Direct Substitution of Arylalkynyl Carbinols Provides Access to Diverse Terminal Acetylene Building Blocks

Narendran G-Dayanandan[¶], Eric W. Scocchera[¶], Santosh Keshipeddy[¶], Heather F. Jones[¶], Amy C. Anderson[¶], Dennis L.Wright^{¶§}

[¶]Department of Pharmaceutical Sciences, [§]Department of Chemistry, University of Connecticut, Storrs, Connecticut, 06269, United States

Email: dennis.wright@uconn.edu

Table of Contents

General experimental	S2
Suzuki coupling procedure and experimental for aldehydes 1a-1j	S2
General procedure for alkynol synthesis and experimental for compounds 10a-10j	S9
Deoxygenation procedure and experimental for compounds 11a-11k	S17
General methylation procedure and experimental for compounds 12a-12j	S24
General dimethylation procedure and experimental for compounds 13a-13j	S31
High resolution copies of ¹ H and ¹³ C NMR spectra	S39

The ¹H and ¹³C NMR spectra were recorded on Bruker instruments at 500 MHz. Chemical shifts are reported in ppm and are referenced to residual CHCl₃ solvent; 7.24 and 77.23 ppm for ¹H and ¹³C, residual solvent MeOH; 4.78, 3.31 and 49.15 ppm respectively. The high-resolution mass spectrometry was provided by University of Connecticut Mass Spectrometry Laboratory using AccuTOF mass spectrometer and/or using DART source. IR data were obtained using Alpha diamond ATR probe. TLC analyses were performed on Sorbent Technologies silica gel HL TLC plates. All glassware was oven-dried and allowed to cool under an argon atmosphere. Anhydrous dichloromethane, and tetrahydrofuran were used directly from Baker Cycle-Tainers. All reagents were used directly from commercial sources unless otherwise stated. Boronic acids for Suzuki coupling were purchased from Frontier Scientific, Inc, AK Scientific, Sigma Aldrich. The top B ring aromatic (a) 5-bromo-2-methoxybenzaldehyde and 3-formyl-4methoxyphenylboronic acid were purchased commercially from Sigma Aldrich and AK Scientific , (b) 3-bromo-5-methoxybenzaldeyde and (c) 7-bromobenzo[d][1,3]dioxole-5literature^{1,2} synthesized according to the (d) 3-bromo-4.5carbaldehyde were dimethoxybenzaldehyde was obtained by the methylation of vanillin³.

General procedure for the Suzuki Coupling

An oven dried 100 mL pressure vessel with stir bar was cooled to room temperature under argon. Bromo benzaldehyde, boronic acid and Cs₂CO₃ in anhydrous dioxane were stirred and purged under argon for 15 minutes. Pd(PPh₃)₂Cl₂ was then added and purging continued for further 10 minutes. The pressure vessel was sealed with a screw cap and placed in a preheated oil bath at 80 °C for 12 h. The dark colored reaction mixture was cooled, diluted with ether, filtered through celite and rinsed with ether. The filtered solution was concentrated, diluted with CH₂Cl₂, preabsorbed onto silica gel and purified by column chromatography.

2-methoxy-5-(pyridin-4-yl) benzaldehyde (1a)

According to the general Suzuki coupling procedure bromo aldehyde (3.50 g, 16.5 mmol), pyridine-4-boronic acid (4.05 g, 32.9 mmol), Cs₂CO₃ (16.1 g, 4.93 mmol), Pd(PPh₃)₂Cl₂ (1.16 g, 1.65 mmol, 10 mol% Pd) and anhydrous dioxane (16.5 mL) was heated at 80 °C for 12 h. Following the general workup and flash chromatography (SiO₂, 60 g, 50% EtOAc/hexanes) biaryl aldehyde was obtained as a pale white solid (3.90 g, 85%): TLC R_f = 0.13 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 10.47 (s, 1H), 8.60 (d, *J* = 6.0 Hz, 2H), 8.09 (d, *J* = 2.4 Hz, 1H), 7.81 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.44 (d, *J* = 6.0 Hz, 2H), 7.07 (d, *J* = 8.7 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.4, 162.5, 150.5, 146.7, 134.2, 130.6, 127.0, 125.3, 121.1, 112.7, 56.1; IR (neat cm⁻¹) 3063, 2976, 2896, 1677,1603, 1271, 804, 504; HRMS (DART, M⁺ + H) *m/z* 214.0886 (calculated for C₁₃H₁₂NO₂, 214.0868).

3-methoxy-5-(pyridin-4-yl) benzaldehyde (1b)

According to the general Suzuki coupling procedure bromo aldehyde (1.70 g, 7.91 mmol), pyridine-4-boronic acid (1.94 g, 15.8 mmol), Cs₂CO₃ (7.72 g, 23.7 mmol), Pd(PPh₃)₂Cl₂ (0.55 g,

23.7 mmol, 10 mol% Pd) and anhydrous dioxane (8 mL) was heated at 80 °C for 12 h. Following the general workup and flash chromatography (SiO₂, 20 g, 50% EtOAc/hexanes) biaryl aldehyde was obtained as a pale white solid (1.38 g, 82%): TLC R_f = 0.2 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 10.00 (s, 1H), 8.66 (d, J = 5.0 Hz, 2H), 7.67 (s, 1H), 7.48 (d, J = 5.0 Hz, 2H), 7.41 (s, 1H), 7.37 (s, 1H), 3.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 191.7, 160.9, 150.7, 146.9, 140.7, 138.7, 121.8, 119.9, 112.9, 100.1, 55.9; IR (neat cm⁻¹) 3013, 2972, 2834, 1693, 1586, 1468, 1217, 1151, 1046, 852, 816; HRMS (DART, M⁺ + H) *m/z* 214.0897 (calculated for C₁₃H₁₂NO₂, 214.0868).

3,4-dimethoxy-5-(pyridin-4-yl)benzaldehyde (1c)

According to the general Suzuki coupling procedure bromo aldehyde (1.06 g, 4.33 mmol), pyridine-4-boronic acid (1.06 g, 8.65 mmol), Cs₂CO₃ (4.22 g, 12.98 mmol), Pd(PPh₃)₂Cl₂ (0.30 g, 0.43 mmol, 10 mol% Pd) and anhydrous dioxane (4.3 mL) was heated at 80 °C for 12 h. Following the general workup and flash chromatography (SiO₂, 30 g, 50% EtOAc/hexanes) biaryl aldehyde was obtained as a pale yellow solid (0.84 g, 80%): TLC R_f = 0.2 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 9.92 (s, 1H), 8.66 (d, *J* = 6.0 Hz, 2H), 7.49 (d, *J* = 2.0 Hz, 1H), 7.45 – 7.44 (m, 3H), 3.96 (s, 3H), 3.73 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 154.0, 152.2, 150.1, 145.1, 133.5, 132.8, 126.4, 124.1, 111.2, 61.3, 56.4; IR (neat cm⁻¹)

3058, 3016, 2838, 2708, 1692, 1579, 1460, 1297, 1048, 816; HRMS (DART, $M^+ + H$) *m/z* 244.0999 (calculated for C₁₄H₁₄NO₃, 244.0974).

7-(pyridin-4-yl)benzo[d][1,3]dioxole-5-carbaldehyde (1d)

According to the general Suzuki coupling procedure bromo aldehyde (3.04 g, 13.3 mmol), pyridine-4-boronic acid (3.26 g, 26.6 mmol), K₃PO₄ (4.80 g, 22.6 mmol), Pd₂(dba)₃ (1.21 g, 1.32 mmol, 10 mol% Pd), PCy₃ (1.11 g, 3.90 mmol) and anhydrous dioxane (36 mL), H₂O (17 mL) was heated at 100 °C for 12 h. Following the general workup and flash chromatography (SiO₂, 60 g, 50% EtOAc/hexanes) biaryl ketone **10** was obtained as a pale white solid (2.41 g, 80%): TLC R_f = 0.2 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 1H), 8.69 (d, *J* = 6.0 Hz, 2H), 7.67 – 7.64 (m, 3H), 7.36 (s, 1H), 6.18 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 150.8, 150.6, 149.7, 142.0, 132.5, 127.0, 122.2, 120.0, 107.5, 102.8; IR (neat cm⁻¹) 3337, 3062, 2915, 1685, 1594, 1402, 1097, 891; HRMS (DART, M⁺ + H) *m/z* 228.0689 (calculated for C₁₃H₁₀NO₃, 228.0661).

2-methoxy-5-(pyrazin-2-yl) benzaldehyde (1e)

According to the general Suzuki coupling procedure iodopyrazine (1.11 g, 5.39 mmol), 3formyl-4-methoxyphenylboronic acid (1.94 g, 10.8 mmol), Cs₂CO₃ (5.27 g, 16.2 mmol), Pd(PPh₃)₂Cl₂ (0.40 g, 0.54 mmol, 10% Pd) and anhydrous dioxane (6 mL) was heated at 80 °C for 12 h. Following the general workup and flash chromatography (SiO₂, 30 g, 50% EtOAc/hexanes) biaryl aldehyde was obtained as a pale white solid (0.84 g, 73%): TLC R_f = 0.3 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 10.49 (s, 1H), 9.01 (s, 1H), 8.57 (s, 1H), 8.45 (dd, J = 9.3, 2.1 Hz, 2H), 8.29 (dd, J = 8.7, 2.1 Hz, 1H) 7.12 (d, J = 8.8 Hz, 1H), 3.98 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.4, 163.1, 151.5, 144.3, 143.0, 141.8, 134.5, 129.2, 127.1, 125.2, 112.7, 56.2; IR (neat cm⁻¹) 3055, 2980, 2884, 1675, 1604, 1454, 1414, 1392, 1272, 1256, 1112, 1010, 825, 512; HRMS (DART, M⁺ + H) *m/z* 215.0831 (calculated for C₁₂H₁₁N₂O₂, 215.0821).

7-(pyrimidin-5-yl) benzo[d][1,3]dioxole-5-carbaldehyde (1f)

Bromo aldehyde (0.8 g, 3.49 mmol), pyrimidine-5-boronic acid (0.86 g, 6.99 mmol), K₃PO₄ (1.26 g, 5.94 mmol), Pd₂(dba)₃ (0.32 g, 0.35 mmol, 10% Pd), PCy₃ (0.29 g, 1.05 mmol) anhydrous dioxane (9.4 mL), H₂O (4.7 mL) was heated at 100 °C for 12 h. Following the general workup and flash chromatography (SiO₂, 20 g, 50% EtOAc/hexanes) biaryl aldehdye was obtained as a pale white solid (0.58 g, 73%): TLC R_f = 0.3 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 9.89 (s, 1H), 9.21 (s, 1H), 9.10 (s, 2H), 7.62 (d, *J* = 1.5 Hz, 1H), 7.39 (d, *J* = 1.5 Hz, 1H), 6.19 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 189.9, 158.2, 155.6, 150.6, 149.7, 132.9,

128.8, 126.3, 116.2, 107.9, 102.9; IR (neat cm⁻¹) 3062, 2919, 2795, 1682, 1411, 1253, 1091, 933, 720; HRMS (DART, M⁺ + H) *m/z* 229.0628 (calculated for C₁₂H₉N₂O₃, 229.0613).

2-methoxy-5-(1-methyl-1H-imidazol-5-yl) benzaldehyde (1g)

According to the general Suzuki coupling procedure 5-bromo-1-methyl-1H-imidazole (1.05 g, 6.50 mmol), 3-formyl-4-methoxyphenyl boronic acid (1.75 g, 9.75 mmol), sat. Na₂CO₃ (3.25 mL), PdCl₂dppf (0.095 g, 0.130 mmol, 2 mol% Pd) and anhydrous ethanol (30 mL), toluene (5 mL) was heated at 85 °C for 2 h. Following the general workup and flash chromatography (SiO₂, 20 g, 3%MeOH/CH₂Cl₂) biaryl aldehyde was obtained as an orange solid (0.98 g, 70%): TLC R_f = 0.06 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 10.47 (s, 1H), 7.81 (d, *J* = 2.1 Hz, 1H), 7.56 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.51 (br s, 1H), 7.06 - 7.05 (m, 2H), 3.96 (s, 3H), 3.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.0, 162.5, 139.1, 135.9, 132.0, 128.3, 128.1, 125.1, 122.8, 112.4, 55.9, 32.3; IR (neat cm⁻¹) 3101, 2971, 2945, 2860, 2768, 1681, 1614, 1482, 1245, 1114, 1017, 827; HRMS (DART, M⁺ + H) *m/z* 217.0998 (calculated for C₁₂H₁₃N₂O₂, 217.0977).

2-methoxy-5-(pyrimidin-5-yl)benzaldehyde (1h)

According to the general Suzuki coupling procedure bromo aldehyde (1.50 g, 6.97 mmol), pyrimidine-5-boronic acid (1.73 g, 13.9 mmol), Cs₂CO₃ (6.81 g, 20.9 mmol), Pd(PPh₃)₂Cl₂ (0.49 g, 0.70 mmol, 10 mol% Pd) and anhydrous dioxane (5 mL) was heated at 80 °C for 12 h. Following the general workup and flash chromatography (SiO₂, 30 g, 50% EtOAc/hexanes) biaryl aldehyde was obtained as a pale white solid (1.04 g, 70%): TLC R_f = 0.2 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 10.51 (s, 1H), 9.18 (s, 1H), 8.93 (s, 2H), 8.06 (d, *J* = 2.3 Hz, 1H), 7.77 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.15 (d, *J* = 8.7 Hz, 1H), 3.99 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.3, 162.5, 157.7, 154.7, 134.2, 133.2, 127.1, 127.0, 125.6, 113.1, 56.2; IR (neat cm⁻¹) 3035, 2849, 2760, 1742, 1606, 1498, 1414, 1387, 1186, 1014, 722; HRMS (DART, M⁺ + H) *m/z* 215.0841 (calculated for C₁₂H₁₁N₂O₂, 215.0821).

5-(pyridin-4-yl) thiophene-2-carbaldehyde (1i)

According to the general Suzuki coupling procedure bromo aldehyde (0.56 g, 2.93 mmol), pyridine-4-boronic acid (0.72 g, 5.86 mmol), Cs₂CO₃ (2.86 g, 8.79 mmol), Pd(PPh₃)₂Cl₂ (0.21 g, 0.30 mmol, 10 mol% Pd) and anhydrous dioxane (5 mL) was heated at 80 °C for 12 h. Following the general workup and flash chromatography (SiO₂, 20 g, 50% EtOAc/hexanes) biaryl aldehyde was obtained as a pale white solid (0.44 g, 80%): TLC R_f = 0.2 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 9.91 (s, 1H), 8.66 (d, J = 4.6 Hz, 2H), 7.76 (d, J = 3.9 Hz, 1H), 7.55 (d, J = 3.9 Hz, 1H), 7.50 (d, J = 4.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 182.9, 151.0, 150.3, 144.4, 140.2, 137.1, 126.2, 120.4; IR (neat cm⁻¹) 3304, 3091, 1713, 1415, 1214, 1047, 799; HRMS (DART, M⁺ + H) *m/z* 190.0351 (calculated for C₁₀H₈NOS, 190.0327).

5-(3,5-dimethylisoxazol-4-yl)-2-methoxybenzaldehyde (1j)

According to the general Suzuki coupling procedure 4-iodo-3,5-dimethylisoxazole (1.14 g, 5.10 mmol), 3-formyl-4-methoxyphenyl boronic acid (4.50 g, 25.5 mmol), Na₂CO₃ (3.50 g, 33.1 mmol), Pd(PPh₃)₄ (0.12 g, 0.10 mmol, 2 mol% Pd), anhydrous dioxane (75 mL), H₂O (17 mL) was heated at 85 °C for 2 h. Following the general workup and flash chromatography (SiO₂, 30 g, 50% EtOAc/hexanes) biaryl aldehyde was obtained as a pale white solid (1.04 g, 88%): TLC R_f = 0.6 (50% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 10.5 (s, 1H), 7.68 (d, *J* = 2.2 Hz, 1H), 7.41 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.05 (d, *J* = 8.6 Hz, 1H), 3.95 (s, 3H), 2.35 (s, 3H), 2.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.5, 165.5, 161.3, 158.7, 137.0, 129.0, 125.2, 123.2, 115.5, 112.5, 56.1, 11.7, 10.9; IR (neat cm⁻¹) 3038, 2923, 2862, 2724, 1682, 1601, 1268, 1120, 1014, 825; HRMS (DART, M⁺ + H) *m/z* 232.0993 (calculated for C₁₃H₁₄NO₃, 232.0976).

General Procedure for Alkyne Addition

A 50 mL flask with stir bar was flame dried under argon. Ethynyltrimethyl silane was added to 2M THF at 0 °C and stirred for 2 minutes. Isopropyl magnesium chloride was added dropwise and stirred initially at 0 °C for 30 minutes followed by another 30 minutes at room temperature. The grey colored Grignard reagent was cooled to 0 °C and the aldehyde in (0.1 M) THF was added dropwise for 5 minutes. The reaction was followed by TLC and quenched with sat. NH₄Cl. The organic layer was separated and water layer extracted 3 times with ether. The

combined organic extracts were dried with MgSO₄ filtered and evaporated. The crude compound was pre-absorbed onto silica gel and purified by column chromatography.

1-(2-methoxy-5-(pyridin-4-yl) phenyl)-3-(trimethylsilyl) prop-2-yn-1-ol (10a)

According to the general nucleophilic addition ethynyltrimethyl silane (6.6 mmol, 0.93 mL) in THF (2 M, 3.29 mL) and isopropyl magnesium chloride (2 M, 3.3 mL) was stirred. At 0 °C was added the aldehyde (5.06 mmol, 1.07 g) in THF (0.1 M, 50 mL).Following the general workup and flash chromatography (SiO₂, 40 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a white solid (1.48 g, 94%): TLC R_f = 0.1 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 5.7 Hz, 2H), 7.91 (d, J = 2.2 Hz, 1H), 7.58 (dd, J = 8.5, 2.2 Hz, 1H), 7.44 (d, J = 6.0 Hz, 2H), 6.98 (d, J = 8.5 Hz, 1H), 5.77 (s, 1H), 3.92 (s, 3H), 0.19 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 158.0, 150.3, 148.0, 130.5, 129.8, 128.3, 127.0, 121.2, 111.6, 104.7, 91.5, 61.0, 56.0, 0.1; IR (neat cm⁻¹) 3139, 2977, 2868, 2165, 1562, 1504, 1228, 1011; HRMS (DART, M⁺ + H) *m/z* 312.1393 (calculated for C₁₈H₂₂NO₂Si, 312.1420).

1-(3-methoxy-5-(pyridin-4-yl) phenyl)-3-(trimethylsilyl) prop-2-yn-1-ol (10b)

According to the general nucleophilic addition ethynyltrimethyl silane (2.1 mmol, 0.3 mL) in THF (2M, 1.0 mL) and isopropyl magnesium chloride (2M, 1.0 mL) was stirred. At 0 °C was added the aldehyde (1.7 mmol, 0.4 g) in THF (0.1M, 17 mL).Following the general workup and flash chromatography (SiO₂, 20 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a brownish oil (0.51 g, 94%): TLC R_f = 0.1 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.59 (br s, 2H), 7.46 (d, J = 4.5 Hz, 2H), 7.38 (s, 1H), 7.19 (s, 1H), 7.07 (s, 1H), 5.50 (s, 1H), 3.85 (s, 3H), 0.18 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 160.5, 150.1, 148.5, 143.5, 139.7, 122.0, 118.0, 113.1, 112.7, 105.4, 91.7, 64.7, 55.7, 0.0; IR (neat cm⁻¹) 3153, 2958, 2899, 2837, 2170, 1648, 1550, 1325, 1217, 1049; HRMS (DART, M⁺ + H) *m/z* 312.1434 (calculated for C₁₈H₂₂NO₂Si, 312.1420).

According to the general nucleophilic addition ethynyltrimethyl silane (3.79 mmol, 0.54 mL,) in THF (2M, 1.9 mL) and isopropyl magnesium chloride (2M, 1.9 mL) was stirred. At 0 °C was added the aldehyde (2.5 mmol, 0.6 g) in THF (0.1M, 25 mL).Following the general workup and flash chromatography (SiO₂, 30 g, 50% 3%MeOH/CH₂Cl₂) alkynol was obtained as a colorless oil (0.82g, 95%): TLC R_f = 0.1 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, J = 5.0 Hz, 2H), 7.45 (d, J = 6.0 Hz, 2H), 7.21 (d, J = 1.8 Hz, 1H), 7.09 (d, J = 1.8 Hz, 1H), 5.45 (s, 1H), 3.91 (s, 3H), 3.59 (s, 3H), 0.18 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 153.4, 149.5, 146.7,

146.4, 137.3, 132.6, 124.3, 120.4, 111.7, 105.5, 91.8, 64.6, 61.0, 56.2, 0.0; IR (neat cm⁻¹) 3085, 3009, 2964, 2821, 2162, 1642, 1410, 1241, 1134, 1049, 828; HRMS (DART, M⁺ + H) m/z 342.1516 (calculated for C₁₉H₂₄NO₃Si, 342.1525)

1-(7-(pyridin-4-yl) benzo[d][1,3] dioxol-5-yl)-3-(trimethylsilyl) prop-2-yn-1-ol (10d)

According to the general nucleophilic addition ethynyltrimethyl silane (3.78 mmol, 0.53 mL) in THF (0.53 mL) and isopropyl magnesium chloride (2M, 1.9 mL) was stirred. At 0 °C was added the aldehyde (1.26 mmol, 0.30 g) in THF (0.1M, 12.6 mL).Following the general workup and flash chromatography (SiO₂, 15 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a yellow hygroscopic solid (0.41 g, 99%): TLC R_f = 0.1 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 4.3 Hz, 2H), 7.61 (d, J = 5.8 Hz, 2H), 7.28 (s, 1H), 7.09 (s, 1H), 6.05 (s, 2H), 5.42 (s, 1H), 0.18 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 150.0, 148.8, 145.6, 143.6, 135.9, 122.3, 119.2, 119.0, 108.3, 105.4, 101.8, 91.6, 64.5, 0.0; IR (neat cm⁻¹) 3140, 2958, 2896, 2170, 1639, 1600, 1402, 1248, 1195, 1044, 1002, 824; HRMS (DART, M⁺ + H) *m/z* 326.1223 (calculated for C₁₈H₂₀NO₃Si, 326.1212).

1-(2-methoxy-5-(pyrazin-2-yl) phenyl)-3-(trimethylsilyl) prop-2-yn-1-ol (10e)

According to the general nucleophilic addition ethynyltrimethyl silane (1.45 mmol, 0.20 mL) in THF (2 M, 0.72 mL) and isopropyl magnesium chloride (2 M, 0.72 mL) was stirred. At 0 °C was added the aldehyde (0.90 mmol, 0.20 g) in THF (0.1 M, 9.70 mL). Following the general workup and flash chromatography (SiO₂, 10 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a white solid (0.27 g, 95%): TLC R_f = 0.1 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 8.58 (m, 1H), 8.43 (d, *J* = 2.4 Hz, 1H), 8.28 (d, *J* = 2.2 Hz, 1H), 8.01 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.01 (d, *J* = 8.6 Hz, 1H), 5.75 (s, 1H), 3.94 (s, 3H), 0.20 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 158.6, 152.5, 144.3, 142.4, 141.7, 129.6, 129.1, 128.7, 127.0, 111.6, 104.5, 91.7, 61.5, 56.1, 0.1; IR (neat cm⁻¹) 3055, 2980, 2884, 2847, 1913, 1675, 1604, 1414, 1272, 1166, 1112, 1010, 825; HRMS (DART, M⁺ + H) *m/z* 313.1394 (calculated for C₁₇H₂₁N₂O₂Si, 313.1372).

1-(7-(pyrimidin-5-yl) benzo[d][1,3] dioxol-5-yl)-3-(trimethylsilyl) prop-2-yn-1-ol (10f)

According to the general nucleophilic addition ethynyltrimethyl silane (0.90 mmol, 0.14 mL) in THF (2M, 0.5 mL) and isopropyl magnesium chloride (2M, 0.99 mmol, 0.5 mL was stirred. At 0

°C was added the aldehyde (0.66 mmol, 0.15 g) in THF (0.1M, 6.6 mL).Following the general workup and flash chromatography (SiO₂, 10 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a light yellow solid (0.21 g, 96%): TLC R_f = 0.1 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 9.14 (s, 1H), 9.05 (s, 2H), 7.24 (s, 1H), 7.10 (s, 1H), 6.07 (s, 2H), 5.42 (s, 1H), 0.20 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 157.5, 155.5, 148.9, 145.5, 136.0, 129.8, 118.8, 115.3, 108.3, 104.8, 102.0, 92.3, 64.7, 0.0; IR (neat cm⁻¹) 3189, 2955, 2899, 2172, 1606, 1409, 1249, 1041, 1006, 837; HRMS (DART, M⁺ + H) *m/z* 327.1190 (calculated for C₁₇H₁₉N₂O₃Si, 327.1165).

1-(2-methoxy-5-(1-methyl-1H-imidazol-5-yl) phenyl)-3-(trimethylsilyl) prop-2-yn-1-ol (10g)

According to the general nucleophilic addition ethynyltrimethyl silane (2.0 mmol, 0.3 mL) in THF (1.0 mL) and isopropyl magnesium chloride (2M, 2.0 mmol, 1.0 mL) was stirred. At 0 °C was added the aldehyde (1.7 mmol, 0.4 g) in THF (0.1M, 16 mL). Following the general workup and flash chromatography (SiO₂, 10 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a light yellow solid (0.49 g, 94%): TLC R_f = 0.03 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 2.1 Hz, 1H), 7.45 (s, 1H), 7.27 (dd, J = 8.4, 2.2 Hz, 1H), 6.98 (s, 1H), 6.93 (d, J = 8.5 Hz, 1H), 5.76 (s, 1H), 3.88 (s, 3H), 3.60 (s, 3H), 0.15 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 156.7, 138.8, 133.2, 129.9, 129.6, 128.5, 127.5, 122.3, 111.3, 105.0, 90.9, 60.5, 55.9, 32.6, 0.1; IR (neat cm⁻¹) 3113, 2957, 2899, 2837, 2167, 1488, 1279, 1040, 838; HRMS (DART, M⁺ + H) *m/z* 315.1532 (calculated for C₁₇H₂₃N₂O₂Si, 315.1529).

1-(2-methoxy-5-(pyrimidin-5-yl) phenyl)-3-(trimethylsilyl) prop-2-yn-1-ol (10h)

According to the general nucleophilic addition ethynyltrimethyl silane (3.55 mmol, 0.50 mL) in THF (2M, 1.78 mL) and isopropyl magnesium chloride (2M, 3.55 mmol, 1.78 mL) was stirred. At 0 °C was added the aldehyde (2.37 mmol, 0.51 g) in THF (0.1M, 23.6 mL). Following the general workup and flash chromatography (SiO₂, 20 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a white solid (0.7 g, 95%): TLC R_f = 0.1 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 9.14 (s, 1H), 8.90 (s, 2H), 7.85 (d, J = 2.2 Hz, 1H), 7.52 (dd, J = 8.4, 2.3 Hz, 1H), 7.03 (d, J = 8.5 Hz, 1H), 5.77 (s, 1H), 3.93 (s, 3H), 0.18 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 157.9, 157.2, 154.6, 134.0, 130.1, 128.4, 126.9, 126.9, 112.0, 104.2, 91.9, 61.1, 56.1, 0.1; IR (neat cm⁻¹) 3177, 3010, 2837, 2164, 1608, 1308, 1059; HRMS (DART, M⁺ + H) *m/z* 313.1391 (calculated for C₁₇H₂₁N₂O₂Si, 312.1372).

1-(5-(pyridin-4-yl) thiophen-2-yl)-3-(trimethylsilyl) prop-2-yn-1-ol (10i)

According to the general nucleophilic addition Ethynyltrimethyl silane (2.6 mmol, 0.4 mL) in THF (2M, 1.3 mL) and isopropyl magnesium chloride (2M, 2.6 mmol, 1.3 mL) was stirred. At 0 °C was added the aldehyde (2.2 mmol, 0.41 g) in THF (0.1M, 21.6 mL). Following the general

workup and flash chromatography (SiO₂, 20 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a brown solid (0.6 g, 95%): TLC R_f = 0.2 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, J = 6.2 Hz, 2H), 7.41 (d, J = 6.2 Hz, 2H), 7.33 (d, J = 3.7 Hz, 1H), 7.14 (d, J = 3.7 Hz, 1H), 5.65 (s, 1H), 0.19 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 150.1, 147.7, 141.9, 141.1, 126.7, 125.3, 119.9, 104.4, 91.3, 60.6, -0.1; IR (neat cm⁻¹) 3181, 3017, 2112, 1592, 1494, 1414, 1219, 991, 800; HRMS (DART, M⁺ + H) *m/z* 288.0901 (calculated for C₁₅H₁₈NOSSi, 288.0878).

1-(5-(3,5-dimethylisoxazol-4-yl)-2-methoxyphenyl)-3-(trimethylsilyl) prop-2-yn-1-ol (10j)

According to the general nucleophilic addition ethynyltrimethyl silane (4.1 mmol, 0.6 mL) in THF (2M, 2.0 mL) and isopropyl magnesium chloride (2M, 4.1 mmol, 2.0 mL) was stirred. At 0 °C was added the aldehyde (2.72 mmol, 0.63 g) in THF (0.1M, 27.2 mL). Following the general workup and flash chromatography (SiO₂, 20 g, 3%MeOH/CH₂Cl₂) alkynol was obtained as a colorless oil (0.86 g, 96%): TLC R_f = 0.4 (3%MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.17 (m, 1H), 6.95 (d, J = 8.2 Hz, 1H), 5.76 (d, J = 5.6 Hz, 1H), 3.90 (s, 3H), 2.38 (s, 3H), 2.24 (s, 3H), 0.18 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 164.9, 158.7, 156.2, 130.2, 129.2, 128.9, 122.7, 116.1, 111.3, 104.6, 91.0, 60.5, 55.8, 11.5, 10.8, -0.1; IR (neat cm⁻¹) 3038, 2923, 2862, 2724, 1682, 1601, 1245, 1176, 1120, 1014, 825; HRMS (DART, M⁺ + H) *m/z* 330.1528 (calculated for C₁₈H₂₄NO₃Si, 330.1525).

1-(3,4,5-trimethoxyphenyl)-3-trimethylsilyl)prop-2-yn-1-ol (10k)

According to the general nucleophilic addition ethynyltrimethyl silane (2.7 mmol, 0.4 mL) in THF (2M, 1.4 mL) and isopropyl magnesium chloride (2M, 2.7 mmol, 1.4 mL) was stirred. At 0 °C was added the aldehyde (1.8 mmol, 0.4 g) in THF (0.1M, 18.0 mL). Following the general workup and flash chromatography (SiO₂, 15 g, 50%EtOAc/Hexane) alkynol was obtained as a brown solid (0.5 g, 95%): TLC R_f = 0.2, 50%EtOAc/Hexane); ¹H NMR (500 MHz, CDCl₃) δ 6.73 (s, 2H), 5.33 (d, *J* = 6.0 Hz, 1H), 3.77(s, 6H), 3.75 (s, 3H), 3.24 (d, *J* = 6.0 Hz, 1H), 0.14 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 153.0, 137.6, 136.3, 105.4, 103.9, 91.1, 64.7, 60.7, 56.0, -0.2; IR (neat cm⁻¹) 3426, 2957, 2837, 2169, 1648, 1593, 1460, 1248, 1125, 841; HRMS (DART, [M-OH]⁺) *m/z* 277.1285 (calculated for C₁₅H₂₁O₃Si, 277.1254).

General Procedure for Propargyl Deoxygenation

To a 10 mL vial flame dried flask was added the TMS- protected alkynol dissolved in anhydrous 0.1M CH₂Cl₂ and cooled to 0 °C. BF₃·OEt₂ was slowly added followed by Et₃SiH. Equivalence of lewis acid and triethylsilane ratio varies relative to the number of heteroatoms present. After addition, the reaction mixture was brought to room temperature followed by heating to 41 °C and monitored by TLC after working up a small aliquot of the reaction mixture with saturated NaHCO₃. *Note*: Although disappearance of the starting alkynol can be observed with few minutes of starting the reaction, it is still proceeding through an intermediate complex which can be found on the baseline in the TLC. The slow disappearance of this complex constitute the completion of the reaction and not the starting alkynol. The reaction was quenched with saturated NaHCO₃, extracted with EtOAc and dried with the MgSO₄. After rotoevaporation, deprotection was carried out by dissolving the TMS-alkyne in 0.2M EtOH and stirring initially for 30min with AgNO₃ (3 eq) dissolved in 1.5M water. KCN (10 eq) dissolved in 10M H₂O was added slowly and stirred for 1 h. The reaction mixture was diluted with EtOAc, washed with water and dried with MgSO₄. Solvent was evaporated, the crude mixture was pre-absorbed onto silica gel and column chromatography was carried out.

4-(4-methoxy-3-(prop-2-yn-1-yl) phenyl) pyridine (11a)

According to general deoxygenation protocol, alkynol (1.0 mmol, 0.3 g) dissolved in 0.1M CH₂Cl₂ was subjected to deoxygenation with BF₃·OEt₂ (4.0 mmol, 1.3 mL) and triethylsilane (2.0 mmol, 0.3 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 15 g, 50% EtOAc in Hexane) deoxygenated alkyne was obtained as a white solid (0.17 g, 74%): TLC R_f = 0.3 (50% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 4.3 Hz, 2H), 7.80 (s, 1H), 7.50 (d, J = 8.2 Hz, 1H), 7.45 (d, J = 4.9 Hz, 2H), 6.90 (d, J = 8.5 Hz, 1H), 3.85 (s, 3H), 3.60 (s, 2H), 2.21 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.8, 150.3, 148.0, 130.4, 127.6, 126.7, 125.5, 121.2, 110.6, 81.6, 71.2, 55.7, 19.5; IR(neat cm⁻¹) 3164, 2999, 2917, 2834, 2110, 1594, 1508, 1306, 804, 665; HRMS (DART, M⁺ + H) *m/z* 224.1071 (calculated for C₁₅H₁₄NO, 224.1075).

4-(3-methoxy-5-(prop-2-yn-1-yl) phenyl) pyridine (11b)

According to general deoxygenation protocol, alkynol (0.34 mmol, 0.11g) dissolved in 0.1M CH_2Cl_2 was subjected to deoxygenation with BF₃·OEt₂ (1.40 mmol, 0.17 mL) and triethylsilane (0.70 mmol, 0.11 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 7 g, 50% EtOAc in Hexane) deoxygenated alkyne was obtained as a brownish oil (0.05 g, 67%): TLC R_f = 0.3 (50% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, J = 5.6 Hz, 2H), 7.45 (d, J = 5.9 Hz, 2H), 7.18 (s, 1H), 7.00 (s, 1H), 6.96 (s, 1H), 3.84 (s, 3H), 3.63 (d, J = 2.4 Hz, 2H), 2.21 (t, J = 2.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 160.6, 150.4, 148.2, 140.0, 138.7, 121.9, 119.2, 114.2, 111.4, 81.5, 71.2, 55.6, 25.1; IR(neat cm⁻¹) 3288, 2959, 2931, 2837, 2113, 1592, 1406, 1217, 1049, 816, 627; HRMS (DART, M⁺ + H) *m/z* 224.1100 (calculated for C₁₅H₁₄NO, 224.1075).

4-(2,3-dimethoxy-5-(prop-2-yn-1-yl) phenyl) pyridine (11c)

According to general deoxygenation protocol, alkynol (1.0 mmol, 0.4 g) dissolved in 0.1M CH_2Cl_2 was subjected to deoxygenation with $BF_3 \cdot OEt_2$ (5.0 mmol, 1.7 mL) and triethylsilane

(2.5 mmol, 0.4 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 10 g, 50% EtOAc in Hexane) deoxygenated alkyne was obtained as a yellow brownish solid (0.2 g, 76%): TLC $R_f = 0.3$ (50% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.62 (dd, J = 6.1, 1.6 Hz, 2H), 7.46 (dd, J = 6.1, 1.6 Hz, 2H), 6.97 (d, J = 1.9 Hz, 1H), 6.91 (d, J = 2.0 Hz, 1H), 3.91 (s, 3H), 3.60 (d, J = 2.7 Hz, 2H), 3.58 (s, 3H), 2.21 (t, J = 2.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 153.4, 149.6, 146.3, 145.7, 133.0, 132.6, 124.3, 121.3, 112.7, 81.8, 71.1, 61.1, 56.2, 24.9; IR(neat cm⁻¹) 3285, 3034, 2908, 2885, 2836, 2117, 1711, 1404, 1264, 1132, 994, 816, 627; HRMS (DART, M⁺ + H) *m/z* 254.1196 (calculated for C₁₆H₁₆NO₂, 254.1181).

4-(6-(prop-2-yn-1-yl) benzo[d][1,3]dioxol-4-yl)pyridine (11d)

According to general deoxygenation protocol, alkynol (0.75 mmol, 0.24 g) dissolved in 0.1M CH₂Cl₂ was subjected to deoxygenation with BF₃·OEt₂ (3.70 mmol, 1.20 mL) and triethylsilane (1.90 mmol, 0.30 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 7 g, 50% EtOAc in Hexane) deoxygenated alkyne was obtained as a pale white solid (0.13 g, 74%): TLC R_f = 0.3 (50% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, *J* = 5.6 Hz, 2H), 7.60 (d, *J* = 5.9 Hz, 2H), 7.06 (s, 1H), 6.87 (s, 1H), 6.01 (s, 2H), 3.55 (d, *J* = 2.3 Hz, 2H), 2.20 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 148.8, 144.5, 143.3, 130.8, 122.2, 119.7, 119.5, 109.2, 101.6, 81.8, 71.1, 24.8;

IR(neat cm⁻¹) 3229, 3069, 3031, 2989, 2917, 2114, 1703, 1599, 1407, 1256, 1094, 944, 815, 652; HRMS (DART, M⁺ + H) m/z 238.0883 (calculated for C₁₅H₁₂NO₂, 238.0868).

2-(4-methoxy-3-(prop-2-yn-1-yl) phenyl) pyrazine (11e)

According to general deoxygenation protocol, alkynol (0.9 mmol, 0.3 g) dissolved in 0.1M CH₂Cl₂ was subjected to deoxygenation with BF₃·OEt₂ (4.3 mmol, 1.3 mL) and triethylsilane (2.1 mmol, 0.3 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 10 g, 50% EtOAc in Hexane) deoxygenated alkyne was obtained as a pale yellow solid (0.15 g, 76%): TLC R_f = 0.5 (50% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.99 (s, 1H), 8.56 (s, 1H), 8.42 (s, 1H), 8.17 (s, 1H), 7.91 (d, J = 8.5 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 3.89 (s, 3H), 3.62 (d, J = 2.4 Hz, 2H), 2.21 (t, J = 2.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 152.4, 143.9, 142.1, 141.6, 128.7, 127.4, 126.8, 125.2, 110.3, 81.5, 71.1, 55.5, 19.4; IR(neat cm⁻¹) 3201, 3071, 2975, 2933, 2842, 2205, 1607, 1276, 1116, 1018, 809, 697, 433; HRMS (DART, M⁺ + H) *m/z* 225.1050 (calculated for C₁₄H₁₃N₂O, 225.1028).

5-(4-methoxy-3-(prop-2-yn-1-yl) phenyl)-1-methyl-1H-imidazole (11g)

According to general deoxygenation protocol, alkynol (0.51 mmol, 0.16 g) dissolved in 0.1M CH₂Cl₂ was subjected to deoxygenation with BF₃·OEt₂ (2.0 mmol, 0.3 mL) and triethylsilane (1.0 mmol, 0.2 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 7 g, 3% MeOH in CH₂Cl₂) deoxygenated alkyne was obtained as a yellow oil (0.08 g, 70%): TLC $R_f = 0.1$ (50% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 2.1 Hz, 1H), 7.48 (s, 1H), 7.24 – 7.21 (m, 1H), 7.02 (s, 1H), 6.88 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.61 (s, 3H), 3.58 (d, J = 2.7 Hz, 2H), 2.17 (t, J = 2.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 138.8, 133.5, 129.4, 128.5, 127.6, 125.1, 122.2, 110.3, 81.6, 71.1, 55.7, 32.6, 19.4; IR(neat cm⁻¹) 3215, 2969, 2930, 2884, 1658, 1466, 1127, 950, 816, 627; HRMS (DART, M⁺ + H) *m*/*z* 227.1204 (calculated for C₁₄H₁₅N₂O, 227.1184).

4-(5-(prop-2-yn-1-yl) thiophen-2-yl)pyridine (11i)

According to general deoxygenation protocol, alkynol (0.44 mmol, 0.13 g) dissolved in 0.1M CH_2Cl_2 was subjected to deoxygenation with $BF_3 \cdot OEt_2$ (1.80 mmol, 0.22 mL) and triethylsilane (0.90 mmol, 0.14 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by HPLC chromatogaraphy with 60% ACN in water; deoxygenated alkyne

was obtained as a pale white solid (0.06 g, 66%): TLC $R_f = 0.4$ (50% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.55 (d, J = 4.5 Hz, 2H), 7.40 (d, J = 5.0 Hz, 2H), 7.33 (d, J = 3.6 Hz, 1H), 6.98 (d, J = 3.2 Hz, 1H), 3.78 (d, J = 2.4 Hz, 2H), 2.24 (t, J = 2.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 150.6, 141.5, 141.2, 140.1, 126.8, 125.4, 119.7, 80.5, 71.1, 20.3; IR(neat cm⁻¹) 3181, 3072, 3040, 3017, 2112, 1592, 1414, 1219, 991, 800, 689, 463; HRMS (DART, M⁺ + H) *m/z* 200.0556 (calculated for C₁₂H₁₀NS, 200.0534).

4-(4-methoxy-3-(prop-2-yn-1-yl) phenyl)-3,5-dimethylisoxazole (11j)

According to general deoxygenation protocol, alkynol (0.33 mmol, 0.11 g) dissolved in 0.1M CH₂Cl₂ was subjected to deoxygenation with BF₃·OEt₂ (1.70 mmol, 0.21 mL) and triethylsilane (0.80 mmol, 0.13 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 7g, 50% EtOAc in Hexane) deoxygenated alkyne was obtained as a white solid (0.06 g, 74%): TLC R_f = 0.7 (50% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 8.4, 2.2 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.59 (d, J = 2.5 Hz, 2H), 2.38 (s, 3H), 2.25 (s, 3H), 2.18 (t, J = 2.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 159.0, 156.3, 129.8, 128.7, 125.2, 122.7, 116.5, 110.4, 81.7, 71.0, 55.7, 19.4, 11.7, 11.0; IR(neat cm⁻¹) 3243, 3020, 2927, 2838, 2115, 1632, 1504, 1246, 1114, 1027, 815, 684; HRMS (DART, M⁺ + H) *m/z* 242.1195 (calculated for C₁₅H₁₆NO₂, 242.1181).

1,2,3 trimethoxy-5- (prop-2-yn-1-yl)benzene (11k)

According to general deoxygenation protocol, alkynol (0.33 mmol, 0.10 g) dissolved in 0.1M CH₂Cl₂ was subjected to deoxygenation with BF₃·OEt₂ (1.32 mmol, 0.16 mL) and triethylsilane (0.66 mmol, 0.22 mL) at 41 °C. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 7g, 15% EtOAc in Hexane) deoxygenated alkyne was obtained as a colorless oil (0.03 g, 45%): TLC R_f = 0.5 (25% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃) δ 6.56 (s, 2H), 3.85 (s, 6H), 3.81 (s, 3H), 3.54 (d, J = 2.6 Hz, 2H), 2.18 (t, J = 2.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 153.3, 136.8, 131.7, 104.9, 81.9, 70.6, 60.9, 56.1, 29.7, 25.1; IR(neat cm⁻¹) 3284, 2938, 2837, 2118, 1590, 1504, 1233, 1122, 1004, 814; HRMS (DART, M⁺ + H) m/z 207.1059 (calculated for C₁₂H₁₅O₃, 207.1021).

General Procedure for Propargyl Methylation

To a 100 mL flame dried flask under argon was added CH_2Cl_2 (1M) at room temperature and cooled to 0 °C. TiCl₄ (1M in toluene, 1 eq) was added followed by dimethyl zinc (1.2M in toluene, 2 eq) and stirred at 0 °C for 30 minutes. To the yellow heterogeneous mixture, alkynol (1 eq) dissolved in 0.1M CH_2Cl_2 was added dropwise for 10 min. TLC was performed on a small aliquot quenched with MeOH. After ~1 h, the reaction was stopped by a slow dropwise addition of MeOH. Care should be taken to avoid frothing and addition of MeOH continued until the reaction turns into a homogeneous yellow solution. The crude mixture was stirred at room temperature for 5 minutes and pushed through a plug of silica gel. Solvent was evaporated and

deprotection was carried out by dissolving the TMS-alkyne in 0.2M EtOH and stirring initially for 30min with AgNO₃ (3 eq) dissolved in 1.5M water. KCN (10 eq) dissolved in 10M H₂O was added slowly and stirred for 1h. The reaction mixture was diluted with EtOAc, washed with water and dried with MgSO₄. Solvent was evaporated, the crude mixture was pre-absorbed onto silica gel and column chromatography was carried out with 3% MeOH in CH₂Cl₂.

4-(3-(but-3-yn-2-yl)-4-methoxyphenyl) pyridine (12a)

According to the general methylation protocol, alkynol (0.33 mmol, 0.10 g) in CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (0.33 mmol, 0.33 mL) and dimethylzinc (0.66 mmol, 0.50 mL) in 1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 5g, 3% MeOH in CH₂Cl₂) methylated alkyne was obtained as a yellow solid (51.6 mg, 66%): TLC R_f = 0.2 (3% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, *J* = 5.1 Hz, 2H), 7.87 (d, *J* = 2.2 Hz, 1H), 7.63 – 7.32 (m, 3H), 6.93 (d, *J* = 8.5 Hz, 1H), 4.21 (qd, *J* = 7.1, 2.4 Hz, 1H), 3.87 (s, 3H), 2.25 (d, *J* = 2.4 Hz, 1H), 1.46 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 150.2, 148.2, 132.0, 130.5, 126.7, 126.6, 121.4, 111.1, 87.3, 70.2, 55.8, 25.7, 22.9; IR (neat cm⁻¹) 3222, 3075, 2980, 2108, 1594, 1484, 1255, 803; HRMS (DART, M⁺ + H) *m/z* 238.1256 (calculated for C₁₆H₁₆NO, 238.1232). 4-(5-(but-3-yn-2-yl)-2,3-dimethoxyphenyl) pyridine (12c)

According to the general methylation protocol, alkynol (0.6 mmol, 0.2 mg) in 0.1M CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (0.6 mmol, 0.6 mL) and dimethylzinc (1.2 mmol, 1.0 mL) in 0.1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 15 g, 3% MeOH in CH₂Cl₂) methylated alkyne was obtained as a yellow oil (0.16 g, 65%): TLC R_f = 0.2 (3% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.61 (br s, 2H), 7.45 (d, *J* = 4.1 Hz, 2H), 7.00 (s, 1H), 6.92 (s, 1H), 3.90 (s, 3H), 3.74 (q, *J* = 6.7 Hz, 1H), 3.57 (s, 3H), 2.27 (s, 1H), 1.50 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.3, 149.8, 146.2, 145.6, 139.1, 133.0, 124.2, 120.2, 111.7, 86.9, 70.8, 61.0, 56.2, 31.7, 24.4; IR(neat cm⁻¹) 3299, 3050, 2975, 2933, 2873, 2837, 2003.75, 1586, 1406, 1264, 1139, 734; HRMS (DART, M⁺ + H) *m/z* 268.1336 (calculated for C₁₇H₁₈NO₂, 268.1338).

4-(6-(but-3-yn-2-yl) benzo[d][1,3]dioxol-4-yl) pyridine (12d)

According to the general methylation protocol, alkynol (6.3 mmol, 2.0 g) in 0.1M CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (6.3 mmol, 6.3 mL)and dimethylzinc (12.6 mmol, 10.5

mL) in 1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 20 g, 3% MeOH in CH₂Cl₂) methylated alkyne was obtained as a yellow oil (1.0 g, 62%): TLC R_f = 0.2 (3% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.63 (d, J = 5.4 Hz, 2H), 7.62 (dd, J = 6.0, 1.4 Hz, 2H), 7.11 (d, J = 1.4 Hz, 1H), 6.93 (d, J = 1.5 Hz, 2H), 7.62 (dd, J = 6.0, 1.4 Hz, 2H), 7.11 (d, J = 1.4 Hz, 1H), 6.93 (d, J = 1.5 Hz, 2H), 3.73 (qd, J = 7.1, 2.4 Hz, 1H), 2.28 (d, J = 2.5 Hz, 1H), 1.50 (d, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 148.8, 144.5, 143.5, 137.6, 122.3, 119.5, 118.8, 108.2, 101.6, 86.9, 70.8, 31.7, 24.6; IR(neat cm⁻¹) 3200, 3026, 2929, 2786, 2106, 1737, 1596, 1402, 1197, 1040, 938, 823, 623; HRMS (DART, M⁺ + H) *m/z* 257.1055 (calculated for C₁₆H₁₄NO₂, 257.1025).

2-(3-(but-3-yn-2-yl)-4-methoxyphenyl) pyrazine (12e)

According to the general methylation protocol, alkynol (0.5 mmol, 0.2 g) in 0.1M CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (0.5 mmol, 0.5 mL) and dimethylzinc (1.0 mmol, 0.9 mL) in 0.1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 10 g, 3% MeOH in CH₂Cl₂) methylated alkyne was obtained as a pale yellow solid (0.12 g, 60%): TLC R_f = 0.5 (3% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.96 (br s, 1H), 8.53 (br s, 1H), 8.38 (br s, 1H), 8.22 (d, *J* = 2.3 Hz, 1H), 7.86 (dd, *J* = 8.6, 2.3 Hz, 1H), 6.90 (d, *J* = 8.6 Hz, 1H), 4.18 (qd, *J* = 7.0, 2.5 Hz, 1H), 3.83 (s, 3H), 2.25 (d, *J* = 2.5 Hz, 1H), 1.45 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.7,

152.7, 144.1, 142.1, 141.8, 131.8, 128.9, 126.8, 126.5, 110.9, 87.1, 70.1, 55.7, 25.6, 22.6; IR(neat cm⁻¹) 3182, 3055, 2973, 2875, 2101, 1605, 1248, 1126, 1013, 812, 713; HRMS (DART, $M^+ + H$) *m/z* 239.1212 (calculated for C₁₅H₁₅NO₂, 239.1184).

5-(6-(but-3-yn-2-yl) benzo[d][1,3]dioxol-4-yl) pyrimidine (12f)

According to the general methylation protocol, alkynol (1.0 mmol, 0.3 g) in 0.1M CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (1.0 mmol, 1 mL) and dimethylzinc (2.0 mmol, 1.6 mL) in 1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 15 g, 3% MeOH in CH₂Cl₂) methylated alkyne was obtained as a pale white solid (0.14 g, 60%): TLC $R_f = 0.3$ (3% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 9.10 (s, 1H), 9.02 (s, 2H), 7.02 (d, J = 1.4 Hz, 1H), 6.90 (d, J = 1.4 Hz, 1H), 6.00 (s, 2H), 3.70 (qd, J = 7.1, 2.4 Hz, 1H), 2.27 (d, J = 2.4 Hz, 1H), 1.46 (d, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.4, 155.4, 148.7, 144.2, 137.9, 129.8, 118.2, 115.4, 108.2, 101.7, 86.6, 70.9, 31.5, 24.4; IR(neat cm⁻¹) 3200, 2910, 2877, 2787, 1726, 1494, 1407, 1349, 1262, 1176, 1045, 940, 855, 718; HRMS (DART, M⁺ + H) *m/z* 253.0968 (calculated for C₁₅H₁₃N₂O₂, 253.0977).

5-(3-(but-3-yn-2-yl)-4-methoxyphenyl)-1-methyl-1H-imidazole (12g)

According to the general methylation protocol, alkynol (1.11 mmol, 0.35 g) in 0.1M CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (1.11 mmol, 1.10 mL) and dimethylzinc (2.22 mmol, 1.90 mL) in 1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 15 g, 3% MeOH in CH₂Cl₂) methylated alkyne was obtained as a yellow oil (0.17 g, 62%): TLC R_f = 0.1 (3% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.45 (s, 1H), 7.20 (d, J = 8.3 Hz, 1H), 7.02 (s, 1H), 6.87 (d, J = 8.3 Hz, 1H), 4.16 (q, J = 6.3 Hz, 1H), 3.83 (s, 3H), 3.60 (s, 3H), 2.18 (s, 1H), 1.42 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0, 138.8, 133.5, 131.5, 128.3, 128.2, 127.6, 122.3, 110.7, 87.3, 70.0, 55.7, 32.5, 25.6, 22.8; IR(neat cm⁻¹) 3283, 2973, 2931, 2837, 1612, 1490, 1249, 1024, 813, 650; HRMS (DART, M⁺ + H) *m/z* 241.1362 (calculated for C₁₅H₁₇N₂O, 241.1341).

5-(3-(but-3-yn-2-yl)-4-methoxyphenyl) pyrimidine (12h)

According to the general methylation protocol, alkynol (0.97 mmol, 0.31 g) in 0.1M CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (0.97 mmol, 0.97 mL)and dimethylzinc (1.94 mmol, 1.62 mL) in 1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 10 g, 3% MeOH in CH₂Cl₂) methylated alkyne was obtained as a white solid (0.14 g, 56%): TLC R_f = 0.2 (3% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 9.13 (s, 1H), 8.91 (s, 2H), 7.79 (d, J = 2.3 Hz, 1H), 7.42 (dd, J = 8.4, 2.3, 1H), 6.96 (d, J = 8.4 Hz, 1H), 4.20 (qd, J = 7.0, 2.4 Hz, 1H), 3.88 (s, 3H), 2.24 (d, J = 2.5 Hz, 1H), 1.46 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 157.0, 154.6, 134.2, 132.4, 126.7, 126.6, 126.5, 111.4, 87.0, 70.4, 55.8, 25.7, 22.8; IR (neat cm⁻¹) 3265, 3046, 2832, 1889, 1605, 1252, 724. HRMS (DART, M⁺ + H) *m/z* 239.1207 (calculated for C₁₅H₁₅N₂O, 239.1184).

4-[5-(1-Methyl-prop-2-ynyl)-thiophen-2-yl]-pyridine (12i)

According to the general methylation protocol, alkynol (0.52 mmol, 0.15 g) in 0.1M CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (0.52 mmol, 1.0 mL) and dimethylzinc (1.04 mmol, 1.60 mL) in 1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 5 g, 1:1 EtoAc/hexane) methylated alkyne was obtained as a yellow solid (0.17 g, 65%): TLC R_f = 0.8 (1:1 EtoAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 4.6 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.35 (d, J = 3.7 Hz, 1H), 7.03 (dd, J = 3.6, 1.0 Hz, 1H), 4.06 (qd, J = 6.9, 2.1 Hz, 1H), 2.36 (d, J = 2.5 Hz, 1H), 1.65 (d, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 148.5, 141.4, 139.5, 125.3, 125.0, 119.5, 85.6, 70.5, 27.4, 24.0; IR

(neat cm⁻¹) 3198, 2984, 2934, 1594, 1460, 1414, 1220, 991, 802, 690, 525; HRMS (DART, M⁺ + H) m/z 214.0705 (calculated for C₁₃H₁₂NS, 214.0690).

4-(3-(but-3-yn-2-yl)-4-methoxyphenyl)-3,5-dimethylisoxazole (12j)

According to the general methylation protocol, alkynol (1.0 mmol, 0.32 g) in 0.1M CH₂Cl₂ was added to the pre-mixed solution of TiCl₄ (1.0 mmol, 1.0 mL) and dimethylzinc (2.0 mmol, 1.6 mL) in 1M CH₂Cl₂. Following the general workup and deprotection, the crude mixture was purified by flash chromatography (SiO₂, 20 g, 3% MeOH in CH₂Cl₂) methylated alkyne was obtained as a colorless oil (0.17 g, 65%): TLC R_f = 0.8 (3% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.47 (s, 1H), 7.09 (d, *J* = 8.3 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 1H), 4.19 (q, *J* = 6.8 Hz, 1H), 3.85 (s, 3H), 2.38 (s, 3H), 2.25 (s, 3H), 2.20 (s, 1H), 1.44 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 159.0, 155.5, 131.6, 128.8, 128.6, 122.9, 116.5, 110.8, 87.4, 69.9, 55.7, 25.6, 22.9, 11.7, 11.0; IR(neat cm⁻¹) 3292, 2973, 2931, 2837, 2125, 1606, 1505, 1246, 1130, 1026, 637; HRMS (DART, M⁺ + H) *m/z* 256.1361 (calculated for C₁₆H₁₈NO₂, 256.1338).

Tertiary propargyl alcohol formation from secondary propargyl alcohol. Secondary propargyl was added in dichloromethane to a dried round bottom flask fitted with a stir bar and dried MnO_2 (20 equiv). Once complete by TLC, reaction mixture filtered through celite and dried in vacuo. Residue brought up in THF, placed under argon, and methyl magnesium bromide (3.0 M in Et₂O, 1.5 equiv) added via syringe. Once complete by TLC, saturated ammonium

chloride was added. The product was extracted 3x with EtOAc, washed with brine, dried over sodium sulfate, filtered, and dried in vacuo. The tertiary alcohol product was used with no further purification.

4-[3-(1,1-Dimethyl-prop-2-ynyl)-4-methoxy-phenyl]-pyridine (13a)

The tertiary alcohol (0.15 g, 0.461 mmol) was subjected to the general procedure for methylation. Once completed, dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a white solid (0.08 g, 45%); ¹H NMR (500 MHz, CDCl₃) δ 8.66 (s, 2H), 8.07 (s, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.02 (d, *J* = 8.4 Hz, 1H), 3.94 (s, 3H), 2.47 (s, 1H), 1.77 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 150.3, 148.3, 133.9, 130.1, 126.8, 121.4, 112.5, 91.4, 70.4, 55.6, 36.1, 29.0; IR (neat cm⁻¹) 3295, 2972, 2934, 1597, 1487, 1283, 1253, 1221, 1081, 1024, 808, 637; HRMS (DART, M⁺ + H) *m/z* 252.1326 (calculated for C₁₇H₁₈NO, 252.1368).

4-[3-(1,1-Dimethyl-prop-2-ynyl)-5-methoxy-phenyl]-pyridine (13b)

The tertiary alcohol (0.150 g, 0.461 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a white solid (0.08 g, 46%); ¹H NMR (500 MHz, CDCl₃) δ 8.85 – 8.54 (m, 2H), 7.63 – 7.48 (m, 2H), 7.44 (d, *J* = 1.6 Hz, 1H), 7.23 (d, *J* = 2.0 Hz, 1H), 7.03 (d, *J* = 1.9 Hz, 1H), 3.91 (s, 3H), 2.42 (s, 1H), 1.67 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 160.3, 150.4, 149.1, 148.7, 139.8, 122.0, 117.1, 112.7, 110.6, 90.7, 70.5, 55.6, 36.2, 31.7; IR (neat cm⁻¹) 3288, 2974, 2932, 1592, 1549, 1451, 1405, 1322, 1264, 1049, 818, 642; HRMS (DART, M⁺ + H) *m/z* 252.1407 (calculated for C₁₇H₁₈NO, 252.1368).

4-[5-(1,1-Dimethyl-prop-2-ynyl)-2,3-dimethoxy-phenyl]-pyridine (13c)

The tertiary alcohol (0.150 g, 0.422 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a yellow solid (0.08 g, 47%); ¹H NMR (500 MHz, CDCl₃) δ 8.68 (s, 2H), 7.52 (d, *J* = 4.2 Hz, 2H), 7.24 (d, *J* = 1.7 Hz, 1H), 7.12 (d, *J* = 1.8 Hz, 1H), 3.96 (s, 3H), 3.64 (s, 3H), 2.40 (s, 1H), 1.65 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 153.0, 149.7, 146.5, 145.4, 142.9, 132.6, 124.4, 118.9, 111.1, 90.8, 70.3, 61.0, 56.2, 36.0, 31.8; IR (neat cm⁻¹) 3286, 2973, 2933, 1594, 1547, 1481, 1462, 1405, 1278,

1240, 1146, 1042, 1005, 827, 645; HRMS (DART, M⁺ + H) m/z 282.1504 (calculated for $C_{18}H_{20}NO_2$, 282.1494).

4-[6-(1,1-Dimethyl-prop-2-ynyl)-benzo[1,3] dioxol-4-yl]-pyridine (13d)

The tertiary alcohol (0.150 g, 0.442 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as an off-white solid (0.07 g, 43%); ¹H NMR (500 MHz, CDCl₃) δ 8.72 (s, 2H), 7.69 (d, *J* = 5.2 Hz, 2H), 7.42 – 7.31 (m, 1H), 7.12 (d, *J* = 1.8 Hz, 1H), 6.08 (s, 2H), 2.42 (s, 1H), 1.64 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 148.6, 144.2, 143.6, 141.4, 122.4, 119.0, 117.6, 107.3, 101.6, 90.8, 70.4, 70.4, 35.9, 31.9; IR (neat cm⁻¹) 3291, 3030, 2928, 1969, 1597, 1544, 1474, 1403, 1221, 1043, 943, 823, 651; HRMS (DART, M⁺ + H) *m/z* 266.1208 (calculated for C₁₇H₁₆NO₂, 266.1181).

2-[3-(1,1-Dimethyl-prop-2-ynyl)-4-methoxy-phenyl]-pyrazine (13e)

The tertiary alcohol (0.150 g, 0.459 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a white solid (0.08 g, 46%); ¹H NMR (500 MHz, CDCl₃) δ 9.03 (s, 1H), 8.62 (s, 1H), 8.47 (s, 1H), 8.42 (d, *J* = 2.0 Hz, 1H), 7.95 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.05 (d, *J* = 8.5 Hz, 1H), 3.96 (s, 3H), 2.46 (s, 1H), 1.78 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 159.5, 153.1, 144.2, 142.2, 134.0, 128.6, 127.1, 126.7, 112.4, 91.4, 70.2, 55.6, 36.0, 29.1; IR (neat cm⁻¹) 3292, 2971, 2932, 1605, 1503, 1427, 1279, 1252, 1143, 1078, 1025, 816, 634; HRMS (DART, M⁺ + H) *m/z* 253.1322 (calculated for C₁₆H₁₇N₂O, 253.1341).

5-[6-(1,1-Dimethyl-prop-2-ynyl)-benzo[1,3] dioxol-4-yl]-pyrimidine (13f)

The tertiary alcohol (150 mg, 0.441 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a yellow solid (0.08 g, 42%); ¹H NMR (500 MHz, CDCl₃) δ 9.20 (s, 1H), 9.12 (s, 2H), 7.32 (d, *J* = 1.8 Hz, 1H), 7.13 (d, *J* = 1.8 Hz, 1H), 6.09 (s, 2H), 2.42 (s, 1H), 1.64 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 157.3, 155.4, 148.5, 143.9, 141.7, 130.0, 117.0, 114.9, 107.1, 101.6, 90.4, 70.4, 35.8, 31.7; IR (neat cm⁻)

¹) 3295, 2977, 2167, 1551, 1408, 1262, 1178, 1038, 940, 855, 724, 632; HRMS (DART, M⁺ + H) *m/z* 267.1109 (calculated for C₁₆H₁₅N₂O₂, 267.1133).

5-[3-(1,1-Dimethyl-prop-2-ynyl)-4-methoxy-phenyl]-1-methyl-1H-imidazole (13g)

The tertiary alcohol (150 mg, 0.457 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a yellow solid (0.07 g, 44%); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 2.2 Hz, 1H), 7.53 (s, 1H), 7.29 (dd, *J* = 8.3, 2.3 Hz, 2H), 7.08 (s, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 3.92 (s, 3H), 3.68 (s, 3H), 2.42 (s, 1H), 1.74 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 157.5, 138.7, 133.5, 133.3, 128.3, 128.3, 127.8, 127.5, 121.8, 112.0, 91.4, 70.1, 55.4, 35.9, 32.5, 28.8; IR (neat cm⁻¹) 3288, 2927, 2853, 1767, 1713, 1492, 1366, 1252, 1196, 1080, 1024, 817, 637; HRMS (DART, M⁺ + H) *m/z* 255.1523 (calculated for C₁₆H₁₉N₂O, 255.1497).

5-[3-(1,1-Dimethyl-prop-2-ynyl)-4-methoxy-phenyl]-pyrimidine (13h)

The tertiary alcohol (0.15 g, 0.459 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a white solid (0.07 g, 43%); ¹H NMR (500 MHz, CDCl₃) δ 9.30 – 9.16 (m, 1H), 9.01 (s, 2H), 8.00 (d, *J* = 2.3 Hz, 1H), 7.49 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 2.47 (s, 1H), 1.77 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 158.7, 156.9, 154.6, 134.4, 126.9, 126.8, 126.3, 112.8, 91.3, 70.7, 70.7, 55.6, 36.2, 29.0; IR (neat cm⁻¹) 3290, 2970, 2931, 1606, 1550, 1500, 1389, 1358, 1286, 1252, 1223, 1080, 1022, 895, 815, 726, 627; HRMS (DART, M⁺ + H) *m/z* 253.1316 (calculated for C₁₆H₁₇N₂O, 253.1341).

4-[5-(1,1-Dimethyl-prop-2-ynyl)-thiophen-2-yl]-pyridine (13i)

The tertiary alcohol (0.150 g, 0.498 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a yellow solid (0.07 g, 40%); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 2H), 7.46 (d, *J* = 5.1 Hz, 2H), 7.35 (d, *J* = 3.8 Hz, 1H), 7.07 (d, *J* = 3.8 Hz, 1H), 2.41 (s, 1H), 1.73 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 154.2, 150.3, 141.5, 139.1, 124.9, 124.3, 119.6, 89.5, 69.7, 34.0, 32.4; IR (neat cm⁻¹) 3284, 2987, 2967, 1594, 1495, 1412, 1221, 991, 808, 652; HRMS (DART, M⁺ + H) *m/z* 228.0867 (calculated for C₁₄H₁₄NS, 228.0847).

4-[3-(1,1-Dimethyl-prop-2-ynyl)-4-methoxy-phenyl]-3,5-dimethyl-isoxazole (13j)

The tertiary alcohol (150 mg, 0.437 mmol) was subjected to the general procedure for methylation. Dried residue isolated from silica plug dissolved in MeOH and K₂CO₃ (2 equiv) added. Stirred until complete by TLC. The title compound was purified via column chromatography (silica gel, 1:1 ethyl acetate/hexanes) and isolated as a yellow solid (0.08 g, 47%); ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 2.2 Hz, 1H), 7.15 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.98 (d, *J* = 8.3 Hz, 1H), 3.92 (s, 3H), 2.44 (s, 3H), 2.42 (s, 1H), 2.31 (s, 3H), 1.74 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 158.9, 157.0, 133.4, 128.7, 128.4, 122.3, 116.4, 112.1, 91.4, 70.0, 55.3, 35.9, 28.9, 11.6, 10.9; IR (neat cm⁻¹) 3288, 2970, 2930, 1603, 1505, 1453, 1358, 1251, 1218, 1080, 1026, 819, 642; HRMS (DART, M⁺ + H) *m/z* 270.1477 (calculated for C₁₇H₂₀NO₂, 270.1494).

References

- Bolstad, D.B.; Bolstad, E.S.D.; Frey, K.M; Wright, D.L.; Anderson, A.C. J. Med. Chem,
 2008, 51, 6839-6852
- Wielens, J.; Headey, S.J.; Deadman, J.J.; Phodes, D.I.; Parker, M.W.; Chalmers, D.K.;
 Scanlon, M.J. *ChemMedChem* 2011, *6*, 258-261
- (3) Tadross, P.M.; Gilmore, C.D.; Bugga, P.; Virgil, S.C.; Stoltz, B.M. Org. Lett. 2010, 12, 1224-1227

00	190	180	170	160	150	140	130	120	110	100 f1 (p	90 opm)	80	70	60	50	40	30	20	10	0 -1
, an indexed of the second	ndî turkê k	atalia ki <mark>st</mark> ata a	uldulululululu	dindi (b ila di antari	ullind hullin	, an	ייניין געיארין איייין אייייין אייייין אי	lanak semenah	ni n	an alah dinadan	laidi alimudila	udan Aldrin An	Alexandri Alexandri A	innillinnin (ulinik kénik	Laun da Anna (ante de la constant e de la constante de	nalivin i nuvin i	abalin (li main)	hallida in the first of the second
waanid		landa hai yi kala dha sana	والمرابعة و	and de la calanta	ունվերենն	in	Alah (), ji	لدندانا وريزول	a din din du	k ji ku	aha da da an an	والمتعالمة المتعالمة	الماندان والمعاندين	k jun, halt ludet.	alkine at [1].	ha a tha a b	1k 1aulur 1		n. 11 . at. 1.1	16
									I											
								1												
																				10
																			ų	N 1b
															'					Ĺ
	- 191.68			- 160.9	- 150.66 - 146.8′	140.66138.66		− 121.8 119.9	- 112.9	- 100.1		1		55 03					0	γ°
	×			S	9 1	99		m	m	4										

70	160	15	0 140	130	120	110	100	90	80 f1 (ppm	70	60	50	40	30	20	10	0	-1
44/14/m44	halaadadada ayad	nu hair an the state of the sta	hany physical synal by submitted	internations and the second	Novilla Autor India	nunna anna d	ludy (1994) find quay (1916	foret job for the	apoliphi tydanai ka	likutiper kytopoisedo	antari da faran da fa	holdin finger for the first of	ukaykannykan	n na <mark>hadada ki ki ka</mark> ha	hipping traduct	yddynhydanhu	albalen seine kasiki yakape	VLA IA
									ĺ								11e	
																	N	
	- 158.26	- 152.43	<pre>/ 143.95 / 142.07 / 141.63</pre>	$\frac{128.66}{127.43}$	125.24				- 81.46	- 71.07	- 55.54				- 19.37	//		

70	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
WWW	niphen Nami un	dayddyd wed ryddigod	hindra na mana	oranglati walati ta	wyten Www.ydd	and a state of the second s	Hader-Muni-addiffad	laf wike var i ve		hy diversited by	i di sekan kan kan kan kan kan kan kan kan kan	ing palananananan an	digen (del'angen del	alaanaaliyaaniyada ^a laa	nyl hølden og for	Higosingdialay indexing y	(Albayan), Arthite
		I															
								1									
																1	.2e
	- 157	- 152	\bigwedge^{144}_{142}	131	^ 12¢	- 11(- 87		- 70		- 55		25	- 22	//	$\langle \mathbf{r} \rangle$

	~	- 1		Ι	\ <i>\</i>	I	Ι	I			Ι	I	۲ 1	2f
70	160	150	140	130	120	110	₩₩₩₩₩₩ 100		·' \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₩₩₩₩₩₩₩ 50 40	ищни ий 	20	10	Щфф іі ф орф О

1 0.0

Т

S128

9.5

T

0.0

