
Parameter estimation in large-scale systems

biology models: a parallel and self-adaptive

cooperative strategy (supplementary

information)

David R. Penas∗1, Patricia González†2, José A. Egea‡3, Ramón
Doallo§2 and Julio R. Banga¶1

1BioProcess Engineering Group, IIM-CSIC, Vigo (Spain)
2Computer Architecture Group, Universidade da Coruña (Spain)
3Department of Applied Mathematics and Statistics, Universidad

Politécnica de Cartagena (Spain)

∗david.penas@iim.csic.es
†patricia.gonzalez@udc.es
‡josea.egea@upct.es
§doallo@udc.es
¶julio@iim.csic.es

1

Contents

1 Source code availability 2

2 Con�guration settings for each experiment 3
2.1 Local solvers . 7

3 Measurement methodology and reported results 8

4 Performance comparison among di�erent parallel eSS schemes 11

5 Scalability analyses of the proposed saCeSS method 52

6 Performance analysis of the hybrid MPI+OpenMP saCeSS im-
plementation 56

7 Comparative between saCeSS and asynPDE 81

1

1 Source code availability

There is a public distribution of a package called "saCeSS library", where the
method proposed in this manuscript was implemented. The code is available at:

https://bitbucket.org/DavidPenas/sacess-library

This repository includes detailed documentation at:

[sacess-library]/doc/manual

Moreover, a set of scripts to reproduce the results were included in the repos-
itory in:

[sacess-library]/reproducibility_scripts

2

https://bitbucket.org/DavidPenas/sacess-library

2 Con�guration settings for each experiment

There are several tunable parameters in the eSS algorithm, and their values
may have a signi�cant impact on its performance. In the parallel eSS schemes
evaluated in this paper (i.e., cooperative and non-cooperative) each parallel pro-
cess adopts a di�erent strategy to increase the diversi�cation in the search. In
other words, each parallel process performs a di�erent eSS with a di�erent de-
gree of aggressiveness. An aggressive process performs frequent local searches,
trying to re�ne the solution very quickly, and keeps a small reference set of
solutions. It will perform well in problems with parameter spaces that have a
smooth shape. On the other hand, conservative processes have a large reference
set and perform local searches only sporadically. They spend more time com-
bining parameter vectors and exploring the di�erent regions of the parameter
space. Thus, they are more appropriate for problems with rugged parameter
spaces. Since the exact nature of the problem at hand is always unknown, it
is recommended to choose, at the beginning of the scheme, a range of settings
that yields conservative, aggressive, and intermediate processes.

There are several con�gurable settings that determine the strategy (conser-
vative/aggressive) used by the sequential eSS algorithm:

• Number of elements in the reference set (dimRefSet).

• Minimum number of iterations of the eSS algorithm between two local
searches (local.n2).

• Balance between intensi�cation and diversi�cation in the selection of ini-
tial points for the local searches (balance).

• Number of diverse solutions initially generated (ndiverse).

All these settings have qualitatively the same in�uence on the algorithm's be-
havior: large values lead to conservative executions, while small values lead to
aggressive executions. It is advisable to use a broad spectrum of aggressiveness,
such as the recommended default values [1] 0.5× npar (number of parameters)
< dimRefSet < 20 × npar; 0 < local.n2 < 100; 0 < balance < 0.5; and
5× npar < ndiverse < 20× npar.

In order to evaluate the proposed self-adaptive cooperative algorithm (saCeSS),
the benchmarks from the BioPreDyn-bench suite [2] have been tested. These
are challenging parameter estimation problems from the domain of computa-
tional system biology. The following were the settings used for the experiments
reported in the paper:

• Problem B1 : genome-wide kinetic model of S. cerevisiae. It contains
276 dynamic states, 44 observed states and 1759 parameters. Common
settings: ndiverse population=100; local solver =dhc; VTR=13753.

3

Speci�c settings per process (B1)

slave dimRefset n2 balance
1 7 1 0.0
2 11 4 0.0
3 14 10 0.25
4 20 20 0.5
5 24 100 0.25
6 22 50 0.25
7 17 15 0.25
8 14 7 0.25
9 9 2 0.0
10 5 1 0.0

• Problem B2 : dynamic model of the central carbon metabolism of E. coli.
It consists of 18 dynamic states, 9 observed states and 116 estimable pa-
rameters. Common settings: ndiverse population = 1160; local solver =
none; VTR = 250.

Speci�c settings per process (B2)

slave dimRefset n2 balance
1 12 1 0.0
2 20 4 0.0
3 25 10 0.25
4 35 20 0.5
5 43 100 0.25
6 38 50 0.25
7 30 15 0.25
8 25 7 0.25
9 16 2 0.0
10 9 1 0.0

• Problem B3 : dynamic model of enzymatic and transcriptional regulation
of the central carbon metabolism of E. coli. It contains 47 dynamic states
(fully observed) and 178 parameters to be estimated. Common settings:
ndiverse population = 1780; local solver = dhc; VTR = 0.37029.

4

Speci�c settings per process (B3)

slave dimRefset n2 balance
1 14 1 0.0
2 24 4 0.0
3 31 10 0.25
4 43 20 0.5
5 53 100 0.25
6 47 50 0.25
7 38 15 0.25
8 31 7 0.25
9 20 2 0.0
10 10 1 0.0

• Problem B4 : kinetic metabolic model of Chinese Hamster Ovary (CHO)
cells, with 34 dynamic states, 13 observed states and 117 parameters.
Common settings: ndiverse population = 1170; local solver = nl2sol;
VTR = 55.

Speci�c settings per process (B4)

slave dimRefset n2 balance
1 12 1 0.0
2 20 4 0.0
3 25 10 0.25
4 35 20 0.5
5 43 100 0.25
6 38 50 0.25
7 31 15 0.25
8 25 7 0.25
9 16 2 0.0
10 9 1 0.0

• Problem B5 : signal transduction logic model, with 26 dynamic states, 6
observed states and 86 parameters. Common settings: ndiverse population
= 860; local solver = dhc; VTR = 4200.

Speci�c settings per process (B5)

slave dimRefset n2 balance
1 10 1 0.0
2 17 4 0.0
3 22 10 0.25
4 30 20 0.5
5 37 100 0.25
6 33 50 0.25
7 26 15 0.25
8 22 7 0.25
9 14 2 0.0
10 8 1 0.0

5

• Problem B6 : dynamic model describing the gap gene regulatory network
of the vinegar �y, Drosophila melanogaster. It consists of three processes
formalized with 108-212 ODEs, and resulting in a model having 37 un-
known parameters. Common settings: ndiverse population = 370; local
solver = dhc; VTR = 108330.

Speci�c settings per process (B6)

slave dimRefset n2 balance
1 7 1 0.0
2 12 4 0.0
3 15 10 0.25
4 20 20 0.5
5 25 100 0.25
6 22 50 0.25
7 18 15 0.25
8 15 7 0.25
9 10 2 0.0
10 5 1 0.0

6

2.1 Local solvers

Local solvers play a major role in the scatter search metaheuristic, accelerating
convergence. Two di�erent local solvers were used in results reported in our
study:

• nl2sol, which stands for "Nonlinear Least-Squares Algorithm"[3]. This
solver uses the Jacobian of the residual vector to approximate and iter-
atively improve the input solution. The version used is the nl2sol solver
from the PORT library. IMPORTANT: in order to use this local solver,
the user needs to provide the vector of residuals, in addition to the scalar
objective (cost) function.

• DHC, which stands for "Dynamic Hill Climbing"[4]. It is a direct search
method recommended for those problems in which the objective and/or
constraint function are very noisy, or when the gradient information is
di�cult to approximate accurately. It can be regarded as a more robust
choice for those problems where nl2sol fails or performs badly.

Regarding the settings associated to local solvers in scatter search, in ad-
dition to the already commented local.balance and local.n2, the following are
relevant:

• local.n1 : Number of iterations before the �rst call to the local solver.

• local.tol : tolerance in local search.

• evaluation threshold : maximum number of evaluations to be performed in
the local solver.

Default values of these settings are detailed in saCeSS package (see Sec-
tion 1)).

7

3 Measurement methodology and reported results

Both in the manuscript and in this supplementary info, we present a com-
parative performance analysis of the proposed saCeSS method with respect to
several other parallel eSS schemes. The di�erent parallel scatter search schemes
compared are:

• np-eSS: where a speci�c np instances of sequential scatter search are
performed in parallel without cooperation among them.

• CeSS: a parallel cooperative eSS scheme where di�erent sequential eSS
exchange information synchronously based on a time elapse [1].

• saCeSS(worst): a parallel cooperative eSS scheme similar to the one
proposed, where di�erent sequential eSS exchange information driven by
quality of the solution, but that replace the worst entry of the RefSet

with the incoming cooperative solutions, and without the self-adaptive
mechanism to tune the settings of the di�erent eSS processes.

• saCeSS(coop): a parallel cooperative eSS scheme similar to the one
proposed, where di�erent sequential eSS exchange information driven by
quality of the solution, and that replace only one labeled cooperative entry
of the RefSet with the incoming solutions, but without the self-adaptive
mechanism to tune the settings of the di�erent eSS processes.

• saCeSS: the novel, more competitive, parallel self-adaptive eSS scheme
proposed.

Note that all these schemes are parallel, including the np-eSS. When execut-
ing np-eSS, np di�erent sequential eSS threads are running in parallel without
cooperation. This allows for the evaluation of the impact of the parallel coop-
eration in the cooperative schemes.

The speedups reported in the paper are calculated as Sp=Tref/T, where Tref
is the execution time of the algorithm of reference, most of the time the np-
eSS. Note that this is not the classical way of calculate the speedup in parallel
algorithms, where usually the Tref corresponds to the execution time of the
serial algorithm running in one processor. Results of the execution time for the
serial eSS running in one processor would be much larger and present a larger
dispersion, as it can be seen in Figure 1. Thus, speedups calculated versus
the serial algorithm will be much larger than the speedups reported in this
manuscript.

Figure 1 shows the results obtained for the serial eSS algorithm running on
a single processor, the parallel non cooperative np-eSS algorithm running on
10 processors and reporting the best execution time of those 10 independent
runs, and the saCeSS proposed using 10 processors. Note the logarithmic scale
used in Y-axis. As can be observed, the dispersion of the sequential execution
is huge for the B2 problem, presenting also outliers. However, when the 10 -
eSS algorithm is executed the dispersion drastically reduces and the outliers

8

disappear. This is because, for each test, we are running 10 independent eSS
algorithms and discarding all the results from the distribution obtained except
the best one. We provide in the manuscript results for np-eSS because we
truly believe that this represents a more honest comparison with saCeSS. If a
researcher has 10 free cores to run his/her problem, he/she can use those 10
cores even if he/she only has a sequential version of the algorithm implemented
and keep the best result. In previous �gure note that the saCeSS, thanks to the
cooperation between islands, obtained most of the execution times in the low
part of the distribution, signi�catively improving the 10 -eSS results.

Figure 1: Violin/Box plots of execution time for the serial eSS running on 1
processor, 10 -eSS and the saCeSS proposed using 10 cores. Benchmark B2,
VTR=250 and number of runs=70

Assessing the performance of metaheuristics is not an easy task, due to the
stochastic nature of these methods and the substantial dispersion of compu-
tational results. Thus, for each experiment reported, 20 runs were performed
and a statistical analysis was carried out. The number of executions (20) was
decided based on a pragmatic reason. The complexity of some problems such as
B3 causes a very large calculation times, di�culting for these cases the perform-
ing of a large number of runs in a reasonable time (note that we are limited by
the hardware availability of the local cluster). In most of the BioPreDyn bench-
marks these number of samples su�ces to accurately analyse the performance of
the proposal method. However, for B2 problem a reasonable doubt arise since
in the �rst 20 runs an outlier appears when executing saCeSS method in 10
processors. Thus, in order to determine if 20 samples su�ces also for B2, we
have performed 50 extra runs (i.e. 70 samples in total) for this benchmark and

9

saCeSS method using 10, 20 and 40 processors. Figure 2 shows a violin/boxplot
with the results obtained.

0

1000

2000

3000

4000

5000

6000

7000

8000

ex
ec

ut
io

n
tim

e
(s

)

saCeSS 10 proc_MPI saCeSS 20 proc_MPI saCeSS 40 proc_MPI

Figure 2: Violin/Box plots of execution time for saCeSS using 10, 20 and 40
cores. Benchmark B2, VTR=250 and number of runs=70.

As can be seen, the dispersion obtained is similar to the one reported in the
manuscript for 20 runs each. In general, one outlier appeared in each experi-
ment during the 70 runs, which, on our opinion, can be considered a very low
frequency. Also, the mean execution time obtained after 70 runs is as reported
in table 1. Although the results for 70 runs are slightly better than those for
only 20 runs, we can conclude that 20 runs su�ces to test and compare these
metaheuristics for the BioPreDyn set.

Table 1: Comparative mean execution time for saCeSS

#islands 70 runs 20 runs (reported in the manuscript)
10 1518± 1091 (s) 1694± 1677 (s)
20 1299± 818 (s) 1345± 619 (s)
40 1111± 1004 (s) 1326± 1764 (s)

10

4 Performance comparison among di�erent par-

allel eSS schemes

In this section we perform, for all the benchmarks in the BioPreDyn suite, a
comparative performance analysis of the di�erent parallel scatter search schemes
described in previous section, using 10 processors for each of the tests.

Benchmark B1

Figures 3, 4, 5, 7 and 6 show the convergence curves for each parallel scheme
compared with the proposed saCeSS. Each �gure illustrates the region between
the lower and upper bounds of the 20 runs performed for each experiment, with
a strong line representing the median value for each time moment. For Figures 4
and 5 parameter τ speci�es the time elapse between information sharing among
di�erent processes.

For comparison purposes the convergence curves of each method which are
closer to the median values of the results distribution are shown the Figure 8.

When evaluating stochastic optimization solvers, it is important to take into
account the dispersion of the experimental results. Figure 9 illustrates how the
proposed saCeSS method reduces the variability of the execution time compared
to the other parallel schemes. In addition, Table 2 details di�erent results from
these experiments, such as the mean number of evaluations needed, the mean
execution time and its deviation, and the minimum and maximum execution
times of the 20 independent runs.

11

Figure 3: Convergence curves for 10 -eSS vs saCeSS considering benchmark B1.

12

Figure 4: Convergence curves for CeSS(τ = 700s) vs saCeSS considering bench-
mark B1.

13

Figure 5: Convergence curves for CeSS(τ = 1400s) vs saCeSS considering bench-
mark B1.

14

Figure 6: Convergence curves of saCeSS(worst) vs saCeSS considering bench-
mark B1.

15

Figure 7: Convergence curves of saCeSS(coop) vs saCeSS considering bench-
mark B1.

16

Figure 8: Convergence curves for methods 10 -eSS, CeSS and saCeSS, corre-
sponding to the runs that are closer to the median values of the results distri-
bution considering benchmark B1.

17

Figure 9: Violin/Box plots of execution time for di�erent strategies in bench-
mark B1.

Table 2: Detailed results for benchmark B1
method mean iter mean evals mean time min/max time(s)

±std ±std ±std(s)
10 -eSS 80±30 199214±44836 5378 ± 1070 3124/7090
CeSS (τ = 700s) 109±49 188131±82834 6487 ± 3226 3769/18504
CeSS (τ = 1400s) 122±41 175331±98255 5018 ± 1477 2936/8134
saCeSS(worst) 136±72 211742±124121 5259 ± 2640 2040/12049
saCeSS(coop) 92±35 143145±61828 3759 ± 976 2026/6991
saCeSS 62±21 92122±35058 2753 ± 955 1489/5465

18

Benchmark B2

Figures 10, 11, 12, 14 and 13 show the convergence curves for each parallel
scheme compared with the proposed saCeSS. Each �gure illustrates the region
between the lower and upper bounds of the 20 runs performed for each experi-
ment, with a strong line representing the median value for each time moment.For
Figures 11 and 12 parameter τ speci�es the time elapse between information
sharing among di�erent processes. For comparison purposes the convergence
curves of each method for those experiments that are closer to the median val-
ues of the results distribution are shown the Figure 15. Figure 16 illustrates
how the proposed saCeSS method reduces the variability of the execution time
compared to the other parallel schemes. Finally Table 3 details results from
these experiments.

Figure 10: Convergence curves for 10 -eSS vs saCeSS considering benchmark
B2.

19

100 1000 2000

Wall-time (s)

250

500

1000
f(

x
)

bounds of runs CeSS(tau=400s)

median value CeSS(tau=400s)

bounds of runs saCeSS

median value saCeSS

Figure 11: Convergence curves for CeSS(τ = 400s) vs saCeSS considering
benchmark B2.

20

100 1000 2000

Wall-time (s)

250

500

1000
f(

x
)

bounds of runs CeSS(tau=800s)

median value CeSS(tau=800s)

bounds of runs saCeSS

median value saCeSS

Figure 12: Convergence curves for CeSS(τ = 800s) vs saCeSS considering
benchmark B2.

21

100 1000 2000

Wall-time (s)

250

500

1000
f(

x
)

bounds of runs saCeSS(worst)

median value saCeSS(worst)

bounds of runs saCeSS

median value saCeSS

Figure 13: Convergence curves of saCeSS(worst) vs saCeSS considering bench-
mark B2.

22

100 1000 2000

Wall-time (s)

250

500

1000
f(

x
)

bounds of runs saCeSS(coop)

median value saCeSS(coop)

bounds of runs saCeSS

median value saCeSS

Figure 14: Convergence curves of saCeSS(coop) vs saCeSS considering bench-
mark B2.

23

Figure 15: Convergence curves for methods 10 -eSS, CeSS and saCeSS, corre-
sponding to the runs that are closer to the median values of the results distri-
bution considering benchmark B2.

24

Figure 16: Violin/Box plots of execution time for di�erent strategies in bench-
mark B2.

Table 3: Detailed results for benchmark B2
method mean iter mean evals mean time min/max time(s)

±std ±std ±std(s)
10 -eSS 450±167 1504503±541257 1914 ± 714 995/4228
CeSS (τ = 400s) 452±278 1637125±1016688 2459 ± 2705 608/13075
CeSS (τ = 800s) 508±205 1802917±690613 1911 ± 1103 883/5537
saCeSS(worst) 480±268 1692240±955027 2140 ± 1206 490/4892
saCeSS(coop) 440±192 1528793±647677 1918 ± 833 990/4330
saCeSS 846±982 1247699±1222378 1694 ± 1677 481/8359

25

Benchmark B3

Figures 17, 18 and 19 show the convergence curves for each parallel scheme
compared with the proposed saCeSS. Each �gure illustrates the region between
the lower and upper bounds of the 20 runs performed for each experiment,
with a strong line representing the median value for each time moment. For
Figure 18 parameter τ speci�es the time elapse between information sharing
among di�erent processes.

For comparison purposes the convergence curves of each method for those
experiments that are closer to the median values of the results distribution are
shown the Figure 20.

Figure 21 illustrates how the proposed saCeSS method reduces the variability
of the execution time compared to the other parallel schemes for benchmark B3.
Table 4 details results from these experiments.

Figure 17: Convergence curves for 10 -eSS vs saCeSS considering benchmark
B3.

26

Figure 18: Convergence curves for CeSS(τ = 50000s) vs saCeSS considering
benchmark B3.

27

Figure 19: Convergence curves of saCeSS(coop) vs saCeSS considering bench-
mark B3.

28

Figure 20: Convergence curves for methods 10 -eSS, CeSS and saCeSS, corre-
sponding to the runs that are closer to the median values of the results distri-
bution considering benchmark B3.

29

Figure 21: Violin/Box plots of execution time for di�erent strategies in bench-
mark B3.

Table 4: Detailed results for benchmark B4
method mean iter mean evals mean time min/max time(s)

±std ±std ±std(s)
10 -eSS 10062±2528 66915128±15623835 511166 ± 135988 195256/785777
CeSS(τ = 50000s) 7288±5551 52592578±35513874 332721 ± 245829 107526/1107389
saCeSS(coop) 4323±3251 32604331±23357322 251305 ± 209082 51185/1061604
saCeSS 4113±3130 27647470±21488783 229888 ± 238970 46290/1129976

30

Benchmark B4

Figures 22, 23, 24, 26 and 25 show the convergence curves for each parallel
scheme compared with the proposed saCeSS. Each �gure illustrates the region
between the lower and upper bounds of the 20 runs performed for each experi-
ment, with a strong line representing the median value for each time moment.For
Figures 23 and 24 parameter τ speci�es the time elapse between information
sharing among di�erent processes.

For comparison purposes the convergence curves of each method for those
experiments that are closer to the median values of the results distribution are
shown the Figure 27.

Figure 28 illustrates how the proposed saCeSS method reduces the variability
of the execution time compared to the other parallel schemes for benchmark B4.
Table 5 details results from these experiments.

Figure 22: Convergence curves for 10 -eSS vs saCeSS considering benchmark
B4.

31

10
1

10
2

10
3

10
4

Wall-time (s)

55

100

1000

10000

100000

1000000

10000000

f(
x
)

bounds of runs CeSS(tau=100s)

median value CeSS(tau=100s)

bounds of runs saCeSS

median value saCeSS

Figure 23: Convergence curves for CeSS(τ = 100s) vs saCeSS considering
benchmark B4.

32

10
1

10
2

10
3

10
4

Wall-time (s)

55

100

1000

10000

100000

1000000

10000000

f(
x
)

bounds of runs CeSS(tau=200s)

median value CeSS(tau=200s)

bounds of runs saCeSS

median value saCeSS

Figure 24: Convergence curves for CeSS(τ = 200s) vs saCeSS considering
benchmark B4.

33

10
1

10
2

10
3

10
4

Wall-time (s)

55

100

1000

10000

100000

1000000

10000000

f(
x
)

bounds of runs saCeSS(worst)

median value saCeSS(worst)

bounds of runs saCeSS

median value saCeSS

Figure 25: Convergence curves of saCeSS(worst) vs saCeSS considering bench-
mark B4.

34

10
1

10
2

10
3

10
4

Wall-time (s)

55

100

1000

10000

100000

1000000

10000000

f(
x
)

bounds of runs saCeSS(coop)

median value saCeSS(coop)

bounds of runs saCeSS

median value saCeSS

Figure 26: Convergence curves of saCeSS(coop) vs saCeSS considering bench-
mark B4.

35

Figure 27: Convergence curves for methods 10 -eSS, CeSS and saCeSS, corre-
sponding to the runs that are closer the median values of the results distribution
considering benchmark B4.

36

Figure 28: Violin/Box plots of execution time for di�erent strategies in bench-
mark B4.

Table 5: Detailed results for benchmark B4
method mean iter mean evals mean time min/max time(s)

±std ±std ±std(s)
eSS 99±121 2230089±2068300 750 ± 692 22/2392
CeSS (τ = 100s) 140±386 1665954±2921838 817 ± 1909 44/8796
CeSS (τ = 200s) 119±87 1649723±1024833 518 ± 428 41/1375
saCeSS(worst) 34±34 947565±914204 319 ± 297 15/1093
saCeSS(coop) 39±30 1163458±927751 402 ± 303 33/1068
saCeSS 35±24 1017956±728328 343 ± 240 62/941

37

Benchmark B5

Figures 29, 30, 31, 33 and 32 show the convergence curves for each parallel
scheme compared with the proposed saCeSS. Each �gure illustrates the region
between the lower and upper bounds of the 20 runs performed for each experi-
ment, with a strong line representing the median value for each time moment.For
Figures 30 and 31 parameter τ speci�es the time elapse between information
sharing among di�erent processes.

For comparison purposes the convergence curves of each method for those
experiments that are closer to the median values of the results distribution are
shown the Figure 34.

Figure 35 illustrates how the proposed saCeSS method reduces the variability
of the execution time compared to the other parallel schemes for benchmark B5.
In addition, Table 6 details di�erent results from these experiments.

Figure 29: Convergence curves for 10 -eSS vs saCeSS considering benchmark
B5.

38

x10

Figure 30: Convergence curves for CeSS(τ = 200) vs saCeSS considering
benchmark B5.

39

x10

Figure 31: Convergence curves for CeSS(τ = 400s) vs saCeSS considering
benchmark B5.

40

x10

Figure 32: Convergence curves of saCeSS(worst) vs saCeSS considering bench-
mark B5.

41

x10

Figure 33: Convergence curves of saCeSS(coop) vs saCeSS considering bench-
mark B5.

42

Figure 34: Convergence curves for methods 10 -eSS, CeSS and saCeSS, corre-
sponding to the runs that are closer to the median values of the results distri-
bution considering benchmark B5.

43

Figure 35: Violin/Box plots of execution time for di�erent strategies in bench-
mark B5.

Table 6: Detailed results for benchmark B5
method mean iter mean evals mean time min/max time(s)

±std ±std ±std(s)
10 -eSS 16±4 69448±14570 901 ± 197 585/1288

CeSS (τ = 200s) 11±4 108481±36190 1481 ± 634 881/3654
CeSS (τ = 400s) 14±3 94963±20172 996 ± 264 683/1726
saCeSS(worst) 11±3 54824±14741 703 ± 202 429/1075
saCeSS(coop) 10±2 49622±9530 637 ± 131 347/913

saCeSS 10±3 51076±12696 658 ± 174 431/1129

44

Benchmark B6

Figures 36, 37, 38, 40 and 39 show the convergence curves for each parallel
scheme compared with the proposed saCeSS. Each �gure illustrates the region
between the lower and upper bounds of the 20 runs performed for each experi-
ment, with a strong line representing the median value for each time moment.
For Figure 37 parameter τ speci�es the time elapse between information sharing
among di�erent processes.

For comparison purposes the convergence curves of each method for those
experiments that are closer to the median values of the results distribution are
shown the Figure 41.

Figure 42 illustrates how the proposed saCeSS method reduces the variability
of the execution time compared to the other parallel schemes for benchmark B6.
Table 7 details results from these experiments.

Figure 36: Convergence curves for 10 -eSS vs saCeSS considering benchmark
B6.

45

x 10

Figure 37: Convergence curves for CeSS(τ = 1000s) vs saCeSS considering
benchmark B6.

46

Figure 38: Convergence curves for CeSS(τ = 2000s) vs saCeSS considering
benchmark B6.

47

Figure 39: Convergence curves of saCeSS(worst) vs saCeSS considering bench-
mark B6.

48

Figure 40: Convergence curves of saCeSS(coop) vs saCeSS considering bench-
mark B6.

49

Figure 41: Convergence curves for methods 10 -eSS, CeSS and saCeSS, corre-
sponding to the runs that are closer to the median values of the results distri-
bution considering benchmark B6.

50

Figure 42: Violin/Box plots of execution time for di�erent strategies in bench-
mark B6.

Table 7: Detailed results for benchmark B6
method mean iter mean evals mean time min/max time(s)

±std ±std ±std(s)
10 -eSS 4659±3742 9783720±8755231 8217 ± 7536 2779/32429
CeSS (τ = 1000s) 5919±5079 10475485±8978383 8109 ± 7441 1921/26433
CeSS (τ = 2000s) 6108±6850 10778260±12157617 7878 ± 9400 1880/42447
saCeSS(worst) 4243±3210 7383578±5581720 6157 ± 4650 576/15258
saCeSS(coop) 2501±1517 4394243±2689489 3638 ± 2302 771/10122
saCeSS 1500±1265 2594741±2214235 2177 ± 1933 1676/8228

51

5 Scalability analyses of the proposed saCeSS method

Figures 43, 44, 45 and 46 show the scalability of the proposed saCeSS when
the number of processors increases from 1 to 40. They demonstrate that the
saCeSS still improves the convergence results when the number of processors
grows, thanks to the asynchronous communication protocol.

200 1000 5000 10000
Wall-time (s)

13753

50000

100000

500000

1000000

2000000

f(
x)

eSS(1 proc)
saCeSS(10 proc_MPI)
saCeSS(20 proc_MPI)
saCeSS(40 proc_MPI)

Figure 43: Convergence curves for saCeSS using 1, 10, 20 and 40 processors,
corresponding to the runs that are closer to the median values of the results
distribution considering benchmark B1.

52

50 100 1000 5000 10000
Wall-time (s)

250

1000

2000

f(
x)

eSS (1 proc)
saCeSS (10 proc_MPI)
saCeSS (20 proc_MPI)
saCeSS (40 proc_MPI)

Figure 44: Convergence curves for saCeSS using 1, 10, 20 and 40 processors,
corresponding to the runs that are closer to the median values of the results
distribution considering benchmark B2.

53

101 102 103 104 105

Wall-time (s)

55

100

1000

10000

100000

1000000

10000000

f(
x)

eSS (1 proc)
saCeSS (10 proc_MPI)
saCeSS (20 proc_MPI)
saCeSS (40 proc_MPI)

Figure 45: Convergence curves for saCeSS using 1, 10, 20 and 40 processors,
corresponding to the runs that are closer to the median values of the results
distribution considering benchmark B4.

54

100 1000 2000
Wall-time (s)

4200

10000

20000

f(
x)

×104

eSS(1 proc)
saCeSS(10 proc_MPI)
saCeSS(20 proc_MPI)
saCeSS(40 proc_MPI)

Figure 46: Convergence curves for saCeSS using 1, 10, 20 and 40 processors,
corresponding to the runs that are closer to the median values of the results
distribution considering benchmark B5.

55

6 Performance analysis of the hybrid MPI+OpenMP

saCeSS implementation

This section shows the performance and scalability of the hybrid MPI+OpenMP
implementation proposed in the paper. Benchmarks B3 and B6 were excluded
of these evaluations: B3 due to our lack of available resources to run such long
executions, and B6 since its currently available implementation could not be
carried out with openMP enabled.

Benchmark B1

Figures 47, 48 and 49 allow to analyze the performance of the hybrid MPI+OpenMP
saCeSS implementation. For the same number of processors, those hybrid con-
�gurations that achieve a good balance between intensi�cation and diversi�ca-
tion perform better. Thus, for instance, the con�guration of 5 MPI processes
with 8 OpenMP threads each performs better than the con�guration with 20
MPI processes with 2 OpenMP threads each (see Figure 49).

Figures 50, 51, 52 illustrate the dispersion in the execution time results for
these di�erent con�gurations. Again, in general, those hybrid con�gurations
that achieve a good balance between intensi�cation and diversi�cation obtain a
reduction in the variability of the execution time.

56

Figure 47: Convergence curves for di�erent con�guration of saCeSS using 10
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B1.

57

Figure 48: Convergence curves for di�erent con�guration of saCeSS using 20
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B1.

58

Figure 49: Convergence curves for di�erent con�guration of saCeSS using 40
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B1.

59

Figure 50: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 10 processors considering benchmark B1.

60

Figure 51: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 20 processors considering benchmark B1.

61

Figure 52: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 40 processors considering benchmark B1.

62

Benchmark B2

Figures 53, 54 and 55 allow to analyze the performance of the hybrid MPI+OpenMP
saCeSS implementation. As for benchmark B1, using the same number of pro-
cessors, those hybrid con�gurations that achieve a good balance between inten-
si�cation and diversi�cation perform better. For instance, the con�guration of
5 MPI processes with 8 OpenMP threads each performs better than the con�g-
uration with 20 MPI processes with 2 OpenMP threads each (see Figure 55).

Figures 56, 57, 58 illustrate the dispersion in the execution time results
for these di�erent con�gurations. Again, achieving a good balance between
intensi�cation and diversi�cation is crucial to improve the performance of the
method, specially when the number of total processors grows.

Figure 53: Convergence curves for di�erent con�guration of saCeSS using 10
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B2.

63

Figure 54: Convergence curves for di�erent con�guration of saCeSS using 20
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B2.

64

Figure 55: Convergence curves for di�erent con�guration of saCeSS using 40
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B2.

65

Figure 56: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 10 processors considering benchmark B2.

66

Figure 57: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 20 processors considering benchmark B2.

67

Figure 58: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 40 processors considering benchmark B2.

68

Benchmark B4

Figures 59, 60 and 61 allow to analyze the performance of the hybrid MPI+OpenMP
saCeSS implementation. As it can be seen, performance of benchmark B4 is
heavily a�ected by the number of di�erent processes cooperating. That is, this
benchmark greatly bene�ts form the diversity introduced when the number of
MPI processes grows versus the intensify in the OpenMP search. Thus, con-
�gurations using all the available resources to run MPI cooperative processes
outperforms the hybrid con�gurations.

Figures 62, 63, 64 illustrate the dispersion in the execution time results
for these di�erent con�gurations. Again, it can be seen that, for benchmark
B4, the con�guration that only uses MPI processes ourperforms the hybrid
con�gurations.

Figure 59: Convergence curves for di�erent con�guration of saCeSS using 10
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B4.

69

Figure 60: Convergence curves for di�erent con�guration of saCeSS using 20
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B4.

70

Figure 61: Convergence curves for di�erent con�guration of saCeSS using 40
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B4.

71

Figure 62: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 10 processors considering benchmark B4.

72

Figure 63: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 20 processors considering benchmark B4.

73

Figure 64: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 40 processors considering benchmark B4.

74

Benchmark B5

Figures 65, 66 and 67 allow to analyze the performance of the hybrid MPI+OpenMP
saCeSS implementation. As for benchmarks B1 and B2, when the same number
of processors are used, those hybrid con�gurations that achieve a good balance
between intensi�cation and diversi�cation perform better. Thus, the con�gu-
ration of 5 MPI processes with 4 OpenMP threads each performs better than
the con�guration with 10 MPI processes with 2 OpenMP threads each (see
Figure 66).

Figures 68, 69, 70 illustrate the dispersion in the execution time results for
these di�erent con�gurations. The dispersion, again, is lower in those con�gu-
rations that balance the number of MPI processes and OpenMP threads.

Figure 65: Convergence curves for di�erent con�guration of saCeSS using 10
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B5.

75

Figure 66: Convergence curves for di�erent con�guration of saCeSS using 20
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B5.

76

Figure 67: Convergence curves for di�erent con�guration of saCeSS using 40
processors, corresponding to the runs that are closer to the median values of
the results distribution, for benchmark B5.

77

Figure 68: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 10 processors considering benchmark B5.

78

Figure 69: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 20 processors considering benchmark B5.

79

Figure 70: Violin/Box plots of execution time for di�erent con�gurations of
saCeSS using 40 processors considering benchmark B5.

80

7 Comparative between saCeSS and asynPDE

In order to evaluate the new method with respect to existing parallel meta-
heuristics, we compare it with another state of the art metaheuristic, Di�erential
Evolution (DE). To ensure a fair comparison, we choose a DE implementation
(asynPDE [5]) that improves global search through an asynchronous parallel
implementation based on a cooperative island-model, and that also improves
the local search by means of several heuristics also employed in the eSS, such
as the local solver, the tabu list, or the logarithmic search.

The convergence curves of the asynPDE and the saCeSS algorithms for 10
and 20 processors are shown in the following �gures. These �gures represent the
convergence curves for those experiments that are closer to the median values of
the results distribution. Although the best con�guration for the saCeSS method
is, in general, an hybrid MPI+OpenMP one, since the asynPDE method only
performs a coarse-grained parallelization, for comparison purposes the conver-
gence curves of saCeSS using only MPI processes are also shown. As it can be
seen in the �gures, in all cases the asynPDE algorithm progresses more slowly
than the saCeSS method.

81

Benchmark B1

Figures 71 and 72: comparative analysis between saCeSS and asynPDE with 10
and 20 processors for benchmark B1.

200 1000 5000 10000 50000
Wall-time (s)

13753

50000

100000

200000

f(
x)

saCeSS(10 proc_MPI)
saCeSS(5 proc_MPI x 2 th_openMP)
asynPDE(10 proc_MPI)

Figure 71: Convergence curves for asynPDE algorithm vs saCeSS using 10 pro-
cessors considering benchmark B1.

82

200 1000 5000 10000 50000
Wall-time (s)

13753

50000

100000

f(
x)

saCeSS(20 proc_MPI)
saCeSS(5 proc_MPI x 4 th_openMP)
asynPDE(20 proc_MPI)

Figure 72: Convergence curves for asynPDE algorithm vs saCeSS using 20 pro-
cessors considering benchmark B1.

83

Benchmark B2

Figures 73 and 74 comparative analysis between saCeSS and asynPDE with 10
and 20 processors for benchmark B2.

20 100 1000 5000
Wall-time (s)

250

1000

2000

f(
x)

saCeSS (10 proc_MPI)
saCeSS (5 proc_MPI x 2 th_openMP)
asynPDE (10 proc_MPI)

Figure 73: Convergence curves for asynPDE algorithm vs saCeSS using 10 pro-
cessors considering benchmark B2.

84

20 100 1000 5000
Wall-time (s)

250

1000

2000

f(
x)

saCeSS (20 proc_MPI)
saCeSS (5 proc_MPI x 4 th_openMP)
asynPDE (20 proc_MPI)

Figure 74: Convergence curves for asynPDE algorithm vs saCeSS using 20 pro-
cessors considering benchmark B2.

85

Benchmark B4

The following �gures 75 and 76 comparative analysis between saCeSS and asyn-
PDE with 10 and 20 processors for benchmark B4.

101 102 103 104

Wall-time (s)

55

100

1000

10000

100000

1000000

10000000

f(
x)

saCeSS(10 proc_MPI)
saCeSS(5 proc_MPI x 2 th_openMP)
asynPDE(10 proc_MPI)

Figure 75: Convergence curves for asynPDE algorithm vs saCeSS using 10 pro-
cessors considering benchmark B4.

86

101 102 103

Wall-time (s)

55

100

1000

10000

100000

1000000

10000000

f(
x)

saCeSS(20 proc_MPI)
saCeSS(5 proc_MPI x 4 th_openMP)
asynPDE(20 proc_MPI)

Figure 76: Convergence curves for asynPDE algorithm vs saCeSS using 20 pro-
cessors considering benchmark B4.

87

Benchmark B5

Figures 77 and 78 comparative analysis between saCeSS and asynPDE with 10
and 20 processors for benchmark B5.

100 500 1000
Wall-time (s)

4200

10000

f(
x)

saCeSS(10 proc_MPI)
saCeSS(5 proc_MPI x 2 th_openMP)
asynPDE(10 proc_MPI)

Figure 77: Convergence curves for asynPDE algorithm vs saCeSS using 10 pro-
cessors considering benchmark B5.

88

100 500 1000
Wall-time (s)

4200

10000

f(
x)

saCeSS(20 proc_MPI)
saCeSS(5 proc_MPI x 4 th_openMP)
asynPDE(20 proc_MPI)

Figure 78: Convergence curves for asynPDE algorithm vs saCeSS using 20 pro-
cessors considering benchmark B5.

89

References

[1] Villaverde, A.F., Egea, J.A., Banga, J.R.: A cooperative strategy for param-
eter estimation in large scale systems biology models. BMC Systems Biology
6:75 (2012)

[2] Villaverde, A.F., Henriques, D., Smallbone, K., Bongard, S., Schmid, J.,
Cicin-Sain, D., Crombach, A., Saez-Rodriguez, J., Mauch, K., Balsa-Canto,
E., Mendes, P., Jaeger, J., Banga, J.R.: Biopredyn-bench: a suite of bench-
mark problems for dynamic modelling in systems biology. BMC Systems
Biology 9:1-15 (2015). In press

[3] Dennis, J.E. Jr., Gay, D.M., Welsch, R.E.: Algorithm 573: Nl2sol - an
adaptive nonlinear least-squares algorithm. ACM Trans. Math. Softw. 7(3),
369�383 (1981)

[4] de la Maza, M., Yuret, D.: Dynamic hill climbing. AI Expert 9(3), 26�31
(1994)

[5] Penas, D., Banga, J., González, P., Doallo, R.: Enhanced parallel di�erential
evolution algorithm for problems in computational systems biology. Applied
Soft Computing 33, 86�99 (2015)

90

	Source code availability
	Configuration settings for each experiment
	Local solvers

	Measurement methodology and reported results
	Performance comparison among different parallel eSS schemes
	Scalability analyses of the proposed saCeSS method
	Performance analysis of the hybrid MPI+OpenMP saCeSS implementation
	Comparative between saCeSS and asynPDE

