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Supplemental Information to 
Computing the binding affinity of a ligand buried deep inside a protein with 

the hybrid steered molecular dynamics 
Oscar D Villarreal, Lili Yu, Roberto A Rodriguez and Liao Y Chen 

 

In the first section, we present the detailed derivation of the central formula that relates the binding affinity 
to the potential of mean force (PMF) along the open-pull-close path and the partial partitions. Then we 
present figures for all the relevant data. 

THEORETICAL DERIVATION 

The absolute binding energy from the 3(m+n)-D PMF. Following the standard literature,[1, 2] the 
binding affinity at one binding site is 
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Here 0c is the standard concentration. For clarity and for convenience of unit conversion, we use two 

different but equivalent forms, 0 1c M on the left hand side and 4 3
0 6.02 10 /c Å on the right hand 

side of the equation. kB is the Boltzmann constant and T is the absolute temperature. The three-dimensional 
(3D) integrations are over the x-, y-, and z-coordinates of the ligand’s position 1

Lr that can be chosen as the 
center of mass of one segment or of the whole ligand. The integral has the units of Å3 that renders the right 
hand side dimensionless as it should be. 1[ ]LW r is the 3D PMF. The subscripts “site” and “bulk” indicate 

that 1
Lr  is near the PMF minimum and 1

Lr  is in the bulk region far away from the protein, respectively.  
Note that in the relationship between the 3-D and 3(m+n)-D PMFs, 
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the 3(m+n-1)-D integration are over the (m+n-1) positions:  2 ,...,L
m
Lr r of the m-1 pulling centers on the 

ligand and  1 ,...,P P
nr r  of the n pulling centers on the protein. C is the normalization constant that will be 

cancelled out in the following expressions. 
 
Using the relationship given by Eq. (S2) in Eq. (S1) twice (once in the numerator for the binding site and 
once in the denominator for the bulk), one has the following expression for the binding affinity, 
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Now inserting the Boltzmann factor at a single state  20 0 20 0 010 1, ,..., ; , ,...,L P P
n

L PL
mr r r r r r  chosen from the bound 

state ensemble and the Boltzmann factor at the corresponding dissociated state  21 10 20 0, ,..., ; , ,...,L L L P P P
m n r r r r r r , the binding affinity can be expressed as three contributing factors: The 

partial partition function at the binding site 0m nZ   of the ligand-protein complex, the PMF difference 
between two chosen states  20 0 20 0 010 1, ,..., ; , ,...,L P P

n
L PL

mr r r r r r  and  21 10 20 0, ,..., ; , ,...,L L L P P P
m n r r r r r r , and the 

partial partition function in the dissociated state 1m nZ    . Mathematically, 
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Here the subscript 0 refers to the bound/holo state and  refers to the dissociated/apo state. The one apo 

state  21 10 20 0, ,..., ; , ,...,L L L P P P
m n r r r r r r  can be connected to the one holo state  20 0 20 0 010 1, ,..., ; , ,...,L P P

n
L PL

mr r r r r r  
via many curves in the 3(m+n)-D space but the PMF is a function of state; thus the computation of the PMF 
difference between the two states can be achieved along a single curve passing through them both. Again, 
the 3(m+n)-D PMF difference 

 20 0 20 0 2 20 00, 10 10 1 10[ , ,..., ; , ,..., ] , ,..., ; , ,...,[ ]L L LL P P P L P P P
m

L
n m nW WW    r r r r r r r r r r r r   (S5) 

is between one chosen bound state and its corresponding dissociated state. This PMF difference can be 
computed not by subtracting one PMF value from another PMF value but by means of the SMD simulations 
described in the subsection immediately following this current subsection. Note that the one chosen position 
of the m+n pulling centers in the bound state, 

  10 10 10 10 10 0 0 0 10 10 10 0 00 0 0...,..., ; ,..., ( , , , , , ; , , ,, , ,... ),L P P L L L L L L P PL P P P P
m m n nm n m nx y z x y z x y z x y zr r r r  (S6) 

is the starting point for SMD runs. It is taken from the bound state ensemble of the system. It does not have 
to be the minimum of the PMF but any one state in its close neighborhood. Note that we take the collection 
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of coordinate vectors, e.g., Eq. (S6), as a single-row 1 3( )m n   matrix. The one state chosen from the 
dissociated state ensemble 

  01 10 1 1 1 10 10 10 0 0 0..., ...,,..., ; ,..., ( , , , , , ; , , , , , )L P P L LL P P P P
m m m n n

L L L L P P
m n nx y z x y z x y z x y z      r r r r  (S7) 

is related to the SMD starting point by a large enough displacement in the 3(m+n)-D space, 

 0 0 01 10 10 d d 10, ..., ; ,..., ) ,..., ; ,..., ).( (L L P P L L P P
m n m nt t   r r r r r v r v r r  (S8) 

Here vd is the constant velocity of the SMD pulling and t is the time it takes to steer/pull the ligand from 
the bound state to the dissociated state. However, it should be emphasized that the path from the bound 
state  20 0 20 0 010 1, ,..., ; , ,...,L P P

n
L PL

mr r r r r r  to the dissociated state  21 10 20 0, ,..., ; , ,...,L L L P P P
m n r r r r r r is not a straight 

line in the 3(m+n)-D space as Eq. (S8) might suggest. Instead, the dissociation path consists of three straight 
lines: First, from  20 0 20 0 010 1, ,..., ; , ,...,L P P

n
L PL

mr r r r r r to  10 1020 0 20 21 0, ,..., ; , ,...,L P P P P P
m n n

L L Pt t t   r r r r v r v r v , 
pulling the n centers on the protein to open the binding cavity up so that the ligand is exposed for extraction. 
Second, from there to  1 10 12 20 2 0, ,..., ; , ,...,L P P P

m n n
L L P P Pt t t      r r r r v r v r v , pulling the ligand out of the 

cavity to the bulk region far from the protein while holding the centers on the protein all fixed. Third, from 
there to  21 10 20 0, ,..., ; , ,...,L L L P P P

m n r r r r r r , pulling the centers on the protein, in the direction exactly opposite 
the first straight line, back to their initial positions while holding the ligand fixed in the bulk region far 
away from the protein. It is pointed here that the third part is preferably implemented not as closing back 
the binding site directly but as the inverse of opening up the cavity from  21 10 20 0, ,..., ; , ,...,L L L P P P

m n r r r r r r  

to  1 10 12 20 2 0, ,..., ; , ,...,L P P P
m n n

L L P P Pt t t      r r r r v r v r v after an equilibrium MD run of the apo protein 

with all the pulling centers fixed at  21 10 20 0, ,..., ; , ,...,L L L P P P
m n r r r r r r . 
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Note that pulling velocities of the centers on the protein need to be chosen appropriately to open up the 
binding cavity. The final result of binding affinity does not depend on the choice of these velocities but the 
computational efficiency does. In all the five systems studied in this work, we chose to pull the alpha 
carbons of the more flexible parts of the protein in different directions to expose the ligand in the easiest 
manner simply by visual inspections of the binding complexes. It turned out that our first choices for all 
systems are valid and good for the computation of the binding affinities.  

The partial partition function 0m nZ   of the bound state has the integration over m+n centers and thus has 
the units of Å3(m+n), 

 2 21
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Note that, in the bound state, the m+n pulling centers all fluctuate around the one initial state 

 20 0 20 0 010 1, ,..., ; , ,...,L P P
n

L PL
mr r r r r r chosen from the bound state ensemble. When the binding is tight, one can 

approximate the fluctuations as Gaussian in the neighborhood of the PMF minimum. The coordinates of 
the minimum of a Gaussian distribution are equal to the average coordinates, of course, 

 21 21, ,..., ; , ,...,L L P
n

L P P
mr r r r r r .  

  3( )/2 1/2
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Here the dimensionless quantity m o Bn k T  gives a measure of how far  20 0 20 0 010 1, ,..., ; , ,...,L P P
n

L PL
mr r r r r r , 

the initial state chosen for SMD, is from the PMF minimum  21 21, ,..., ; , ,...,L L P
n

L P P
mr r r r r r , 
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m no  is the 3(m+n)×3(m+n) matrix of the fluctuations/deviations of the pulling center coordinates 

1 1 1
L L Lx x x    etc. The superscript T indicates the transpose of the matrix. 

   1 10 0 1 10 0

1 10 0 1 10 0

, ..., ; ,...,
,..., ; ,...,
L P P P P
m n

m no L P P P P

TL L L
m n

L L L
m nm n
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1
m no  is the inverse matrix of m no  which can be accurately evaluated by running equilibrium MD in the 

associated state of the ligand-protein complex. 

The partial partition of the apo state, 1m nZ    , refers to the fact that the m-1 centers on the ligand and the n 

pulling centers on the protein are free to fluctuate around the one final state  21 10 20 0, ,..., ; , ,...,L L L P P P
m n r r r r r r

in which 1 1
L Lr r is fixed. Thus the integration is over m+n-1 variables, 

 2 2
1

2
1 13 3

bulk 1 101 2 20 0

, ,..., ; , ,...,
, ,

[ ]e ..., ; , ,..xp ]. /[ ,
L L L P P Pm n m nL P

m n i i L L L P P Pi i m
B
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          r r r r r r
r r r r r r  . (S13) 

This partial partition function has the units of Å3(m+n-1). It should be noted that, in the dissociated state, the 
ligand and the protein are not interacting with each other. Therefore, the partial partition function can be 
factored into two separate partial partition functions of the ligand and the protein respectively, 

1 1
L P

m n m nZ Z Z      . P
nZ   contains the fluctuations of the n pulling centers on the protein in the dissociated 

state. The Gaussian approximation of this partial partition for the n centers on the protein is identical to that 
of the bound state partial partition with m+n now being replaced with n. The partial partition for the pulling 
centers on the ligand in the dissociated state, 1m

LZ   , contains the fluctuations of the m-1 pulling centers on 
the ligand in the dissociated state while one of the centers is fixed. Its computation was fully described in 
Ref.[3] for an arbitrary integer m>0. In particular, in this paper, we use only m=1 or m=2. In the case of  
m=1, 1 1 1LZ    . In the case of m=2, we have 
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Here r  2 1r r is the distance between the two pulling centers on the ligand. Note that 

2 1 20 10
L L L Lr     r r r r  because all the centers on the ligand are pulled with one speed. [ ]W r , a 

function of r , is the 1D PMF in the dissociated state for stretching the ligand between the two pulling 
centers.  It can be evaluated, as in the second line of the equation (S14), by conducting SMD runs of 
steering the second pulling center 2r  to and from the first pulling center that is fixed at 1r  along the axis 

passing through ,( ) 1 2r r . It can also be computed in the Gaussian approximation as the third line of the 
equation (S14) which is valid when the ligand, upon binding inside the protein, is not significantly 
stretched or compressed between the two chosen pulling centers. r  is the mean distance between the 

two pulling centers on the ligand and r r r    represents the fluctuation.  The mean square deviation 
2r gives a measure of the ligand’s flexibility in the apo state which is generally different from that of 

the holo state. Note that, in the Gaussian approximation,  

 2 2 21 1"[ ]( )2[ ] [ ] [ ] 2W r rW r W r W r r rr      , (S15)  

the mean r is also the minimum of the 1D PMF. The factor of 4 in Eq. (S14) comes from the angular 
integration because the ligand in the apo state is free to rotate around one pulling center. 



8  

Again, the use of 4 3
0 6.02 10 /c Å on the right hand side of Eq. (S3) renders it a pure number as 

desired. And the dissociation constant will conveniently be in the unit of M=mol/L. In summary, we have 
the following formulas for the binding affinity and the absolute binding free energy, respectively, 

 0,0 0 0 1binding 0,
1 0 0

lnexp , L
m n m nBP

D m B m
L

n n

PWZ Gc c Z Zk Tk Z Z cT Z Wk
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   
           , (S16) 

once we have computed the PMF difference along the open-pull-close path and the three partial partitions. 
When the conformation changes between the apo and the holo protein are small such as in the four 
complexes of this study, the Gaussian approximation is valid and accurate for the partial partition P

nZ 

characterizing the fluctuations of the n pulling centers on the apo protein. Otherwise, other ways need to be 
explored to better approximate P

nZ  .  

PMF from SMD simulations. In an SMD[4] simulation of the current literature, one steers/pulls one center 
of mass of one selection of atoms, using a spring with a carefully chosen stiffness (spring constant). The 
use of a spring of finite stiffness introduces additional fluctuation and dissipation in the added degrees of 
freedom.[5] In this paper, we choose m+n segments (mutually exclusive m+n selections of atoms) of the 
ligand and the protein for steering/pulling with m+n infinitely stiff springs (m, n=1, 2, 3......). Namely, the 
m+n centers of mass of the chosen m+n segments will be controlled as functions of time t 

 d , 1...Ai i it i m n  r r v   (S17) 

while all the other degrees of freedom of the system are freely subject to stochastic dynamics. Here 
( , , )i i i ix y zr  is the center of mass coordinates of the i-th segments, idv  is the pulling velocity, and iAr  

are coordinates of the centers of mass of the steered segments at the end state A. The + and  signs are for 

the forward and reverse pulling paths, respectively.  ir  denotes  2 2
P P P

1 1, ,..., ; , ,..., n
L L

m
Lr r r r r r  etc. We 

adopt the multi-sectional scheme of Ref. [6]. The path from the bound state to the dissociated state is divided 
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into a number of sections. Within a given section whose end states are marked as A and B, respectively, 
multiple forward and reverse pulling paths are sampled along which the work done to the system is 
recorded. The Gibbs free-energy difference (namely, the PMF or the reversible work) is computed via the 
Brownian-dynamics fluctuation-dissipation theorem (BD-FDT)[7] as follows: 

        
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exp[ln .exp[ ]
]2

2
iA i

i iA
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B
iW W k T W k T

W k T
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r r

r r
r r   (S18) 

Here the brackets with subscript F/R represent the statistical average over the forward/reverse paths. 
   iA iW r r  is the work done to the system along a forward path when the pulling centers are steered 

from A to r.            i iA iB iA iB iW W W   r r r r r r  is the work for the part of a reverse path when the 

centers are pulled from r to A.  iAr ,  ir , and  iBr  are the coordinates of the centers of mass of 
the steered segments at the end state A, the general state r, and the end state B of the system, 
respectively. At each end of a section, A/B, the system is equilibrated for a time long enough to 
reach conditioned equilibrium while the steered centers are fixed at  iAr / iBr . In this way, running 

SMD section by section, we map the PMF   iW r  as a function of the steered centers along a 
chosen path from the bound state to the dissociated state.  

 

SUPPLEMENTAL FIGURES 
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Fig. S1. Complex of retinol inside human cellular retinol-binding protein 1 (RTL-CRBP1). Illustrated in 
(A) and (C) is the structure of the ligand-protein complex after 50 ns equilibration in physiological saline 
starting from the X-ray structure (PDB: 5HBS). In (B) and (D), the loop between the beta strands C and D 
(Residues 54 to 59) is pulled against the alpha helix II (Residues 27 to 35) for 12 Å so that RTL is 
exposed for extraction from CRBP1. In (A) and (B), CRBP1 is shown in Ribbons colored by residue 
types (hydrophilic, green; hydrophobic, white; positively charged, blue; negatively charged, red). Four 
alpha carbons (of Leu 29, Ile 32, Phe 57, Ile 77), shown as large white spheres, are chosen as pulling 
centers for hSMD simulations. In (C) and (D), CRBP1 is shown as large spheres colored by atom names 
(H, white; C, cyan; N, blue; O, red; S, yellow). In all panels, RTL is shown in large spheres colored 
purple. The C6 and C11 of RTL are chosen as the two other pulling centers for hSMD runs.  
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Fig. S2. The T4 lysozyme with the studied ligands. Spheres indicate pulling centers on the protein. Top 
left, Benzylacetate (J0Z) set I; Bottom left, J0Z set II; Top right, 2-Nitrothiophene (265); Bottom right, 
Benzene (BNZ). 
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Fig. S3. Fluctuations of pulling centers in the holo state of the RTL-CRBP1 complex. 
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Fig. S4. Fluctuations of pulling centers in the apo state of the RTL-CRBP1 complex. 
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Fig. S5. Two sets of PMF curves along the path of opening up the protein (T4L L99A/M102Q double 
mutant), pulling out J0Z, and closing (reversely opening) the protein. The pulling centers and the 
corresponding velocities are in Table I. The largest of the error bars in PMF is taken as the error bar for 
the binding free energies in Table II. The error bars represent the standard deviations. 
 
 



15  

 
Fig. S6. Fluctuations of pulling centers in the holo state of the J0Z-T4L complex. 
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Fig. S7. Fluctuations of pulling centers in the apo state of the J0Z-T4L complex. 
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Fig. S8. Fluctuations of pulling centers in the holo state of the J0Z-T4L complex. 



18  

 
Fig. S9. Fluctuations of pulling centers in the apo state of the J0Z-T4L complex. 
 

 
Fig. S10. PMF curves along the path of opening up the protein (T4L L99A/M102Q double mutant), 
pulling out 265, and closing (reversely opening) the protein. The pulling centers and the corresponding 
velocities are in Table I. The largest of the error bars in PMF is taken as the error bar for the binding free 
energies in Table II. The error bars represent the standard deviations. 
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Fig. S11. Fluctuations of pulling centers in the holo state of the 265-T4L complex. 
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Fig. S12. Fluctuations of pulling centers in the apo state of the 265-T4L complex. 
 

 
Fig. 13. PMF curves along the path of opening up the protein (T4L L99A/M102H double mutant), pulling 
out BNZ, and closing (reversely opening) the protein. The pulling centers and the corresponding 
velocities are in Table I. The largest of the error bars in PMF is taken as the error bar for the binding free 
energies in Table II. The error bars represent the standard deviations. 
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 Fig. S14. Fluctuations of pulling centers in the holo state of the BNZ-T4L complex. 
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Fig. S15. Fluctuations of pulling centers in the apo state of the BNZ-T4L complex. 
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