of the eigenvectors.
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Figure S5: Coverage of ANDES benchmark network with SCS-learn{3off2} at 150 and 20,000 samples [ANDES: 223 nodes,
338 edges, 〈k〉 = 3.03]. [left column] Count of true positive edges per eigenvector (up to 40%). [right column] Cumulative
count of true positive edges as a function of eigenvector. The blue solid line indicates the number of interactions in the true
network and the blue dashed line gives the maximum number of recovered true positive edges with SCS-learn{3off2}.
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2.4 ANDES and MUNIN benchmark network degree distribution
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Figure S6: Degree distribution comparison between ANDES and MUNIN benchmark networks Comparison of degree
distribution for ANDES [223 nodes, 338 edges, 〈k〉 = 3.03, kmax = 13] and MUNIN [1,041 nodes, 1,397 edges, 〈k〉 = 2.68,
kmax = 70]. (top row) Full degree distribution of ANDES and partial degree distribution of MUNIN. (bottom row) Full
degree distribution of MUNIN.
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3 Complementary evaluations of the SCS-consensus phase

The benchmark networks used for the evaluation of the SCS consensus predictions are ANDES[8] (223
nodes, 338 edges, 〈k〉 = 3.03) and MUNIN [9] (1,041 nodes, 1,397 edges, 〈k〉 = 2.68). The degree
distributions of these networks are given in Figure S6.

Evaluations on ANDES

Evaluations of consensus networks reconstructed from embedded learning approaches based on subgraphs
of m = 12, 16 and 20 nodes, and using n = 150 and 200 samples are given in Figures S7-S8. The ANDES
benchmark network is composed of 338 edges, thus scores for the consensus outcome are given based on
the 338 first ranked edges +/− 25% and 50%.

The consensus Precision scores (Figures S7-S8, left column, colored solid line) clearly outperform the indi-
vidually embedded learning approaches (Figures S7-S8, left column, gray dashed lines) as the proportion
of eigenvector grows.

All together, the SCS-consensus phase outcome provides high F-score network reconstructions (Figures S7-
S8, right column, colored solid line) for a reasonable number of eigenvectors (proportion ≥ 11.5%). The
SCS-consensus predictions also exhibit slightly higher F-scores when considering variable subsets of larger
sizes in the SCS-learn phase (Figures S7-S8, top to bottom, colored solid line).

Evaluations on MUNIN

Evaluations of consensus networks reconstructed from embedded learning approaches based on subgraphs
of m = 16, 32 and 53 nodes, and using n = 700 and 935 samples are given in Figure S9. The MUNIN
benchmark network is composed of 1,397 edges, thus scores for the consensus outcome are given based on
the 1,397 first ranked edges +/− 25% and 50%.

The consensus Precision scores (Figure S9, left column, colored solid line) clearly outperform the indi-
vidually embedded learning approaches (Figure S9, left column, gray dashed lines) as the proportion of
eigenvector grows.

All together, the SCS-consensus phase outcome provides relatively high F-score network reconstructions
(Figure S9, right column, colored solid line) for a reasonable number of eigenvectors. The SCS-consensus
predictions also exhibit slightly higher F-scores when considering variable subsets of larger sizes in the
SCS-learn phase (Figure S9, top to bottom, colored solid line).
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(a) ANDES, n = 150 samples, subgraphs of m = 12 variables (5%)
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(b) ANDES, n = 150 samples, subgraphs of m = 16 variables (7%)
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(c) ANDES, n = 150 samples, subgraphs of m = 21 variables (9%)
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Figure S7: SCS-consensus evaluations of ANDES network reconstruction [n = 150, m = 12, 16, 21]. Precision, Recall
and F-score results for the oriented ANDES network (223 nodes, 338 edges, 〈k〉 = 3.03). Results are given for an increasing
proportion of eigenvectors (horizontal axis) and subgraphs of 12, 16 and 21 nodes. Each point is an average over 5 datasets of
size n = 150 samples. Scores take misorientations into account (see main text). The individual reconstructions (gray dashed
lines) are combined in a consensus network (colored solid lines). Scores are computed based on a range of top consensus
edges which corresponds to the total number of ANDES edges +/− 25% or 50%.
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(a) ANDES, n = 200 samples, subgraphs of m = 12 variables (5%)
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(b) ANDES, n = 200 samples, subgraphs of m = 16 variables (7%)
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(c) ANDES, n = 200 samples, subgraphs of m = 21 variables (9%)
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Figure S8: SCS-consensus evaluations of ANDES network reconstruction [n = 200, m = 12, 16, 21]. Precision, Recall
and F-score results for the oriented ANDES network (223 nodes, 338 edges, 〈k〉 = 3.03). Results are given for an increasing
proportion of eigenvectors (horizontal axis) and subgraphs of 12, 16 and 21 nodes. Each point is an average over 5 datasets of
size n = 200 samples. Scores take misorientations into account (see main text). The individual reconstructions (gray dashed
lines) are combined in a consensus network (colored solid lines). Scores are computed based on a range of top consensus
edges which corresponds to the total number of ANDES edges +/− 25% or 50%.
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(a) MUNIN, n = 935 samples, subgraphs of m = 32 variables (3%)
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(b) MUNIN, n = 935 samples, subgraphs of m = 53 variables (5%)
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(c) MUNIN, n = 935 samples, subgraphs of m = 73 variables (7%)
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Figure S9: SCS-consensus evaluations of MUNIN network reconstruction [n = 935, m = 32, 53, 73]. Precision, Recall and
F-score results for the oriented MUNIN network (1041 nodes, 1397 edges, 〈k〉 = 2.68). Results are given for an increasing
proportion of eigenvectors (horizontal axis) and subgraphs of 32, 53 and 73 nodes. Each point is an average over 5 datasets of
size n = 935 samples. Scores take misorientations into account (see main text). The individual reconstructions (gray dashed
lines) are combined in a consensus network (colored solid lines). Scores are computed based on a range of top consensus
edges which corresponds to the total number of MUNIN edges +/− 25% or 50%.

14



4 Execution time comparisons

The SCS approach embeds multiple reconstruction methods in a spectral framework to learn possibly
oriented interactions from high-dimensional data by (i) combining the edges discovered from overlapping
subgraphs (main text, Figure 1, SCS-spectral & learn, (a-b)) and (ii) computing a consensus network (main
text, Figure 1, SCS-consensus, (c)).

We provide in this supplementary file execution times in seconds for the different phases and sub-steps of
these phases, namely:

(a) SCS-spectral

� W : mutual information matrix computation
� L : normalized Laplacian matrix computation
� {vk, λk} : normalized Laplacian matrix decomposition

(b) SCS-learn

� {Gm,+/−
vk,l

} : local reconstructions of subgraphs
(subgraphs from the m most positive and m most negative elements of vk)

� Gl embedded reconstruction
(combination of subgraphs for an individual reconstruction method)

(c) SCS-consensus

� {{Gm,+/−
vk,l

}}L : local reconstructions of subgraphs for L individual methods
� {Gl}L : embedded reconstruction for L individual methods
� G consensus reconstruction

In the following, we consider execution times for the reconstruction of human gut microbial ecosystem from
a complex biological dataset generated by high-throughput sequencing. This dataset involves p = 2,101
CAGs (co-abundant gene groups, see main text) and n = 663 samples from patients recruited in the
MetaHit project [12].
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Table S1 gives the execution times for the reconstruction of the gut microbial ecosystem using the SCS-
spectral & SCS-learn frameworks. Table S2 provides the overall times for the complete SCS reconstruction.
The sufficient proportion of eigenvectors for these SCS reconstructions was evaluated at 3% (63 eigenvec-
tors). The proportion of variables in each subgraph has been set to 1.9% (40 variables) to guarantee non
high-dimensional conditions. Lastly, execution times for each reconstruction method outside of any SCS

framework are given in Table S3.

W L {vk, λk} {{Gm,•
vk,l
}}L Gl Total (s.)

3off2

1880 13 13
11 1,161 3,078

ARACNE 12 595 2,513
hill-climbing 17 396 2,319

Table S1: SCS-spectral & learn execution times in seconds [2,101 variables, 663 samples]

W L {vk, λk} {{Gm,•
vk,l
}}L {Gl}L G Total (s.)

consensus 1880 13 13 17 1,161 52 3,136

Table S2: SCS-consensus execution time in seconds when integrating 3off2, ARACNE and hill-climbing [2,101 vari-
ables, 663 samples]

original method Total (s.)

3off2 30,531
ARACNE 1,996
hill-climbing no convergence in 48 hours

Table S3: Original reconstruction method execution times in seconds [2,101 variables, 663 samples]

The SCS method could reconstruct the gut microbial ecosystem in 3,136 sec., while the hill-climbing al-
gorithm did not converge in 48 hours. The ARACNE method allows a faster reconstruction (1,996 sec.)
than the SCS, the 3off2 or the hill-climbing methods. Nevertheless, the SCS framework provides a more
accurate reconstruction within reasonable time (3,136 sec.).

All together, our experiments on both standard benchmark and real complex data demonstrate that
our SCS approach is efficient and accurate under high-dimensional settings, addressing a major issue in
the field. A package is currently being implemented to provide the community with this novel robust
reconstruction method.
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5 SCS network enrichment in species sharing same assembly contigs

We compared the SCS results with the pairwise network of 307 edges reconstructed by Nielsen et al [12].
Specifically, we considered common predictions between the SCS top-ranked edges (%edges in {2%, 100%})
and Nielsen et al’s pairwise network (# and %Common edges). For these common interaction subsets, we
evaluated the enrichment in edges that relate MGS with genomic elements sharing the same assembly, as
this brings strong biological evidence for such predicted relationships (Table S4 and Figure S10).

SCS network SCS and pairwise networks
%edges #edges #Common edges %Common edges %Common edges,

same orientation

SCS edges,

contig enrichment (χ2)

2% 128 55 18% 75% 2.23×10−6

3% 192 76 25% 74% 4.45×10−9

5% 319 113 37% 78% 3.84×10−10

10% 639 124 40% 79% 2.15×10−8

15% 958 126 41% 79% 1.04×10−8

20% 1278 129 42% 78% 3.37×10−9

25% 1597 131 43% 78% 1.55×10−9

50% 3194 145 47% 77% 3.56×10−9

100% 6389 146 48% 76% 2.38×10−9

Table S4: SCS predictions enrichment in edges between MGS with genomic elements sharing the same
assembly contigs, χ2 test. Comparisons between the SCS and pairwise interactions [12]. Common edges are considered
for an increasing number of SCS edges. %Common edges, same orientation column indicates the number of edges common
to the SCS and Nielsen et al. networks with identical orientation. SCS edges, contig enrichment (χ2) column indicates the
enrichment in edges between MGS with genomic elements sharing the same assembly contigs.

Interestingly, although not all edges are expected to have genome assembly associations, the SCS predicted
edges are significantly enriched in interactions related to such assembly associations compare to the
pairwise network inferred by Fisher’s exact test. Furthermore, the interactions with genome assembly
associations are found in the top-ranked edges predicted by SCS, as can be seen from Figure S10.
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Figure S10: SCS and pairwise common predictions.
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