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S1. Correlation among neighboring CpG sites 

We studied the dependency among neighboring CpG sites using three data sets: 

cell line data, our in-house human data, and TCGA breast cancer data. The cell 

line data set consists of two cell lines (LCC1 and LCC9), with three biological 

replicates in each cell line; the in-house human data set consists of samples from 

two phenotypes, with 6 samples and 5 samples from each group, respectively; the 

TCGA breast cancer data set consists of 61 estrogen receptor (ER)-positive breast 

cancer samples divided into two groups, with 41 samples and 20 samples from 

each group. All of the three data sets were profiled by Illumina 450K, which 

measured 485,512 CpG sites covering 21,227 genes. The median of the number 

of CpG sites in each gene is 15, and the median distance between two consecutive 

CpG sites is about 300 bps. We used correlation coefficient as the metric, and 

compared the correlation of CpG sites in the following three scenarios: 1) randomly 

selected CpG sites within 1,000 bases; 2) randomly selected CpG site and its 50 

closest neighboring sites; 3) randomly selected CpG sites across the genome. Fig. 

S1 shows the correlation of CpG sites in the three scenarios using the three data 

sets. 
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Fig. S1. Correlation of CpG sites calculated from: (a) cell line data; (b) in-house 
human data; (c) TCGA breast cancer data 
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S2. Supplemental to Methods 

According to Bayes’ rule, the joint posterior distribution of the variables and 

parameters in the DM-BLD model is given by 
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The conditional posterior distributions of the parameters/variables can be derived 

as follows. 
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With the derived conditional distributions, we develop a Gibbs sampling method 

for parameter/variable estimation. Samples for the variables (θ ,  and ) and 

model parameters ( ,  and   ) are drawn iteratively from their conditional 

distributions. Specifically, samples for variablesθ , 0  and parameters e ,   are 

randomly drawn from the corresponding Gaussian or Gamma distribution. For 

variable d  and parameter  , the conditional posterior distributions do not have 

closed form. Since d  and  are finite discrete values, the corresponding 

conditional probabilities are calculated first, and then new samples of d  and   are 

randomly selected according to the probabilities. Eventually, the Gibbs sampler 

produces Markov chains of samples of the parameters/variables, from which the 
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estimates of the parameters/variables can be obtained from their marginal 

distributions. The estimate of true methylation level γ  is obtained through a joint 

estimation of all variables and model parameters, accounting for the variability 

(variance) of the samples and the correlation level among neighboring CpG sites.  

For each CpG site, the estimated methylation change is (2) (1)ˆ ˆ ˆ
i i i     , which is 

used to determine the methylation score of a gene.  

It is worth noting that Gibbs sampling does not guarantee to find the optimal 

solution to the parameter estimation problem (especially when running for a finite 

number of iterations). In order to alleviate the potential problem of being trapped 

in local optima, we have implemented the Gibbs sampling algorithm with an option 

of multiple runs in addition to one long run of sampling. Specifically, multiple 

independent runs of Gibbs sampling, with different initializations of the parameters 

and different random seeds, are implemented in the algorithm. In our DM-BLD 

software package, we provide an option for multiple independent runs to be used 

for Gibbs sampling. When using multiple runs, the distributions generated from the 

runs are checked in the algorithm. In particular, we conduct a fixed number of runs 

(e.g., five times) and check whether a specific number of different runs (e.g., three 

times) generate samples from the same distribution. If so, all of the samples from 

all runs are used for parameter estimation. If not, another set of fixed number of 

runs will be conducted continually. With the solutions from multiple runs, 

comparisons of the solutions can indicate whether a global, optimum solution is 

likely to have been achieved. 
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S3. Distribution of real methylation data 

Using real methylation data, we validated the normality of methylation beta value 

after the logit transformation using one-sample Kolmogorov-Smirnov test (K-S 

test). One-sample K-S test is a nonparametric test to compare a sample with a 

reference probability distribution, which quantifies a distance between the 

empirical distribution of the sample and the cumulative distribution function of the 

reference distribution. The null hypothesis is that the samples are drawn from the 

reference distribution. With the one-sample K-S test as a goodness of fit test for 

normality of the distribution, samples were first standardized and then compared 

with a standard normal distribution.  

We applied the one-sample K-S test on methylation data acquired from the TCGA 

breast cancer project. Two groups of samples (41 samples with survival time 

longer than 5 years, namely the ‘Dead’ group, and 20 samples with survival time 

less than 5 years, namely the ‘Alive’ group) were tested, respectively. After 

removing CpG sites with ‘NaN’ value, 390,301 CpG sites out of 485,577 sites were 

analyzed. As a result, 360,082 (92.26%) sites in the ‘Dead’ group and 378,034 

(96.86%) sites in the ‘Alive’ group followed null hypothesis with p-value>0.05, 

which indicated that they followed normal distribution. 
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S4. Simulation study 

To generate synthetic data to evaluate the performances of the competing 

methods on the detection of differentially methylated genes, we began by randomly 

selecting differentially methylated genes and differentially methylated regions 

(DMRs), and then generated simulation data for the CpG sites (within DMRs or 

outside DMRs) in multiple scenarios following two different simulation strategies 

(based on (1) the simulation study used in DMRcate and (2) our Leroux model). In 

each experiment, we generated a simulated data set for all 450K probes with 20 

samples in two conditions/groups, 10 samples for the control group and 10 

samples for the case group. 

S4.1. Selection of differentially methylated genes and DMRs 

Among 21,231 RefSeq genes covered by the Illumina 450K platform, 20,758 

genes contained probes/CpG sites in the promoter region. In each simulated data 

set, 30% of the 20,758 genes were selected as differentially methylated, with 15% 

hyper-methylated and 15% hypomethylated in the case group, respectively. The 

other 70% of the 20,758 genes were assigned as non-differentially methylated. For 

each differentially methylated gene, a promoter-associated neighborhood was 

randomly assigned as differentially methylated region, while the CpG sites outside 

the selected regions were assigned as non-differentially methylated. For each CpG 

site, its neighbors were defined as the CpG sites located within 1000 bps (of both 

sides) from it. The randomly selected promoter-associated DMRs contained 

varying number of CpG sites and could be just part of the promoter region of the 

genes. With the randomly selected DMRs, the methylated values of the CpG sites 

(within DMRs or outside DMRs) were simulated in the following two different ways: 

(1) the simulation scheme used in DMRcate; (2) the proposed Leroux model, as 

described next. 
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S4.2. Description of the simulation scheme used in DMRcate 

We first generated simulation data sets in which the methylation values of CpG 

sites were generated following the simulation scheme used in DMRcate. The 

methylation values of CpG sites were generated from different distributions 

described as follows: 

a. CpG sites within DMRs 

For each DMR hyper-methylated in the case group, two beta levels were 

generated by 

(1) ~ Uniform(0.01, 0.99 )  ; (2) (1)~    ; 

For each DMR hypo-methylated in the case group, two beta levels were generated 

by 

(1) ~ Uniform(0.01 , 0.99)   ; (2) (1)~   . 

(1)  ( (2) ) was set as the base methylation level for the control (case) 

group/condition, and   was a pre-defined true methylation difference between 

two conditions. 

For each DMR, in each condition, the methylation values of all probes in all 

samples were randomly generated from a beta distribution with its mode equal to 

the base methylation level. The variance of the data was controlled by a parameter 

‘K’. 

b. CpG sites outside DMRs 

The CpG sites outside DMRs were randomly assigned as unmethylated or fully 

methylated, i.e., half of them were assigned as unmethylated and half of them were 

assigned as fully methylated. For all unmethylated probes, the methylation values 

of all samples were randomly sampled from a beta distribution 0 0(a ,b )beta  with its 
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mode close to 0; for all fully methylated probes, the methylation values of all 

samples were randomly sampled from another beta distribution 1 1(a ,b )beta  with its 

mode close to 1. 

Lastly, the beta values of all probes in all samples were adjusted, following the 

same procedure in DMRcate, to avoid those values very close to 0 or 1. 

S4.3. Simulation data generated by the DMRcate scheme 

We designed three scenarios to generate simulation data sets following the 

strategy used in DMRcate, regarding to different proportions of differentially 

methylated genes and different variances of the beta distributions predefined for 

data generation. For each scenario, we performed 10 random trails to assess the 

variance of the performance. 

The parameters that affect the beta distributions were set for the three scenarios 

as listed in Table S1. 

Table S1. Parameter settings in three scenarios 

 Proportion of DM   K 0a  0b  1a  1b  

Scenario 1 10% 0.2 100 2.4 20 14 3 

Scenario 2 30% 0.2 100 2.4 20 14 3 

Scenario 3 30% 0.2 20 1.4 5 5.5 2 

 

The parameter setting in scenario 1 was the same as in the simulation study of 

DMRcate. In scenario 2, we increased the proportion of differentially methylated 

genes, and in scenario 3, we increased the variances of the beta distributions to 

generate simulation data with higher noise, as shown in Fig. S2. Fig. S2(a) shows 

the variance of true differentially methylated sites among samples in the same 
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condition. By decreasing K, the variance was higher in scenario 3 than in other two 

scenarios. Given predefined true difference level  , the differential level of the 

true differentially methylated sites decreased in scenario 3. Fig. S2(b) shows the 

beta distributions for the non-differentially methylated sites in the two scenarios, 

which indicates that the variance of non-differentially methylated sites in scenario 

3 was higher than scenario 1 and 2. Thus, scenario 3 was more challenging for 

identifying differentially methylated genes. 

 

(a)                                                             (b) 

Fig. S2. Simulation data in the three scenarios with at different parameter settings: 
(a) variance of differentially methylated sites; (b) beta distribution for non-differentially 
methylated sites. 

S4.4. Simulation data generated with the proposed Leroux model 

We also generated simulation data sets following the proposed model to mimic the 

dependency of CpG sites in the neighborhood. In each experiment, the methylation 

value of CpG sites was simulated by the following steps: 

1) Sampling base methylation beta value of all CpG sites 

 A base methylation beta value of all CpG sites was randomly drawn from the 

distribution of methylation beta value obtained from a real data set (TCGA breast 

cancer data set), as shown in Fig. S3.  
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Fig. S3. Distribution of methylation beta value from TCGA breast cancer tumor 
samples. 

2) Sampling true methylation M-value of all CpG sites for each condition 

The true methylation M-value (logit transform of beta value) of all CpG sites in the 

control group was generated using the Leroux model. Specifically, the true 

methylated M-values were randomly sampled from a multi-variance Gaussian 

distribution with mean value defined as the logit transform of the base methylation 

beta value, and variance determined by the neighboring sites. For the non-

differentially methylated CpG sites, the true methylation M-value in the case group 

was the same as in the control group. For CpG sites in the hyper-methylated and 

hypo-methylated DMRs, the true methylation M-value in the case group were 

larger or smaller than the control group with difference 0  , respectively. 

3) Generating methylation M-value for all samples in each condition 
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In each condition, the methylation M-value for all samples were drawn from normal 

distribution with mean set as the true methylation M-value, and variance 1/ e  . 

Thus, e  and 0  controlled the differential level of the simulation data set. In the 

simulation study, we varied e  and 0  to generate simulation data sets at varying 

levels of noise and methylation level change. In specific, 5, 2, 1e   with 0 0.7  , 

1   , and 0.3   ; 2, 1, 0.8   with 1e  , 1   , and 0.3  . Fig. S4 shows the 

SNR of non-differentially methylated site and differentially methylated sites in the 

six different scenarios. 

 

Fig. S4. SNRs of non-differentially methylated and differentially methylated sites at 
varying noise and methylation change. 
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S4.5. Implementation of the competing methods 

We implemented four existing DMR detection methods, i.e., Bumphunter, 

DMRcate, Comb-P, and Probe Lasso, and calculated the p-values of the genes 

from the detected DMRs as follows: 

1) Bumphunter: default setting with 100 permutations, where the cutoff was 

determined from the 100 permutations at default setting. We used the reported p-

value of the area as the p-value of the detected DMRs, and assigned a gene’s p-

value as the minimum p-value of the DMRs associated with (or mapped to) the 

gene. 

2) DMRcate: default settings with pcutoff = 1, lambda = 1000, and C = 2. We used 

the reported meanpval as the p-value of the detected DMRs, and assigned a 

gene’s p-value as the minimum p-value of the DMRs associated with the gene. 

3) Probe Lasso: default setting with adjPval = 1 and DMRpval = 1. We used the 

reported dmr.Pval as the p-value of the detected DMRs, and assigned a gene’s p-

value as the minimum P value of the DMRs associated with the gene. 

4) Comb-P: p-value from Limma was used as the input, with seed = 0.5. We used 

the reported z_sidak_p as the p-value of the detected DMRs, and assigned a 

gene’s p-value as the minimum p-value of the overlapped DMRs mapped/linked to 

the gene. 

For the genes with no DMRs detetced, their p-values were set as 1.0. 

S4.6. Results on simulation data generated by the DMRcate procedure 

In each scenario, we performed 10 random experiments/trials to assess the 

variance of the performance. Fig. S5 is the boxplot of the AUCpr of the competing 

methods in 10 random trails for the three scenarios. 
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Fig. S5. Performance comparison on simulation data generated following the 
simulation scheme used in DMRcate. 
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S4.7 Results on simulation data generated with the Leroux model 

Fig. S6 shows the performance on detecting differentially methylated genes at 

different differential levels between two groups/conditions. 

 

Fig. S6. Performance on the detection of differentially methylated genes at varying 
levels of difference between two phenotypes. Precision-recall curves at (A) high 
difference; (B) medium difference; (C) low difference; (d) AUCpr in each scenario with 10 
experiments. 

 

S4.8 Simulation study on varying dependency level 

To assess the effectiveness of DM-BLD on various levels of local dependency, we 

further varied parameter    to generate simulation data sets. Specifically,   

varied from 0.01 to 0.9 with interval 0.2, while 0 1  , 1  , 1e  . The higher   
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is, the higher the local dependency. As shown in Supplementary Fig. S7(a), 

varying local dependency levels did not directly affect the differential level of CpG 

sites. However, it impacts on the estimation of the methylation level of CpG sites, 

as shown in Fig.S7(b). Since the mean value of the samples did not take 

dependency into account, the performance was similar among all different 

dependency levels. The performance of DM-BLD increased with increasing 

dependency levels, since more information can be incorporated from the 

neighbors. When the dependency level was low, the performance of DM-BLD was 

much better than that of DM-BLD at full dependency (i.e., where   was simply set 

as 0.999), indicating that the dependency level needed to be correctly estimated. 

The performance of DM-BLD on the identification of differentially methylated genes 

consistently outperformed the other methods across different scenarios, as shown 

in Fig. S7(a). 
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(a) 

 

(b) 

Fig. S7. Performance comparison on varying dependency level  . (a) AUCpr for the 

performance on differentially methylated gene detection; (b) performance on the 
estimation of true methylation level of the CpG sites.  
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S5. Experiment on real data for breast cancer recurrence study 

S5.1 TCGA ER-positive breast cancer tumor samples 

We collected a set of estrogen receptor positive (ER+) breast cancer tumor 

samples from TCGA to study the molecular mechanism underlying recurrence. 

The tumor samples were divided into two groups according to the survival time. 

Specifically, tumor samples from patients who were still alive with a follow-up time 

longer than 5 years were grouped as ‘Alive’ (indicating ‘late recurrence’), while 

those from patients dead within 5 years were grouped as ‘Dead’ (indicating ‘early 

recurrence’). Fig. S8 shows the distribution of the survival time of the patients. 

 

Fig. S8. Histogram of patients’ survival time: the ‘Dead’ group is shown in red; the 
‘Alive’ group is shown in blue 
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S5.2 Permutation test 

To assess the significance of differentially methylated genes, we performed 

permutation-based statistical tests. Specifically, we randomly permuted both 

sample labels and CpG site location, and performed DM-BLD over 100 random 

trials. Such permutation disrupts both the association between samples and 

phenotypes, and the correlation structure among neighboring CpG sites. We 

performed two significance tests over the 100 random trails as follows:  

 In the first test, the observed (or estimated) differential methylation score of 

each gene was tested against the ‘global’ null distribution; the ‘global’ null 

distribution was estimated from the differential methylation scores of all the 

genes in consideration, as obtained with the 100 random trials. Note that 

the ‘global’ null distribution was the aggregated distribution calculated from 

all the genes. 

 In the second test, the observed (or estimated) differential methylation score 

of each gene was tested against its corresponding ‘local’ null distribution; 

the ‘local’ null distribution was estimated from the differential methylated 

sores of the gene obtained in the 100 random trails. Note that the ‘local’ null 

distribution was gene-specific, i.e., each gene had its own null distribution. 

In the significance test, the null hypothesis was that the observed methylation 

score was drawn from the null distribution, and the p-value for each gene was 

calculated by assuming the null distribution was Gaussian-distributed. Benjamini-

Hochberg correction (Benjamini and Hochberg, 1995) was used to estimate the 

FDR-adjusted p-value. Fig. S9 shows the histogram of the adjusted p-values 

calculated from the ‘global’ null distribution and the ‘local’ null distribution, 

respectively. 
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Fig. S9. Histogram of p-values calculated from permutation tests. The red lines 
presents adjusted p-value = 0.05. 
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S5.3. Comparison with the competing methods 

We also applied Bumphunter (v1.6.0), DMRcate (v1.2.0), Comb-P and Probe 

Lasso (part of the ChAMP (v1.4.1) package) onto the breast cancer data. We used 

the same parameter settings as in the simulation studies for the competing 

methods. Probe Lasso did not report any differentially methylated regions; thus, it 

was not included in the comparison. Bumphunter reported methylation regions 

associated with 1,246 genes, where 236 genes were differential with p-value < 

0.05. Comb-P reported methylation regions associated with 748 genes, where 721 

genes were differential with p-value < 0.05. DMRcate reported 3,347 differentially 

methylated genes with p-value < 0.05. The Venn diagram of the genes detected 

by the four methods was shown in Fig. S10. Bumphunter identified much fewer 

differentially methylated genes as compared with the other methods. 

 

Fig. S10. Venn diagram of the differentially methylated genes detected by the 
competing methods. 
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For Bumphunter we used the default setting, where the cutoff was determined from 

the 100 permutations (as described before in S4.5), for our previous analysis. We 

adjusted the ‘cutoff’ of Bumphunter, and reran the analysis. As a result, with p-

value < 0.05, 645 of 8616 reported genes were identified as differentially 

methylated with ‘cutoff = 0.01’; 999 out of 9687 reported genes were identified as 

differentially methylated with ‘cutoff = 0’. Fig. S11 shows the Venn diagram with 

results from different implementation of Bumphunter. Fig. S12 shows the 

percentage of differentially expressed genes in the top differentially methylated 

genes detected by Bumphunter at different values of ‘cutoff’, where the genes were 

ranked by p-value of the genes summarized from the result of Bumphunter. With 

different settings of ‘cutoff’, the number of differentially methylated genes identified 

by Bumphunter varied. However, in terms of consistency with differentially 

expressed genes, the top ranked genes had similar performance. 

    

(a)                                                         (b) 

Fig. S11. Venn diagram of the differentially methylated genes from the competing 
methods. (a) ‘cutoff’ = 0.01 used in Bumphunter; (b) ‘cutoff’ = 0 used in Bumphunter. 
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Fig. S12. Proportion of differentially expressed (DE) genes among the top ranked 
differentially methylated (DM) genes detected by Bumphunter at different ‘cutoff’ 
values. 

 

S5.4. Characterization of the common and unique gene sets 

We compared the genes identified by our proposed method only to the genes that 

are also detected by other methods in terms of differential level and number of 

CpG sites. For Bumphunter, we used the result with default setting, where the 

‘cutoff’ is determined from the permutation test. First, we compared the absolute 

difference of beta value and the SNR of the CpG sites in the detected DMRs of the 

two sets of genes, as shown in Fig. S13(a) and (b). From one-tail two-sample K-S 

test, the absolute difference of beta value and SNR were significantly lower in the 

unique gene set. We also tested on the number of CpG sites across the whole 

gene region and the number of CpG sites in DMRs, as shown in Fig. S13(c) and 

(d). The K-S test showed that the number of sites across the gene region was 

significantly higher in the common gene set and the number of sites in DMRs was 

significantly higher in the unique gene set, as shown in Table S2. 
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Fig. S13. Common differentially methylated genes v.s. Unique differentially 
methylated genes detected by DM-BLD. (A) absolute difference of beta value; (B) 
SNR; (C) number of CpG sites associated with gene;  (D) number of CpG sites in 
DMR. 

 

Table S2. P-value from K-S test 

 P-value from K-S test 
Absolute difference of beta value 
(“>”: larger in common genes than in 
unique genes) 

5.79e-89 

SNR 
(“>”: larger in common genes than in 
unique genes) 

6.44e-200 

Number of sites in each gene 
(“>”: larger in common genes than in 
unique genes) 

1.77e-7 

Number of sites in DMRs 
(“<”: less in common genes than in 
unique genes) 

2.36e-15 
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S5.5. Differentially expressed genes detected from RNA-seq data 

We analyzed the mRNA expression data of the same set of patients and detected 

differentially expressed genes. We downloaded the RNA-seq data (Level 1) of all 

of the 61 samples profiled by Illumina HiSeq 2000 RNA Sequencing Version 2 

analysis from the TCGA data portal, and then performed alignment using ‘TopHat 

2 (TopHat v2.0.12)’ (http://ccb.jhu.edu/software/tophat/index.shtml) with UCSC 

hg19 as the reference sequence. With the isoform structure annotation file (RefSeq 

genes) downloaded from the UCSC genome browser database 

(http://genome.ucsc.edu/), we applied the cuffdiff 2 method (cuffdiff 2.2.1; 

http://cole-trapnell-lab.github.io/cufflinks/) to identify differentially expressed 

isoforms by analyzing samples from the two groups: the ‘Dead’ group vs. the ‘Alive’ 

group. Differentially expressed genes were defined as genes with differentially 

expressed isoforms with p-value less than 0.05. As a result, 1101 differentially 

expressed genes were identified. 

S5.6. Interaction of the identified functional genes in PPI network 

To study the interaction of the identified genes, we first mapped the differentially 

expressed genes to the Protein-Protein interaction (PPI) network from the Human 

Protein Reference Database (HPRD) (Keshava Prasad, et al., 2009). Fig. S14(A) 

shows that the major connected network is largely downregulated in the ‘Dead’ 

group as compared to that in the ‘Alive’ group. In the PPI network of differentially 

expressed genes, there are two modules of interacting genes with differential 

methylation activity between two groups. The two modules, potentially regulated 

by DNA methylation, are shown in Fig. S14(B) and highlighted in yellow and blue 

in Fig. S14(A). 
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Fig. S14. Network of differentially expressed genes and methylation regulated 
modules. (a) A PPI network of differentially expressed genes; (b) methylation regulated 
modules with interacting genes that are differentially expressed and also differentially 
methylated. 
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 S6. Polycomb target genes detected from ChIP-seq data 

As polycomb group (PcG) proteins are essential epigenetic regulators, we 

identified Polycomb target genes from ChIP-seq data, and then checked the 

overlap with the identified hyper-methylated genes. Specifically, we first download 

the ChIP-seq data of EZH2, SUZ12, H3K4me3 and H3K27me3 in embryonic stem 

cells from ENCODE (https://www.encodeproject.org/). Then, we used MACS 

(Zhang, et al., 2008) with default setting for peak calling. Finally, we matched the 

peaks to genes using GREAT (McLean, et al., 2010) with the regulatory region 

defined as 2K  from the transcriptions start sites (TSS). The gene sets identified 

from the four ChIP-Seq studies were shown in Fig. S15. As a result, 2,589 common 

genes from the four studies were detected as the Polycomb target genes. 

 

Fig. S15. Number of genes identified from four ChIP-seq studies on stem cell 

  

https://www.encodeproject.org/
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