Supplementary Information for:

A Genome-Wide Investigation into Parent-of-Origin Effects in Autism Spectrum Disorder Identifies Previously Associated Genes including *SHANK3*.

Siobhan Connolly^{a1} Richard Anney^{ab} Louise Gallagher^a Elizabeth A. Heron^a

- a: Neuropsychiatric Genetics Research Group,
 Dept. of Psychiatry, Trinity College Dublin,
 Trinity Centre for Health Sciences, James's St.,
 Dublin 8, Ireland.
- b: Institute of Psychological Medicine and Clinical Neurosciences,
 Cardiff University School of Medicine,
 Hadyn Ellis Building, Maindy Road, Cathays,
 Cardiff CF24 4HQ, United Kingdom.

Materials and Methods

Statistical Model

Estimation of Maternal, Imprinting and interaction effects using Multinomial Modelling (EMIM) [1] directly maximises the multinomial likelihood to detect parent-of-origin effects. EMIM has many advantages over other statistical methods (such as LRT [2], PO-LRT [3], CPG [4] and CEPG [4]) for detecting parent-of-origin effects as EMIM has consistent type I error rates, in general offers the strongest power and is flexible in study and model design [5]. The theoretical frequencies for the multinomial model are shown in Table S1, where column 5 gives the parameters that are

	· · · · · · · · · · · · · · · · · · ·	J		
No. of Variant	Parental Origin	Mating	Theoretical	EMIM
Alleles (MPC^a)	(Mat and/or Pat)	Type	$Frequency^b$	$Parameters^{c}$
222	Mat & Pat	1	$S_2 R_2 I_M I_P \alpha_{22} \mu_1$	$(S_1)^2 (R_1^*)^2 I_M^* \mu_1$
212	Mat & Pat	2	$S_2 R_2 I_M I_P \mu_2$	$(S_1)^2 (R_1^*)^2 I_M^* \mu_2$
122	Mat & Pat	2	$S_1 R_2 I_M I_P \alpha_{12} \mu_2$	$S_1(R_1^*)^2 I_M^* \mu_2$
211	Mat	2	$S_2 R_1 I_M \alpha_{21} \mu_2$	$(S_1)^2 R_1^* I_M^* \mu_2$
121	Pat	2	$S_1 R_1 I_P \alpha_{12} \mu_2$	$S_1 R_1^* lpha_{11} \mu_2$
201	Mat	3	$S_2 R_1 I_M \mu_3$	$(S_1)^2 R_1^* I_M^* \mu_3$
021	Pat	3	$R_1 I_P \mu_3$	$R_1^*\mu_3$
112	Mat & Pat	4	$S_1 R_2 I_M I_P \alpha_{11} \mu_4$	$S_1(R_1^*)^2 I_M^* \alpha_{12}^* \mu_4$
111	Mat or Pat	4	$S_1 R_1 (I_M + I_P) \alpha_{11} \mu_4$	$S_1 R_1^* (I_M^* + 1) \alpha_{11} \mu_4$
110		4	$S_1 lpha_{11} \mu_4$	$S_1 \mu_4$
101	Mat	5	$S_1 R_1 I_M \mu_5$	$S_1 R_1^* I_M^* \alpha_{11} \mu_5$
011	Pat	5	$R_1 I_P \mu_5$	$R_1^*\mu_5$
100		5	$S_1\mu_5$	$S_1\mu_5$
010		5	μ_5	μ_5
000		6	μ_6	μ_6

Table S1: Theoretical Frequencies for Family Trios

^aM,P and C are the number of copies of the allele the mother, father and offspring possess, respectively.

 ${}^{b}R_{k}$, S_{j} and α_{jk} , for j,k $\in \{1, 2\}$, denote the relative risk associated with j = M and k = C copies. I_{M} and I_{P} denote the relative risk associated with the allele originating from the mother and the father respectively, compared to the risk associated with the allele not being inherited. μ_{i} for $i \in \{1, ..., 6\}$ are the relative frequencies for the 6 different parental-mating types shown in Column 3.

^cThese are the parameters that can be estimated in EMIM as defined here with $R_1^* = R_1 I_P$, $R_2^* = R_2 (I_P)^2$, $I_M^* = I_M / I_P$ and assuming a multiplicative model leads to $(S_1)^2 = S_2$ and $(R_1)^2 = R_2 \Longrightarrow (R_1^*)^2 = (R_2^*)^2$. estimated in the model for this analysis. Mother/offspring interactions were not included in the model due to power issues, although we did investigate these interactions when an offspring genetic effect and maternal genetic effect were identified. In this scenario, the model is run again in EMIM at only this SNP but this time including interactions in the model and utilising the Likelihood Ratio Test (LRT) to compare the model with interactions to the model without interactions. The model in EMIM assumes a genetic multiplicative model, shown in column 5, Table S1. Assuming a multiplicative model can help increase power under certain genetic models (such as a true dominant model) and is robust even when the model is misspecified [6]. One exception is when the true model is a recessive model, however there is little power to detect a recessive variant even when correctly specified [6]. Note: we assume parental mating symmetry (shown in column 3, Table S1) in the population (when the proportion of matings with mothers of genotype M = m and fathers of genotype P = m for the population) in order to investigate maternal genetic effects.

Quality Control Procedures

Quality Control (QC) procedures involve two main steps, QC of individuals and QC of SNPs. We conducted the QC procedures using PLINK [7] and R [8]. We carried out our QC procedures on the Strict Autism phenotype separate to the Spectrum Autism phenotype. This was necessary in order to ensure that only the individuals included in the dataset would have an influence on the SNPs that passed our QC criteria.

We carried out Principal Component Analyses (PCA) (Eigenstrat, [9]) for both the AGP and SSC data to examine the structure of the populations using only high quality independent SNPs from one affected offspring per family with HapMap data [10] as a reference. From Figure S1, it is evident that the majority of samples from both the AGP and SSC are of European descent. We did not remove individuals that were not of European descent as we did not assume Hardy-Weinberg equilibrium (HWE) in our model in EMIM, but we did assume parental symmetry and we stratified the data into six mating types in order to make the model robust against population stratification.

Figure S1: Principal Component Analysis for the AGP and SSC data including the Hapmap data (release 23) for reference.

and two genotyped parents. Only considering trios reduces the amount of missing genotype data that needs to be estimated in EMIM, thus potentially increasing power. In the families with more than one affected sibling, we randomly selected a sibling to include and removed all other(s). Filtering of high call rates (>95%) for both the SNPs and the individuals was then carried out. We QC'd the data for any serious deviations from HWE (p-value < 0.00001) because even though we did not assume HWE in our model (we assumed parental symmetry), HWE can also detect genotyping error and non-random mating such as inbreeding. We removed SNPs with MAF < 5%. We investigated individuals and SNPs for Mendelian errors and any errors that were below 0.05% (minor errors) were set to missing. We also removed any extreme deviations of heterozygosity and checked for relatedness between families. We also removed any other SNPs that had a HWE p-value < 0.00001 again in order to make the model more robust to population stratification. At each QC step we removed any families that did not consist of complete trios. See Table S2 and Table S3 for further details on the QC.

	Strict A	GP Data	Spectrum	AGP Data
	Families	SNPs	Families	SNPs
Start:	2 931	924 324	2 931	924 324
Autosomal SNPs	2 931	$908 \ 421$	2 931	$908 \ 421$
1 affected offspring & 2 parents	1 723	908 421	2 782	908 421
QC Steps:				
Call Rate $< 95\%$	62	70 741	90	70554
HWE < 0.00001	-	$20\ 744$	-	31 811
MAF < 5%	-	$81 \ 974$	-	77 796
Mendelian Errors $> 0.5\%$	0	0	0	0
Heterozygosity	62	-	88	-
Relatedness	5	-	10	-
HWE < 0.00001	-	37	-	32
Final	1 594	734 925	2 594	728 228

Table S2: Quality Control Procedure for AGP datasets

	Strict SS	SC Data	Spectrum	SSC Data
	Families	\mathbf{SNPs}	Families	SNPs
Start:	2 591	645 885	2 591	645 885
Autosomal SNPs	2591	$626 \ 243$	2 591	626 243
1 affected offspring & 2 $$	2 080	626 243	2 586	626 243
parents	2 003	020 243	2 560	020 245
QC Steps:				
Call Rate $< 95\%$	0	3 843	0	$3\ 877$
HWE < 0.00001	-	55 821	-	62 430
MAF < 5%	-	76 513	-	$74\ 286$
Mendelian Errors $> 0.5\%$	1	2 769	1	2596
Heterozygosity	68	-	108	-
Relatedness	60	-	44	-
HWE < 0.00001	-	91	-	64
Final	1 960	487 216	2 433	483 080

Table S3: Quality Control Procedure for SSC datasets

Bayesian Noteworthy Threshold

In specifying the parameters for the Bayesian thresholds for R_1 and S_1 , we note that the effect sizes in GWAS for a complex disorder are generally expected to be low. For example, the genotype relative risk for a SNP is suggested to be between 1.1 and 2 [11, 12]. The most significant findings in previous GWASs in ASD include a SNP (rs4307059) on chromosome 5 with an odds ratio of 1.19 [13], another SNP (rs10513025) on chromosome 5 with an odds ratio of 0.55 (1/0.55 = 1.81) [14] and a SNP (rs4141463) in the gene *MACROD2* on chromosome 20 with an odds ratio of 0.56 (1/0.56 = 1.79) [15]. These previous findings all report effect sizes in terms of odds ratios. In comparing odds ratios and relative risks, these effect sizes will be similar when the event of interest is rare, otherwise the odds ratio findings, we chose the prior on the effect size for an association and a maternal genetic effect such that there is a 5% chance that the relative risk will be larger than 2. This results in the prior variance for the log of the relative risk being $W = 0.42^2$ [16].

There is evidence to suggest that there are several hundred to thousands of loci that are likely

to contribute to the complex genetic heterogeneity of ASD [17–19], the majority of which are due to common variation [20]. If we conservatively assume that there are 1 million independent common variants and that 500 of these variants contribute to ASD, then our prior probability that H_0 is true, $\pi_0 = 1 - 500/1,000,000 = 0.9995$, leads to a prior odds of H_0 being true of PO = 1,999. We chose R = 10, the ratio of cost of type II to type I error. We believe type II errors are 10 times as bad as type I errors, as false negative findings cannot be followed up as noted and discussed by Wakefield [21].

The standard errors in the full model produced by EMIM can be inflated [1] and when the standard error (V_n) increases, Z^2 score increases. Instead of using the standard error of R_1 (offspring genetic effect) and S_1 (maternal genetic effect) for V_n that the full model produces, we used the standard errors from testing for R_1 and S_1 independently (e.g. H_0 : $R_1 = 0$ and H_1 : $R_1 \neq 0$). Therefore, the standard error for R_1 and S_1 is calculated using $[n \times MAF \times (1 - MAF)]^{-\frac{1}{2}}$, where n is the sample size and the MAF is the minor allele frequency calculated using the offsprings' genotypes when calculating the standard error for R_1 and using the mothers' genotypes when calculating the standard error for S_1 .

We calculated a Z^2 score threshold for the Wald Z score for R_1 (the association parameter) and then on finding results above this threshold, we investigated further for an imprinting effect using the Wald p-value for I_M (the imprinting parameter). We identified a noteworthy imprinting result when the imprinting Wald p-value is greater than the association threshold also. This process is illustrated in Figure S2, using dummy data. We calculated a Z^2 score threshold for the Wald Z score for S_1 (maternal genetic effect) and a noteworthy maternal genetic effect is identified when S_1 is above this threshold. It is not necessary to have also identified an association at this locus. Figure S3 illustrates how we identified noteworthy maternal genetic effects.

Step 1: Identifying Noteworthy Associations (R_1) . SNPs (grey) above the association threshold (green line) are considered noteworthy, there are 5 noteworthy associations here.

Step 2: For Noteworthy SNPs Investigate Imprinting Effects (I_M). Each SNP has an association $-\log_{10}(P-value)$ (grey) and an imprinting $-\log_{10}(P-value)$ (blue). Noteworthy imprinting SNPs are those SNPs (blue) with both an imprinting $-\log_{10}(P-value)$ and an association $-\log_{10}(P-value)$ above the threshold (green line).

Figure S2: Identifying Noteworthy Imprinting Effects using the Bayesian Threshold

Figure S3: Identifying Maternal Genetic Effects Using the Bayesian Threshold.

SNPs (purple) above the maternal genetic threshold (red line) are considered noteworthy, there are 4 noteworthy maternal genetic effects (S_1) here.

Sensitivity of Bayesian Threshold

The standard error (V_n) is controlled/determined by the sample size and MAF for the offspring genetic effect parameter, R_1 , and the maternal genetic parameter, S_1 . The sample size does not vary to any great extent from SNP to SNP (only changes if all 3 family members have missing data at a SNP, otherwise missing data is estimated by EMIM) but the MAF does vary and we examined what happens to the threshold as the MAF varies in Figure S4(a) using the sample size from our smallest dataset (AGP Strict, n = 1,594). There is a higher threshold at low MAFs, which is to be expected as there is less information here to determine a noteworthy finding and thus the threshold needs to be more stringent, and once the MAF > 0.2 there is not much change in the threshold, and can be seen to level out.

Given that there are several hundred to a thousand loci that are likely to contribute to ASD [17–19], we tested $\pi_0 = 1 - 200/1\ 000\ 000 = 0.9998 \Rightarrow PO = 4\ 999, \pi_0 = 1 - 500/1\ 000\ 000 = 0.9995 \Rightarrow PO = 1\ 999\ and \pi_0 = 1 - 1\ 000/1\ 000\ 000 = 0.9999 \Rightarrow PO = 999\ corresponding to$ $roughly 200, 500 and 1,000\ contributing loci, respectively, see Figure S4(c). We can see from this$ plot that the threshold is more sensitive to changes in PO than to changes in W and as would beexpected, the stronger the belief that there are more associations to find the lower the Bayesianthreshold.

We investigated the sensitivity to different R parameter values (ratio of cost of type II errors to type I errors) of our model, see Figure S4(d). This plot shows that the threshold is much higher for R = 1 (where cost of type I errors is equal to the cost of type II errors), as would be expected. Given the limited power to detect parent-of-origin effects and that EMIM is somewhat conservative at low MAFs [5], we felt that R = 1 is not appropriate for our model. Also, Wakefield [21] compared the Bayesian threshold versus the Bonferroni correction. For sample sizes ranging between 1,000 - 3,000 (which compared roughly to the sample sizes in our datasets) and using $W = 0.42^2$ together with $\pi_0 = 1 - 1/100,000$, which is weaker than our belief of 1 - 500/1 000 000, found that for R= 10, there were at most 2 false discoveries for approximately every 10 extra findings using the Bayesian threshold. This seems very beneficial in our model.

Therefore, we felt our choice of parameters (the green line in Figure S4, where V_n is the standard error, $W = 0.42^2$, $\pi_0 = 1 - 500/1,000,000$ and R = 10) for our Bayesian threshold for R_1 and S_1 were appropriate for the approach in EMIM with the ASD datasets we are analysing here.

Figure S4: Sensitivity of the Bayesian Threshold, where V_n is the standard error that depends on MAF and sample size (n = 1,594 here), $W = 0.42^2$, $\pi_0 = 1 - 500/1,000,000$ (PO = 1,999) and R = 10, unless otherwise stated

Results

AGP Spectrum Results

Figure S5: Manhattan Plots for Imprinting (Figure S5 (a)) and Maternal Genetic Effects (Figure S5 (b)) for Spectrum Phenotype in the AGP Dataset

Table S4: Imprinting Results in the AGP Spectrum dataset $\&$ corresponding findings in the SSC Spectrum dataset	AGP Results SSC Results	SNP Chr MAF R_1 PV R_1 S_1 PV S_1 I_M PV I_M R_1 Threshold Gene SNP R^2 MAF R_1 PV R_1 S_1 PV S_1 I_M PV I_M	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ rs10025482 \ 4 \ 0.49 \ 1.33 \ 4.49x10^{-5} \ 1.29 \ 3.71x10^{-4} \ 0.59 \ 6.21x10^{-6} \ 1.05x10^{-4} \ C4 orf 37 \ rs6854802 \ 1 \ 0.48 \ 0.93 \ 0.28 \ 0.88 \ 0.07 \ 1.19 \ 0.15$	$ rs11256141 10 0.16 0.69 1.17 x10^{-5} 0.74 1.98 x10^{-4} 1.77 6.23 x10^{-6} 7.36 x10^{-5} LINC00709 rs11256141 1 0.16 0.93 0.37 1.08 0.34 0.95 0.71 0.16 $	$ rs1491994 3 0.24 0.73 1.82 x 10^{-5} 0.83 1.06 x 10^{-2} 1.63 1.76 x 10^{-5} 8.90 x 10^{-5} CLDN16 \left \text{ NA} \right. \\ \left. \right. \\ \left. \right. \\ \left. \right. \\ \left. \right. \right. \\ \left. \right. \\ $	$ rs2031836 13 0.46 1.34 3.16 x 10^{-5} 1.32 6.83 x 10^{-5} 0.62 2.41 x 10^{-5} 1.05 x 10^{-4} NA rs2031836 1 0.46 0.96 0.55 1.00 0.98 1.10 0.42 0.44$	$ rs17683817 5 0.16 1.40 6.85 x 10^{-5} 1.30 2.48 x 10^{-3} 0.58 2.45 x 10^{-5} 7.31 x 10^{-5} WDR_4 I \left rs_17683817 1 0.15 0.90 0.19 0.77 0.00 1.23 0.12 0.$	$ rs10491726 9 0.12 0.68 3.78x10^{-5} 0.76 2.58x10^{-3} 1.81 2.55x10^{-5} 5.97x10^{-5} PTGRI \left rs10491726 1 0.10 0.89 0.23 0.87 0.17 1.22 0.18 $	$ rs807566 14 0.15 0.69 1.69x10^{-5} 0.72 1.61x10^{-4} 1.69 7.57x10^{-5} 7.63x10^{-5} BCL11B \left rs807566 1 0.14 1.01 0.88 1.09 0.34 0.92 0.55 0$	$ rs9671845 14 0.29 0.75 8.12 \times 10^{-5} 0.81 3.22 \times 10^{-3} 1.57 8.22 \times 10^{-5} 9.55 \times 10^{-5} NA rs10139853 0.96 0.30 1.00 0.98 0.97 0.66 1.05 0.66 1.05 0.66 1.05 0.66 1.05 0.66 0.26 $	R_1 denotes the relative risk for the offspring having one copy of the variant allele, S_1 denotes the relative risk for the mother having one copy of the variant allele, I_M		demotes the weletism with few a supremission of the allele and DIV demotes within	Table S4:SNPSNPrs675680rs10025482rs10025482rs10025482rs10251431rs10251431rs1491994rs2031836rs17683817rs17683817rs10491726rs807566rs97766rs9671845 R_1 denotes t1	$\begin{array}{ c c c c } \mathbf{I}\mathbf{M} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{L} \\ \mathbf{L}$	MAF MAF 0.06 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.12 0.12 0.15 0.15 0.15 0.15	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{Results} \\ \hline PV R_1 \\ \hline 3.58x10^{-7} \\ 4.49x10^{-5} \\ 1.17x10^{-5} \\ 1.82x10^{-5} \\ 3.16x10^{-5} \\ 6.85x10^{-5} \\ 3.78x10^{-5} \\ 1.69x10^{-5} \\ 1.69x10^{-5} \\ \textbf{R}.12x10^{-5} \\ \textbf{R}.12x10^{-5} \end{array}$	$\begin{array}{c c} & \text{in tI} \\ \hline A \\ \hline A \\ \hline S_1 \\ S_1 \\ S_1 \\ S_2 \\ S_1 \\ S_2 \\ S_1 \\ S_2 \\ S_2 \\ Bavir \\ \hline S_1 \\ S_2 \\ Bavir \\ S_2 \\ Bavir \\ S_2 \\ Bavir \\ S_2 \\ Bavir \\ S_2 \\ S_1 \\ Bavir \\ S_2 $	$\begin{array}{c} \textbf{de AGP} \\ \hline \textbf{GF Results} \\ \hline PV S_1 \\ 1.77 \text{x}10^{-4} \\ 3.71 \text{x}10^{-4} \\ 1.98 \text{x}10^{-5} \\ 6.83 \text{x}10^{-5} \\ 6.83 \text{x}10^{-5} \\ 6.83 \text{x}10^{-5} \\ 2.48 \text{x}10^{-3} \\ 1.61 \text{x}10^{-3} \\ 3.22 \text{x}10^{-3} \\ 3.22 \text{x}10^{-3} \\ \textbf{g one copy} \\ \textbf{g one copy} \end{array}$	$\begin{array}{c} {\bf Spec}\\ \underline{{\rm Spec}}\\ \underline{{\rm I}}_{M}\\ 2.36\\ 0.59\\ 0.58\\ 0.62\\ 0.58\\ 0.58\\ 1.81\\ 1.81\\ 1.69\\ 1.57\\ {\rm of the}\\ {\rm of the}\\ \end{array}$	$\begin{array}{c} \text{PV } I_M \\ \hline PV I_M \\ 3.02 \times 10^{-6} \\ 6.21 \times 10^{-6} \\ 6.23 \times 10^{-6} \\ 1.76 \times 10^{-5} \\ 2.41 \times 10^{-5} \\ 2.45 \times 10^{-5} \\ 7.57 \times 10^{-5} \\ 8.22 \times 10^{-5} \\ \text{wariant allele} \end{array}$	$\begin{array}{c} \mbox{taset }\&\mbox{con}\\ \hline R_1 \ Threshold\\ \hline R_1 \ Threshold\\ \hline 3.20 \times 10^{-5}\\ 1.05 \times 10^{-4}\\ 7.36 \times 10^{-5}\\ 8.90 \times 10^{-5}\\ 1.05 \times 10^{-5}\\ 7.31 \times 10^{-5}\\ 5.97 \times 10^{-5}\\ 7.63 \times 10^{-5}\\ 9.55 \times 10^{-5}\\ 9.55 \times 10^{-5}\\ 9.55 \times 10^{-5}\\ 1.05 \times 10^{-5}\\ \end{array}$	$\begin{array}{c} \mbox{trespondin}\\ \mbox{Gene}\\ \mbox{Gene}\\ \mbox{NA}\\ \mbox{LINC00709}\\ \mbox{CLDN16}\\ \mbox{NA}\\ \mbox{erlative risk}\\ \mbox{erlative risk}\\ \end{array}$	ag finding SNP SNP SNP rs675680 rs675680 rs68854802 rs11256141 NA rs2031836 rs17563817 rs17683817 rs17683817 rs10491726 rs20318365 rs10139853 for the mothe	$\begin{array}{c c} R^2 \\ R^2$	Image MAF MAF 0.06 0.06 0.16 0.16 0.15 0.15 0.10 0.10 0.115 0.10 0.116 0.10 0.116 0.10 0.114 0.10 0.114 0.10 0.114 0.10 0.114 0.10 0.114	$\begin{array}{c} \mathbf{SSC} \\ \mathbb{R}_1 \\ \mathbb{R}_1 \\ \mathbb{R}_1 \\ 1.15 \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.89 \\ 1.01 \\ 1.01 \\ 1.01 \\ 0.89 \\ 0.90 \\ 0$	$\begin{array}{c} {\bf SD ectr}\\ {\rm SC Result}\\ {\rm PV } R_1\\ {\rm 0.28}\\ {\rm 0.28}\\ {\rm 0.28}\\ {\rm 0.28}\\ {\rm 0.28}\\ {\rm 0.19}\\ {\rm 0.98}\\ {\rm 0.98}\\ {\rm 0.98}\\ {\rm f the vari}\\ {\rm f the vari} \end{array}$	$\begin{array}{c c} \text{um } \mathbf{d} \\ s \\ S_1 \\ S_1 \\ 1.25 \\ 0.88 \\ 1.08 \\ 1.08 \\ 1.00 \\ 0.77 \\ 0.87 \\ 1.09 \\ 0.97 \\ \text{ant alle} \end{array}$	$\begin{array}{c c} & {\rm PV} \ S_1 \\ \hline {\rm PV} \ S_1 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.34 \\ 0.34 \\ 0.00 \\ 0.17 \\ 0.34 \\ 0.16 \\ 0.34 \\ 0.66 \\ \overline{\rm sle}, \ I_M \end{array}$	$\begin{array}{c} I_M\\ 0.81\\ 1.19\\ 1.19\\ 1.23\\ 1.23\\ 1.22\\ 0.92\\ 1.05\end{array}$	$\begin{array}{c} \frac{\mathrm{PV}I_{\Lambda}}{0.24}\\ 0.15\\ 0.71\\ 0.12\\ 0.12\\ 0.18\\ 0.55\\ 0.66\end{array}$
------------------------------------------------------------------------------------------------------------------	-------------------------	------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--	-----------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------

datas
Spectrum
7 ک
$\mathbf{\mathcal{G}}$
01
\mathbf{the}
in
indings
nding f
correspor
N
Ś
dataset
pectrum
S
AGP
the 1
in
ults
Rest
H
ting
prin
: Im
$\mathbf{S4}$
e
[ab]

Table S5: Maternal Genetic Effects Results in the AGP Spectrum dataset & corresponding findings in the SSC Spectrum dataset

narazer																			
	;				1	AGP Result	so '			1		c I		S_{1}^{S}	C Resul	$\operatorname{ts}_{\tilde{z}}$			
SNP	Chr	MAF	K_1	$PV K_1$	S_1	$PV S_1$	I_M	$PV I_M$	S ₁ Threshold	Gene	SNP	K^{2}	MAF	R_1	$PV R_1$	S_1	$PV S_1$	IM F	N IM
rs2268949	20	0.39	1.26	1.40×10^{-3}	1.39	3.84×10^{-0}	0.68	$6.32 \mathrm{x} 10^{-4}$	1.03×10^{-4}	NA	rs2268949		0.38	0.92	0.25	0.98	0.77	1.14	0.26
rs6965442	7	0.19	1.31	1.00×10^{-3}	1.45	4.85×10^{-6}	0.69	1.92×10^{-3}	8.16×10^{-5}	LOC729986	rs6965442	-	0.18	1.07	0.4	1.01	0.87	0.87	0.27
rs6677933	1	0.2	0.76	$3.20 \mathrm{x10^{-4}}$	0.71	$6.83 \mathrm{x} 10^{-6}$	1.63	5.02×10^{-5}	8.20×10^{-5}	NA	rs6677933		0.21	1.01	0.9	0.99	0.85	1.09	0.47
rs4637047	7	0.25	0.84	1.21×10^{-2}	0.72	8.40×10^{-6}	1.33	1.20×10^{-2}	$9.03 \mathrm{x} 10^{-5}$	NA	NA	0							
rs9462733	9	0.15	1.21	4.56×10^{-2}	1.49	9.02×10^{-6}	0.69	6.02×10^{-3}	$6.99 \mathrm{x} 10^{-5}$	NA	NA	0							
rs4516878	ы	0.24	1.21	$1.43 \mathrm{x} 10^{-2}$	1.4	1.16×10^{-5}	0.72	$4.37 \mathrm{x} 10^{-3}$	$8.94 \mathrm{x} 10^{-5}$	CTC-340A15.2	rs4516878		0.25	1.11	0.17	1.07	0.37	0.9	0.39
rs1617306	10	0.45	1.2	6.80×10^{-3}	1.35	$1.17 x 10^{-5}$	0.69	9.90×10^{-4}	$1.05 \mathrm{x} 10^{-4}$	NA	rs1617306		0.45	1.01	0.83	1.07	0.32	0.97	0.81
rs9283909	9	0.11	1.29	1.16×10^{-2}	1.53	1.31×10^{-5}	0.59	$2.36 \mathrm{x} 10^{-4}$	5.82×10^{-5}	NA	rs12526543		0.1	0.97	0.75	0.93	0.47	1.06	0.68
rs2982502	1	0.3	0.92	$2.24 \mathrm{x10^{-1}}$	0.74	1.70×10^{-5}	1.31	1.50×10^{-2}	$9.64 \mathrm{x} 10^{-5}$	ZFP69B	rs2982502		0.32	1.13	0.08	1.14	0.07	0.78	0.03
rs6496603	15	0.4	1.19	1.48×10^{-2}	1.35	1.75×10^{-5}	0.69	8.69×10^{-4}	$1.03 \mathrm{x} 10^{-4}$	ANPEP	NA	0							
rs1277203	1	0.33	0.77	2.17×10^{-4}	0.74	1.81×10^{-5}	1.62	1.67×10^{-5}	9.95×10^{-5}	AKNAD1	rs1277203		0.35	1.03	0.71	0.93	0.31	1.02	0.87
rs8113869	20	0.09	0.9	$2.71 \mathrm{x10^{-1}}$	0.64	$2.21 \mathrm{x} 10^{-5}$	1.51	$6.04 \mathrm{x} 10^{-3}$	4.68×10^{-5}	LINC00658	rs8113869		0.1	0.95	0.6	0.93	0.49	1.19	0.24
rs2183284	13	0.32	0.82	4.58×10^{-3}	0.74	$2.35 \mathrm{x} 10^{-5}$	1.43	$1.75 \mathrm{x} 10^{-3}$	$9.88 \mathrm{x} 10^{-5}$	LINC00426	rs2183284		0.35	1.02	0.78	0.99	0.94	1.04	0.72
rs3891371	ы	0.25	0.8	1.71×10^{-3}	0.73	2.42×10^{-5}	1.68	$6.59 \mathrm{x} 10^{-6}$	9.07×10^{-5}	KCNN2	NA	0							
rs7778273	7	0.08	1.34	9.50×10^{-3}	1.6	2.52×10^{-5}	0.55	$1.94 \mathrm{x} 10^{-4}$	4.51×10^{-5}	CUL1	rs7778273		0.08	1	0.97	1.05	0.69	1.03	0.88
rs3848375	16	0.18	0.81	7.13×10^{-3}	0.72	2.59×10^{-5}	1.37	9.19×10^{-3}	7.82×10^{-5}	MGRN1	rs3848374	0.96	0.2	0.91	0.22	0.86	0.06	1.22	0.1
rs6021903	20	0.26	0.86	3.91×10^{-2}	0.74	2.66×10^{-5}	1.46	$9.71 \mathrm{x} 10^{-4}$	9.19×10^{-5}	LINC01524	rs968162		0.27	1.05	0.52	0.96	0.58	0.93	0.56
rs1766862	1	0.39	0.79	6.90×10^{-4}	0.75	2.78×10^{-5}	1.47	$3.81 \mathrm{x} 10^{-4}$	$1.03 \mathrm{x} 10^{-4}$	LRIG2	rs1766862		0.41	0.84	0.01	0.87	0.05	1.34	0.01
rs545208	11	0.25	0.83	8.35×10^{-3}	0.74	3.00×10^{-5}	1.39	4.70×10^{-3}	9.10×10^{-5}	MAML2	rs545208		0.26	0.98	0.8	1.02	0.81	1.01	0.93
rs2978880	x	0.18	0.79	$2.75 \mathrm{x} 10^{-3}$	0.72	$3.49 \mathrm{x} 10^{-5}$	1.45	2.42×10^{-3}	7.90×10^{-5}	DEFB1	rs2978880		0.2	0.89	0.16	0.97	0.69	1.04	0.73
rs2060792	10	0.31	0.88	$5.83 \mathrm{x} 10^{-2}$	0.74	$3.59 \mathrm{x} 10^{-5}$	1.31	1.92×10^{-2}	$9.72 \mathrm{x} 10^{-5}$	RP11-34D15.2	rs2060792	Ч	0.32	1.06	0.45	0.98	0.82	1.12	0.34
rs7128766	11	0.07	1.03	8.01×10^{-1}	1.64	$3.82 \mathrm{x} 10^{-5}$	0.73	7.56×10^{-2}	$3.99 \mathrm{x} 10^{-5}$	NELL1	rs7128766	Ч	0.08	0.98	0.83	0.96	0.72	1.01	0.97
rs10409120	19	0.23	0.86	$3.77 \mathrm{x} 10^{-2}$	0.73	$4.20 \mathrm{x} 10^{-5}$	1.61	$5.22 \mathrm{x} 10^{-5}$	$8.84 \mathrm{x10^{-5}}$	ZNF83	rs10409120		0.23	1.04	0.59	1.15	0.08	0.91	0.44
rs11674199	2	0.37	0.86	$2.94 \mathrm{x10^{-2}}$	0.75	$4.75 \mathrm{x} 10^{-5}$	1.42	$3.42 \mathrm{x} 10^{-3}$	$1.02 \mathrm{x} 10^{-4}$	NPAS2	rs11674199		0.37	1.01	0.85	1.06	0.38	0.93	0.48
rs1978763	11	0.34	0.83	9.16×10^{-3}	0.75	$5.58 \mathrm{x} 10^{-5}$	1.38	5.08×10^{-3}	$1.00 \mathrm{x} 10^{-4}$	MAML2	rs1978763		0.35	0.94	0.38	0.97	0.65	1.08	0.5
rs12622230	2	0.14	1.22	$3.14 \mathrm{x} 10^{-2}$	1.44	$5.93 \mathrm{x} 10^{-5}$	0.69	$5.47 \mathrm{x} 10^{-3}$	$6.65 \mathrm{x10}^{-5}$	NA	rs12622230		0.13	0.97	0.77	1.08	0.42	0.97	0.85
rs1174939	7	0.35	0.88	$5.22 \mathrm{x} 10^{-2}$	0.76	$5.98 \mathrm{x} 10^{-5}$	1.38	3.62×10^{-3}	$1.01 \mathrm{x} 10^{-4}$	NA	rs1174939		0.36	0.96	0.55	0.92	0.23	1.2	0.11
rs9959847	18	0.36	1.21	5.75×10^{-3}	1.31	6.09×10^{-5}	0.68	3.48×10^{-4}	1.02×10^{-4}	NA	rs9959847		0.37	0.92	0.27	0.91	0.21	1.15	0.24
rs7150691	14	0.39	1.19	1.16×10^{-2}	1.32	6.73×10^{-5}	0.69	$9.41 \mathrm{x} 10^{-4}$	1.03×10^{-4}	TRAV37	rs7150691		0.39	1.08	0.31	1.03	0.67	0.94	0.59
rs10486157	7	0.28	0.76	1.17×10^{-4}	0.75	6.79×10^{-5}	1.69	3.03×10^{-6}	9.49×10^{-5}	NA	rs10486157		0.28	0.96	0.56	0.89	0.11	1.08	0.49
rs2031836	13	0.47	1.34	3.16×10^{-5}	1.32	6.83×10^{-5}	0.62	2.41×10^{-5}	1.05×10^{-4}	NA	rs2031836		0.46	0.96	0.55		0.98	1.1	0.42
rs9870610	c,	0.28	1.16	4.62×10^{-2}	1.33	7.24×10^{-5}	0.71	3.09×10^{-3}	9.47×10^{-5}	ROBO2	rs9870610		0.25	1.03	0.7	1.16	0.05	0.86	0.2
rs11975640	2	0.28	0.92	2.07×10^{-1}	0.75	7.70×10^{-5}	1.37	6.13×10^{-3}	9.45×10^{-5}	SPAM1	rs11975640		0.31	0.91	0.2	0.82	0.01	1.27	0.04
rs4885749	13	0.33	1.2	1.08×10^{-2}	1.32	8.97×10^{-5}	0.67	$5.08 \mathrm{x} 10^{-4}$	9.90×10^{-5}	NA	rs4885749		0.32	1.06	0.42	0.96	0.54	1	1
rs2066197	1	0.34	0.78	1.55×10^{-4}	0.77	8.99×10^{-5}	1.42	$9.49 \mathrm{x10^{-4}}$	1.00×10^{-4}	NA	rs2066197		0.33	1.22	0.01	1.14	0.07	0.76	0.02
rs7921660	10	0.39	0.8	$1.22 \mathrm{x} 10^{-3}$	0.77	$9.25 \mathrm{x} 10^{-5}$	1.59	1.81×10^{-5}	$1.03 \mathrm{x} 10^{-4}$	NA	rs7921660		0.38	1	0.98	1.03	0.66	1.03	0.78
rs1908211	16	0.44	0.88	6.02×10^{-2}	0.76	$9.31 \mathrm{x} 10^{-5}$	1.38	$5.31 \mathrm{x} 10^{-3}$	$1.05 \mathrm{x} 10^{-4}$	NA	NA	0							
rs28498266	6	0.38	0.91	$1.93 \mathrm{x} 10^{-1}$	0.76	$9.52 \mathrm{x} 10^{-5}$	1.34	1.02×10^{-2}	$1.02 \mathrm{x} 10^{-4}$	RNU6ATAC	rs28498266		0.39	1.22	0.01	1.18	0.02	0.73	0.01
rs1245481	1	0.4	1.25	1.09×10^{-3}	1.31	$9.72 \mathrm{x} 10^{-5}$	0.66	$1.77 \mathrm{x} 10^{-4}$	$1.04 \mathrm{x} 10^{-4}$	LINC01057	rs1245481		0.38	0.94	0.4	1.02	0.82	1.05	0.66
rs4684385	3	0.35	1.17	$2.07 \mathrm{x} 10^{-2}$	1.31	$9.86 \mathrm{x} 10^{-5}$	0.71	$1.43 \mathrm{x} 10^{-3}$	$1.01 \mathrm{x} 10^{-4}$	NA	rs4684385	-	0.34	1.13	0.1	1.09	0.24	0.85	0.18
R_1 denotes t	the rel	ative ri	sk for	the offsprin	g havi	ng one copy	of the	variant allel	s, S_1 denotes	the relative risk fo	r the mother	havin	g one c	opy of	the varia	unt allele	e, I_M		
denotes the :	relativ	e risk f	or a m	aternal ove	r-trans	mission of th	ne allel	e, and PV c	enotes p-valu	e.									

Figure S6 gives the QQ plots for I_M and S_1 in the AGP Spectrum dataset.

Figure S6: QQ plots for AGP Spectrum dataset

Figure S7: AGP Spectrum Chromosome 4, rs10025482 Paternal Over-Transmission. Regional plot of SNPs highlighted in the AGP Spectrum analysis for imprinting result when the association is above the Bayesian threshold for R_1 (green line). Index SNP rs10025482 is shown in purple. Markers in linkage disequilibrium with the index SNP are shown and based on 1000 genomes CEU. Recombination rate plotted in blue.

Figure S8: AGP Spectrum Chromosome 11, rs545208 Maternal Genetic Effect. Regional plot of SNPs highlighted in the AGP Spectrum analysis for maternal genetic effects (S_1 , triangles). Index SNP rs545208 is shown in purple. Markers in linkage disequilibrium with the index SNP are shown and based on 1000 genomes CEU. Recombination rate plotted in blue. The red line represents the Bayesian threshold for S_1 .

Figure S9: AGP Spectrum Chromosome 3, rs9809640 Maternal Genetic Effect. Regional plot of SNPs highlighted in the AGP Spectrum analysis for maternal genetic effects (S_1 , triangles). Index SNP rs9809640 is shown in purple. Markers in linkage disequilibrium with the index SNP are shown and based on 1000 genomes CEU. Recombination rate plotted in blue. The red line represents the Bayesian threshold for S_1 .

AGP Strict Results

There were seven noteworthy imprinting results and there were forty-eight independent loci with a maternal genetic effect above the S_1 threshold (four of which overlap with AGP Spectrum results), see the Manhattan plots (Figure S10) and Tables S6 and S7 for all hits that were above the threshold for offspring genetic effects (R_1) and imprinting (I_M) or were above the threshold for maternal genetic effects (S_1) . Figure S15 gives an the overlap of findings that where above the threshold in both the AGP Strict and AGP Spectrum. (Note that many findings where above the threshold in one of the phenotypes and close but not above the threshold in the other phenotype

and hence. were not considered to be noteworthy findings.) Figure S14 gives the QQ plots for I_M and S_1 in the AGP Strict dataset.

Imprinting Results

Our strongest associations showed evidence for paternal over-transmission and a maternal genetic effect on chromosome 7p in an intergenic region between LOC100419776 and EPS15P1 (rs1525240, $I_M = 0.47$, Wald p-value = 3.8×10^{-7} , $S_1 = 1.53$, Wald p-value = 1.4×10^{-5} , see Figure S11). This region was previously linked with a *de novo* mutation in ASD [22]. One of our top hits for maternal over-transmission on chromosome 18 between *DSEL* and *LOC100129135* (rs395393, $I_M = 1.73$, Wald p-value = 9.81×10^{-5} , see Figure S12) was previously implicated for maternal genetic effects [23] ($R^2 = 0.235$ between rs395393 and rs7242936), but the authors did not consider imprinting in their analysis which can mimic maternal genetic effects [5, 24]. Note, the maternal genetic effect found at rs7242936 in [23] was found in a merged dataset consisting of AGRE and SSC samples, so there is some overlap of the samples in [23] and ours (as the AGP contains samples from AGRE).

Maternal Genetic Results

We found evidence for a maternal genetic effect and paternal over-transmission on chromosome 15q15.1 in the MGA gene (rs16971976, $S_1 = 1.58$, Wald p-value = 3.9×10^{-7} , $I_M = 0.53$, Wald p-value = 9.1×10^{-6} , see Figure S13). This region was previously linked with ASD in a linkage study [25]. Note there is again potential for small overlap with the samples in [25] and ours as [25] analysed the AGRE dataset.

Figure S10: Manhattan Plots for Imprinting (Figure S10 (a)) and Maternal Genetic Effects (Figure S10 (b)) for Strict Phenotype in the AGP Dataset

					AG	P Results			1					SS	C Result	s			
SNP	Chr	MAF	R_1	$PV R_1$	S_1	$PV S_1$	I_M	$\mathrm{PV}~I_M$	R_1 Threshold	Gene	SNP	R^2	MAF	R_1	$PV R_1$	S_1	$PV S_1$	I_M	$\mathrm{PV}~I_M$
rs1525240	2	0.24	1.53	$1.11 \mathrm{x} 10^{-5}$	1.52	$1.44 \mathrm{x} 10^{-5}$	0.47	$3.83 \mathrm{x} 10^{-7}$	$8.88 \mathrm{x} 10^{-5}$	NA	rs1525240		0.25	0.94	0.49	0.91	0.28	1.23	0.12
rs16971976	15	0.36	1.45	$4.49 \mathrm{x} 10^{-5}$	1.58	$3.90 \mathrm{x} 10^{-7}$	0.53	$9.09 \mathrm{x} 10^{-6}$	$1.01 { m x} 10^{-4}$	MGA	rs16971976	1	0.37	1.02	0.80	1.08	0.30	0.94	0.61
rs8025806	15	0.31	1.48	$7.37 \mathrm{x} 10^{-6}$	1.42	$6.40 \mathrm{x} 10^{-5}$	0.57	$4.37 \mathrm{x} 10^{-5}$	$9.74 \mathrm{x} 10^{-5}$	NA	rs8025806	1	0.30	1.10	0.24	1.07	0.42	0.94	0.63
rs1016081	11	0.49	1.42	$7.95 \mathrm{x} 10^{-5}$	1.33	$1.27 \mathrm{x} 10^{-3}$	0.56	$8.22 \text{x} 10^{-5}$	$1.05 \mathrm{x} 10^{-4}$	NA	rs1016081	1	0.49	0.97	0.72	1.01	0.89	1.04	0.78
rs1423431	5	0.28	1.50	$1.54 \mathrm{x} 10^{-5}$	1.39	$4.13 \mathrm{x} 10^{-4}$	0.56	$8.65 \mathrm{x} 10^{-5}$	$9.46 \mathrm{x} 10^{-5}$	NA	rs1423431	1	0.27	1.02	0.84	1.18	0.04	0.86	0.24
rs325105	9	0.39	0.70	$8.55 \mathrm{x} 10^{-5}$	0.73	$3.33 \mathrm{x10^{-4}}$	1.76	$9.67 \mathrm{x} 10^{-5}$	$1.03 \mathrm{x} 10^{-4}$	NA	rs325105	1	0.39	1.02	0.77	1.04	0.61	0.89	0.37
rs395393	18	0.48	0.69	$2.88 \mathrm{x} 10^{-5}$	0.79	$5.78 \mathrm{x} 10^{-3}$	1.73	$9.81 \mathrm{x} 10^{-5}$	$1.05 \mathrm{x} 10^{-4}$	NA	rs395393	1	0.48	1.04	0.60	1.00	0.98	0.86	0.26
R_1 denotes	the r	elative	risk i	or the offspi	ring h	aving one c	opy o	f the varia	nt allele, S_1 der	notes the rel	lative risk for	the	nother	havin	g one co	py of t	the varia	nt allel	e, I_M
denotes the	relati	ive risk	د for ٤	a maternal o	ver-tr	ansmission	of the	e allele, and	1 PV denotes 1	-value.									

dataset
C Strict
SS(
the
in
findings
corresponding
E
dataset
Strict
AGP
the
in s
esults
Я
Imprinting
36:
Table 5

Table S7:	: Mi	aterna	al G	enetic E	(ffect	s Result	s in	the AGF	Strict di	ataset & corre	esponding	find	ings	in the	SSC 3	strict c	latase	
SNP	Chr	MAF	R_1	$PV B_1$	Ś	AGP Result $PV S_1$	s 1 M	$PV I_M$	S. Threshold	Gene	SNP	22 M	AF AF	SSC R	esults $P_1 = S_1$	PV S'	$I_{n,r}$	$PV I_{M}$
rs16971976	15	0.37	1.45	4.49×10^{-5}	1.58	3.90×10^{-7}	0.53	9.09×10^{-6}	1.02×10^{-4}	MGA	rs16971976]	0	37 1.	02 0.8	0 1.08	0.30	0.94	0.61
rs12591300	15	0.36	1.33	1.60×10^{-3}	1.52	$2.51 \mathrm{x} 10^{-6}$	0.58	1.56×10^{-4}	$1.02 \mathrm{x} 10^{-4}$	FAM227B	rs10519225 0.3	90 0.	36 1.	24 0.0	1 1.14	0.11	0.76	0.04
rs675680	4	0.05	0.52	$5.49 \mathrm{x} 10^{-5}$	0.47	$6.30 \mathrm{x} 10^{-6}$	3.30	1.10×10^{-6}	$2.78 \mathrm{x} 10^{-5}$	RP11-123022.1	rs675680 1	1 0.	06 1.	27 0.0	8 1.31	0.05	0.73	0.11
rs2559081	7	0.17	1.28	2.87×10^{-2}	1.65	6.91×10^{-6}	0.67	$1.34 \mathrm{x} 10^{-2}$	7.63×10^{-5}	DYSF	rs2559081	1 0.	17 1.	05 0.5	8 1.12	0.24	0.84	0.25
rs1044471	12	0.45	0.77	2.59×10^{-3}	0.68	9.18×10^{-6}	1.73	$6.14 \mathrm{x} 10^{-5}$	$1.05 \mathrm{x} 10^{-4}$	ADIPOR2	rs1044471]	1.0.	46 0.	98 0.8	1 0.98	0.81	1.12	0.36
rs1778015	1	0.38	0.81	1.14×10^{-2}	0.68	1.21×10^{-5}	1.66	3.08×10^{-4}	1.03×10^{-4}	NA	rs1766862]	.0	41 0.	86 0.0	5 0.87	0.07	1.30	0.05
rs1617306	10	0.45	1.27	7.99×10^{-3}	1.47	1.37×10^{-5}	0.63	1.60×10^{-3}	$1.05 \mathrm{x} 10^{-4}$	NA	rs1617306]	1 0.	46 1.	03 0.7	1 1.08	0.34	0.97	0.81
rs1525240	2	0.24	1.53	1.11×10^{-5}	1.52	1.44×10^{-5}	0.47	3.83×10^{-7}	8.93×10^{-5}	NA	rs1525240]	1 0.	25 0.	94 0.4	9 0.91	0.28	1.23	0.12
rs4611601	7	0.40	0.84	3.98×10^{-2}	0.69	1.55×10^{-5}	1.67	$2.88 \mathrm{x10^{-4}}$	$1.03 \mathrm{x} 10^{-4}$	MYO7B	rs4611601]	1 0.	41 0.	90 0.1	8 0.88	0.10	1.17	0.22
rs7628838	e	0.24	1.29	$8.14x10^{-3}$	1.51	1.59×10^{-5}	0.63	1.25×10^{-3}	8.89×10^{-5}	SUCLG2	rs4856867 0.9	96 0.	21 0.	96 0.6	2 0.96	0.66	1.08	0.56
rs10897779	11	0.21	0.81	2.30×10^{-2}	0.66	1.63×10^{-5}	1.53	$4.43 \mathrm{x} 10^{-3}$	8.44×10^{-5}	NA	rs10897779]	1 0.	24 0.	97 0.7	4 1.10	0.25	0.91	0.48
rs7945103	11	0.25	0.78	5.28×10^{-3}	0.68	1.67×10^{-5}	1.65	$3.25 \mathrm{x10^{-4}}$	$9.14 \mathrm{x} 10^{-5}$	NA	rs7945103 1	1 0.	26 1.	20 0.0	3 1.22	0.02	0.74	0.02
rs2066197	1	0.32	0.73	$2.52 \mathrm{x} 10^{-4}$	0.69	1.79×10^{-5}	1.57	$8.41 \text{x} 10^{-4}$	$9.88 \mathrm{x} 10^{-5}$	NA	rs2066197]	1 0.	33 1.	21 0.0	2 1.07	0.44	0.82	0.14
rs10512561	17	0.31	1.27	1.12×10^{-2}	1.47	2.12×10^{-5}	0.59	$3.71 \mathrm{x} 10^{-4}$	$9.77 \mathrm{x} 10^{-5}$	NA	rs10512561	1 0.	32 1.	03 0.6	8 1.01	0.87	0.97	0.81
rs1622278	11	0.38	0.86	7.59×10^{-2}	0.68	$2.27 \mathrm{x10^{-5}}$	1.56	2.10×10^{-3}	$1.02 \mathrm{x} 10^{-4}$	FADS2P1	rs1622278 1	1 0.	39 1.	13 0.1	2 1.08	0.34	0.80	0.09
rs315688	4	0.14	1.22	$9.48 \mathrm{x} 10^{-2}$	1.62	$2.30 \mathrm{x} 10^{-5}$	0.55	$7.87 \mathrm{x} 10^{-4}$	$6.91 \mathrm{x} 10^{-5}$	ZCCHC4	rs315688]	1 0.	15 0.	99 0.9	4 1.03	0.76	0.89	0.41
rs7818821	x	0.29	0.77	2.65×10^{-3}	0.69	2.61×10^{-5}	1.64	$3.64 \mathrm{x} 10^{-4}$	$9.56 \mathrm{x} 10^{-5}$	NRG1	rs7818821	1 0.	30 0.	97 0.6	5 0.94	0.43	1.10	0.47
rs1863047	7	0.36	1.33	$1.84 \mathrm{x} 10^{-3}$	1.47	$2.75 \mathrm{x10}^{-5}$	0.63	$1.38 \mathrm{x} 10^{-3}$	$1.01 \mathrm{x} 10^{-4}$	NA	rs17188812 0.9	97 0.	35 0.	91 0.2	5 0.93	0.39	1.30	0.04
rs11683368	0	0.21	1.44	$4.01 \mathrm{x} 10^{-4}$	1.54	$2.79 \mathrm{x} 10^{-5}$	0.63	2.13×10^{-3}	$8.38 \mathrm{x} 10^{-5}$	NA	rs11683368 1	1 0.	17 1.	07 0.4	9 1.01	0.92	1.01	0.92
rs3744103	17	0.07	1.70	1.26×10^{-3}	1.95	2.81×10^{-5}	0.46	5.48×10^{-4}	4.13×10^{-5}	BZRAP1	NA (_						
rs12981067	19	0.50	1.27	$6.42 \text{x} 10^{-3}$	1.45	3.00×10^{-5}	0.65	2.99×10^{-3}	$1.05 \mathrm{x} 10^{-4}$	PPAP2C	rs12981067	1.0.	46 1.	03 0.7	4 1.10	0.21	0.86	0.22
rs2850343	4	0.10	0.68	$9.14 \mathrm{x} 10^{-4}$	0.61	$3.04 \mathrm{x} 10^{-5}$	1.91	$3.53 \mathrm{x} 10^{-4}$	$5.54 \mathrm{x} 10^{-5}$	PPP3CA	NA (0						
rs9894139	17	0.39	1.29	$2.87 \mathrm{x} 10^{-3}$	1.43	$3.12 \mathrm{x} 10^{-5}$	0.62	$3.96 \mathrm{x} 10^{-4}$	$1.03 \mathrm{x} 10^{-4}$	RBFOX3	rs9894139]	1 0.	39 0.	87 0.0	7 0.91	0.25	1.28	0.05
rs2462167	11	0.50	1.31	$1.63 \mathrm{x} 10^{-3}$	1.43	$3.49 \mathrm{x} 10^{-5}$	0.66	$3.38 \mathrm{x} 10^{-3}$	$1.05 \mathrm{x} 10^{-4}$	NA	rs1403947]	1.0.	49 1.	02 0.8	4 0.98	0.80	0.96	0.73
rs2161655	16	0.16	0.84	7.76×10^{-2}	0.65	$3.77 \mathrm{x} 10^{-5}$	1.70	$7.80 \mathrm{x} 10^{-4}$	$7.24 \mathrm{x} 10^{-5}$	NA	rs2161655 1	1 0.	17 0.	86 0.1	1 0.90	0.25	1.21	0.16
rs12258303	10	0.08	1.47	1.12×10^{-2}	1.81	$4.29 \mathrm{x} 10^{-5}$	0.48	$5.98 \mathrm{x} 10^{-4}$	$4.59 \mathrm{x} 10^{-5}$	RP11-556E13.1	rs16932605 0.	91 0.	09 1.	37 0.0	1 1.12	0.34	0.67	0.02
rs6677933	1	0.19	0.73	$1.57 \mathrm{x} 10^{-3}$	0.67	$4.49 \mathrm{x} 10^{-5}$	1.77	$2.08 \mathrm{x10^{-4}}$	$8.11 x 10^{-5}$	LINC01160	rs6677933]	1 0.	21 1.	04 0.6	5 1.04	0.69	1.01	0.93
rs7431430	e	0.30	1.28	7.80×10^{-3}	1.45	5.06×10^{-5}	0.56	$6.41 \mathrm{x} 10^{-5}$	9.69×10^{-5}	NA	rs7431430 1	1 0.	29 0.	93 0.3	9 0.94	0.43	1.01	0.96
rs34978	ŋ	0.43	1.42	7.67×10^{-5}	1.43	5.72×10^{-5}	0.58	$1.87 \mathrm{x} 10^{-4}$	$1.04 \mathrm{x} 10^{-4}$	NLN	rs1734262 0.3	81 0.	50 1.	05 0.5	0 1.02	0.77	0.82	0.10
rs6868044	S	0.30	1.38	$4.29 \mathrm{x} 10^{-4}$	1.44	5.90×10^{-5}	0.54	2.04×10^{-5}	9.68×10^{-5}	GALNT10	rs6868044]	1 0.	30 0.	9.0 0.6	9 1.08	0.34	1.00	0.98
rs2277537	15	0.41	1.32	2.34×10^{-3}	1.43	6.11×10^{-5}	0.61	8.41×10^{-4}	$1.04 \text{x} 10^{-4}$	TYRO3	rs2277537	.0	43 1.	00 0.9	5 1.00	0.97	1.11	0.43
rs1983635	9	0.31	1.24	2.08×10^{-2}	1.46	6.18×10^{-5}	0.67	5.89×10^{-3}	9.79×10^{-5}	GRM1	rs1983635]	1 0.	28 0.	85 0.0	5 0.82	0.02	1.23	0.12
rs17129021	14	0.29	0.79	7.95×10^{-3}	0.70	6.30×10^{-5}	1.69	2.12×10^{-4}	9.52×10^{-5}	UNC79	rs6575325 0.8	89 0.	29 1.	07 0.3	8 0.97	0.68	0.96	0.75
rs8025806	15	0.31	1.48	7.37×10^{-6}	1.42	6.40×10^{-5}	0.57	$4.37 \mathrm{x} 10^{-5}$	9.80×10^{-5}	PCAT29	rs8025806]	1.0.	30 1.	10 0.2	4 1.07	0.42	0.94	0.63
rs1476652	2	0.39	0.85	6.47×10^{-2}	0.71	6.61×10^{-5}	1.80	2.61×10^{-5}	1.03×10^{-4}	COL26A1	NA	_						
rs714650	х ^г	0.44	0.84	4.15x10 ⁻²	0.71	6.76×10^{-5}	1.32	4.17x10 ⁻²	1.05x10 ⁻⁴	KP11-134021.1	NA AN	<u> </u>						
rs1036815	n K	0.40	07.1	4.40×10^{-1} 231×10^{-1}	747 0.67	7.16×10^{-5}	000 1 46	$\frac{4.03 \times 10}{1 \ 44 \times 10^{-2}}$	8.91×10 ⁻⁵	SMCHD1	rs8002725 03	, 86 0	23 0	90 0.8	8 1 01	0.95	1 06	0.65
rs12600284	16	0.23	1.36	2.00×10^{-3}	1.47	7.18×10^{-5}	0.61	1.03×10^{-3}	8.87×10^{-5}	RBFOX1	rs12600284	0.	22 0.	94 0.4	0.98	0.82	1.07	0.61
rs11163185		0.42	0.82	$2.23 \mathrm{x} 10^{-2}$	0.71	7.52×10^{-5}	1.52	$2.28 \mathrm{x} 10^{-3}$	$1.04 \mathrm{x} 10^{-4}$	SLC44A5	NA (0						
rs13120537	4	0.27	0.77	$3.58 \mathrm{x} 10^{-3}$	0.70	8.02×10^{-5}	1.55	$2.33 \mathrm{x} 10^{-3}$	$9.37 \mathrm{x} 10^{-5}$	ARAP2	NA (0						
rs1048126	1	0.31	0.71	$1.78 \mathrm{x} 10^{-4}$	0.70	$8.22 \mathrm{x} 10^{-5}$	1.82	$3.45 \mathrm{x} 10^{-5}$	$9.77 \mathrm{x} 10^{-5}$	GPATCH2	rs1048126 1	1 0.	32 0.	94 0.4	9 0.92	0.33	1.12	0.39
rs4711453	9	0.28	0.80	1.26×10^{-2}	0.69	8.38×10^{-5}	1.69	$3.93 \mathrm{x} 10^{-4}$	$9.44 \mathrm{x} 10^{-5}$	KCTD20	rs4711453]	1 0.	32 1.	14 0.1	1 1.05	0.55	0.95	0.71
rs12698588	7	0.30	0.81	2.15×10^{-2}	0.70	9.06×10^{-5}	1.34	$5.35 \mathrm{x} 10^{-2}$	9.72×10^{-5}	NA	rs12698588]	1 0.	33 1.	06 0.4	20.96	0.65	0.99	0.92
rs6758063	0	0.37	1.27	7.59×10^{-3}	1.42	9.10×10^{-5}	0.69	8.84×10^{-3}	1.02×10^{-4}	ERBB4	rs6758063]	1.0	35 .0	89 0.1	5 0.95	0.49	1.07	0.63
rs6734290	0	0.42	0.84	4.48×10^{-2}	0.71	9.95×10^{-5}	1.45	1.17×10^{-2}	1.04×10^{-4}	TXNDC9	rs13013984 0.	97 0.	45	99 0.9	1 1.03	0.68	0.96	0.77
rs2948519	17	0.46	0.76	2.07x10 ⁻³	0.71	1.01×10^{-4}	1.72	1.42x10 ⁻⁴	1.05×10^{-4}	KSR1 MA	rs2948519]	0 0	47 97 1.	00 0.9	0.97	0.69	1.01	0.96
D Janatas 1	4 10	0.40	1.13	4.10X1U	1.40	1.04X10	10.0	4.00XUU	1.04XIU	IVA the meletine might fee	rstraetearter	04 0.	0 10	0.0 08		0.99	T.UZ	0.00
denotes the 1	relativ	e risk fo	or a m	aternal over	g 11av 1 r-trans	mg one copy a smission of th	ie allel	e, and PV c	e, שושויט ו <i>כ</i> י lenotes p-valu	יטי אכוז שעועם ושומים. פ.	ימיו זבוויטווו אווט	v uuk c	idon ar	/ OI FILE /	TTO ATTRIJS	ele, IM		

Figure S11: AGP Strict Chromosome 7, rs1525240 Paternal Over-Transmission and Maternal Effect. The top panel shows the regional plot of SNPs highlighted in the AGP Strict analysis for an imprinting effect (I_M , squares) when there is an association above the R_1 threshold (green line). The second panel shows the regional plot for maternal genetic effects (S_1 , triangles) and the S_1 threshold (green line). Index SNP rs1525240 is shown in purple. Markers in linkage disequilibrium with the index SNP are shown and based on 1000 genomes CEU. Recombination rate plotted in blue.

Figure S12: AGP Strict Chromosome 18, rs395393 Maternal Over-Transmission. The top panel shows the regional plot of SNPs highlighted in the AGP Strict analysis for the association $(R_1, \text{ circles})$. When the association is above the Bayesian threshold for R_1 (green line), we then investigate the imprinting results, shown in the second panel represented by squares. Index SNP rs395393 is shown in purple. Markers in linkage disequilibrium with the index SNP are shown and based on 1000 genomes CEU. Recombination rate plotted in blue.

Figure S13: AGP Strict Chromosome 15, rs16971976 Paternal Over-Transmission and Maternal Effect. The top panel shows the regional plot of SNPs highlighted in the AGP Strict analysis for an imprinting effect (I_M , squares) when there is an association above the R_1 threshold (green line). The second panel shows the regional plot for maternal genetic effects (S_1 , triangles) and the S_1 threshold (green line). Index SNP rs16971976 is shown in purple. Markers in linkage disequilibrium with the index SNP are shown and based on 1000 genomes CEU. Recombination rate plotted in blue.

Figure S14: QQ plots for AGP Strict dataset

Figure S15: Summary of AGP results, for imprinting, I_M , and maternal genetic effects, S_1 , and the overlap between Strict and Spectrum datasets

SSC Spectrum Results

Figure S16: Manhattan Plots for Imprinting (Figure S16 (a)) and Maternal Genetic Effects (Figure S16 (b)) for Spectrum Phenotype in SSC dataset

SSC Results AGP Results Chr MAF R_1 PV R_1 S_1 PV S_1 M_1 PV I_M SIC Results 3 13 0.23 1.43 3.08x10 ⁻⁶ 1.25 4.84x10 ⁻³ 0.59 8.17x10 ⁻⁶ 8.49x10 ⁻⁵ 5.82x10 ⁻⁵ 6.849x10 ⁻⁵ 0.849 0.08 0.98 0.08 0.98 0.08	S. 88:	Tol	p Im]	prin	ting Re	sults	s in the	SSC	$\operatorname{Sp}_{\mathbf{f}}$	ectrum	dataset a	ind the corre	sponding	find	lings	in th	ne AG	P Spe	etrum	ı data	set
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							SSC Res	ults								A	GP Resul	\mathbf{ts}			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$_{\rm Chr}$	MAF	R_1	$PV R_1$	S_1	$PV S_1$	I_{M}	1 F	$I = M I \Lambda Q$	R_1 Threshold	Gene	SNP	R^2	MAF	R_1	$PV R_1$	S_1	$PV S_1$	I_M	$PV I_M$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13	0.23	1.43	3.08×10^{-6}	6 1.25	5 4.84x10 ⁻	$^{-3}$ 0.5	<u> 8.</u>]	$17x10^{-6}$	$8.49 \mathrm{x} 10^{-5}$	TBC1D4	rs9573533	-	0.23	1.04	0.59	0.88	0.08	0.98	0.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	9	0.12	0.68	4.26×10^{-1}	5 0.7	$7 4.31 \times 10^{-1}$	-3 1.8	36 1.0	0.0×10^{-5}	$5.82 \mathrm{x} 10^{-5}$	LRRC16A	rs16890706	-	0.13	0.96	0.64	0.93	0.38	1.18	0.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	14	0.13	0.63	9.47×10^{-1}	7 0.7	7 3.73×10 ⁻	-3 1.8	81 1.9	95×10^{-5}	$6.16 \mathrm{x} 10^{-5}$	NA	rs8013309	-	0.13	1.07	0.45	0.95	0.59	0.97	0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3	0.16	1.51	2.17×10^{-6}	6 1.37	$7 5.08 \times 10^{-1}$	$^{-4}$ 0.5	57 2.1	$14x10^{-5}$	7.11×10^{-5}	RP11-260018.1	rs7651342	-	0.14	0.96	0.60	0.97	0.77	1.15	0.29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29		0.12	1.59	5.01×10^{-6}	⁶ 1.4(5 1.80×10 ⁻	$^{-4}$ 0.5	6.7	75×10^{-5}	$6.75 \mathrm{x} 10^{-5}$	NA	rs16860429	-	0.11	1.22	0.04	1.22	0.04	0.75	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	0.46	1.32	9.57×10^{-1}	5 1.18	3 2.05×10 ⁻	$^{-2}$ 0.6	33 7.7	75×10^{-5}	$1.02 \mathrm{x} 10^{-4}$	EML6	rs165052		0.46	1.05	0.49	1.02	0.74	0.98	0.88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	15	0.40	0.74	1.61×10^{-1}	5 0.8 2	3 7.76×10 ⁻	$^{-3}$ 1.5	6 8.4	$42x10^{-5}$	1.00×10^{-4}	NA	rs2136980		0.40	1.04	0.58	1.01	0.84	1.08	0.50
$7 3 0.45 1.31 1.01 \times 10^{-4} 1.19 1.37 \times 10^{-2} 0.64 9.68 \times 10^{-5} 1.02 \times 10^{-4} PIK3CB rs11720178 1 0.46 0.96 0.52 1.02 0.73 0.92 0.46 0.96 0.52 1.02 0.73 0.92 0.46 0.96 0.52 1.02 0.73 0.92 0.46 0.96 0.52 1.02 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.52 0.73 0.92 0.46 0.96 0.56 0.$	93	14	0.33	1.34	5.48×10^{-4}	5 1.36	3 2.25×10 ⁻	-5 0.6	34 8.4	48×10^{-5}	$9.64 \mathrm{x} 10^{-5}$	NID2	rs17124893	-	0.32	0.98	0.77	1.03	0.65	0.98	0.84
	4	с	0.45	1.31	1.01×10^{-6}	4 1.19) 1.37x10 ⁻	$^{-2}$ 0.6	34 9.6	58×10^{-5}	$1.02 \mathrm{x} 10^{-4}$	PIK3CB	rs11720178	-	0.46	0.96	0.52	1.02	0.73	0.92	0.46

denotes the relative risk for a maternal over-transmission of the allele, and PV denotes p-value.

um	
ectr	
$\mathbf{S}\mathbf{p}$	
AGI	
the	
s in	
ding	
g fin	
ndin	
odse	
corre	
the	
and	
aset	
data	
rum	
pect	
SCS	
le SS	
in tł	
ults	
\mathbf{Res}	
ects	
c Eff	
neti	
l Ge	
erna	
Mat	
$\mathbf{S9:}$	ŝt
able	atase
Ĥ	ď

dataset																			
						SSC Results								AG	P Resul	$_{\rm ts}$			
SNP	Chr	MAF	R_1	$PV R_1$	S_1	$PV S_1$	I_M	$PV I_M$ 3	S_1 Threshold	Gene	SNP	\mathbb{R}^2]	AF	R_1 F	∇R_1	S_1	$PV S_1$	I_M I	M IM
rs6967953	2	0.41	1.19	1.67×10^{-2}	1.38	6.01×10^{-6}	0.61	$3.31 \mathrm{x} 10^{-5}$	$1.01 \mathrm{x} 10^{-4}$	CHRM2	rs6967953	-	0.41 0	.97	0.65	0.92	0.20	1.13	0.26
rs10499761	7	0.18	1.36	$2.80 \mathrm{x10^{-4}}$	1.44	1.05×10^{-5}	0.61	7.60×10^{-5}	$7.51 \mathrm{x} 10^{-5}$	NA	rs10499761	1	0.17 1	.07	0.43	1.08	0.31	0.94	0.60
rs10415705	19	0.42	0.89	$1.15 \mathrm{x} 10^{-1}$	0.73	1.16×10^{-5}	1.37	$5.99 \mathrm{x} 10^{-3}$	$1.01 \mathrm{x} 10^{-4}$	NA	rs10415705	1	0.42 1	.02	0.81	1.02	0.82	1.00	0.99
rs9953010	18	0.28	1.15	6.66×10^{-2}	1.38	1.40×10^{-5}	0.66	$4.86 \mathrm{x} 10^{-4}$	$9.18 \mathrm{x} 10^{-5}$	NA	rs9953010	1	0.29 (.98	0.77	1.01	0.88	1.04	0.75
rs10424718	19	0.16	0.73	$1.98 \mathrm{x} 10^{-4}$	0.70	$1.92 \text{x} 10^{-5}$	1.55	$7.98 \mathrm{x} 10^{-4}$	7.02×10^{-5}	CELF5	rs10424718	1	0.15 1	.05	0.56	0.96	0.68	1.05	0.72
rs17124893	14	0.33	1.34	5.48×10^{-5}	1.36	2.25×10^{-5}	0.64	8.48×10^{-5}	$9.64 \mathrm{x} 10^{-5}$	NID2	rs17124893	-	0.32 (.98	0.77	1.03	0.65	0.98	0.84
rs10042810	ŋ	0.07	1.16	$2.56 \mathrm{x10^{-1}}$	1.67	$2.29 \mathrm{x} 10^{-5}$	0.63	$1.11 x 10^{-2}$	$3.34 \mathrm{x} 10^{-5}$	NA	rs10042810	1	0.06 0	.83	0.10	0.80	0.05	1.24	0.20
rs1339359	6	0.50	1.25	$1.31 \mathrm{x} 10^{-3}$	1.35	$2.39 \mathrm{x} 10^{-5}$	0.72	$4.51 \mathrm{x} 10^{-3}$	$1.02 \mathrm{x} 10^{-4}$	NA	rs1339359	1	0.50 0	.99	0.93	1.04	0.53	0.97	0.81
rs4861106	4	0.32	0.85	2.66×10^{-2}	0.74	$2.44 \mathrm{x} 10^{-5}$	1.39	$4.08 \mathrm{x} 10^{-3}$	$9.56 \mathrm{x} 10^{-5}$	NA	rs4861106	1	0.30 1	.10	0.18	1.03	0.70	0.86	0.19
rs8016570	14	0.46	1.17	$2.94 \mathrm{x} 10^{-2}$	1.34	$5.11 \mathrm{x} 10^{-5}$	0.77	$2.81 \mathrm{x} 10^{-2}$	$1.02 \mathrm{x} 10^{-4}$	DAAM1	rs8016570	1	0.46 1	.12	0.11	1.06	0.38	0.83	0.10
rs610529	6	0.44	1.21	$6.74 \mathrm{x} 10^{-3}$	1.32	5.46×10^{-5}	0.68	$6.49 \mathrm{x} 10^{-4}$	$1.01 \mathrm{x} 10^{-4}$	ALDH1A1	rs610529	1	0.44 1	.14	0.05	1.01	0.93	0.93	0.48
rs4719103	7	0.16	1.23	$2.08 \mathrm{x} 10^{-2}$	1.41	$5.48 \mathrm{x} 10^{-5}$	0.61	$1.79 \mathrm{x} 10^{-4}$	$6.98 \mathrm{x} 10^{-5}$	WBSCR17	rs4719103	1	0.15 1	.02	0.84	0.96	0.63	0.93	0.60
rs5770820	22	0.21	1.25	$5.74 \mathrm{x} 10^{-3}$	1.38	$5.54 \mathrm{x} 10^{-5}$	0.64	$3.82 \mathrm{x} 10^{-4}$	8.16×10^{-5}	SHANK3	rs5770820	1	0.21 0	.83	0.02	0.98	0.82	1.24	0.08
rs12676446	x	0.12	1.20	7.67×10^{-2}	1.47	$5.84 \mathrm{x} 10^{-5}$	0.77	$7.28 \mathrm{x} 10^{-2}$	$5.88 \mathrm{x} 10^{-5}$	PSD3	rs12676446	1	0.11 0	.98	0.86	1.03	0.74	0.96	0.78
rs11201909	10	0.16	0.88	$1.11 x 10^{-1}$	0.71	$6.18 \mathrm{x} 10^{-5}$	1.30	$4.49 \mathrm{x} 10^{-2}$	$7.14 \mathrm{x} 10^{-5}$	GRID1	rs11201909	1	0.15 1	.04	0.62	0.98	0.80	0.94	0.62
rs10021524	4	0.39	1.18	2.45×10^{-2}	1.33	6.63×10^{-5}	0.74	$9.21 \mathrm{x} 10^{-3}$	$9.99 \mathrm{x} 10^{-5}$	CCSER1	rs10021524	1	0.39 1	.04	0.54	1.05	0.51	0.90	0.34
rs12549180	x	0.19	1.33	$6.92 \mathrm{x} 10^{-4}$	1.40	$6.87 \mathrm{x} 10^{-5}$	0.69	$2.53 \mathrm{x} 10^{-3}$	$7.74 \mathrm{x} 10^{-5}$	NA	rs12549180	1	0.18 1	.07	0.39	1.00	0.95	0.89	0.36
rs1000104	9	0.29	1.20	$1.55 \mathrm{x} 10^{-2}$	1.34	$7.27 \mathrm{x} 10^{-5}$	0.72	$4.15 \mathrm{x} 10^{-3}$	$9.24 \mathrm{x} 10^{-5}$	NA	rs1000104	1	0.27 (.94	0.43	0.96	0.60	1.12	0.32
rs7515001	1	0.29	0.79	$1.41 \mathrm{x} 10^{-3}$	0.74	$7.34 \mathrm{x} 10^{-5}$	1.46	$1.42 \text{x} 10^{-3}$	$9.22 \mathrm{x} 10^{-5}$	GM2AP2	rs7515001	1	0.28 1	.01	0.93	1.03	0.69	0.95	0.67
rs1995873	1	0.47	0.80	1.86×10^{-3}	0.76	7.51×10^{-5}	1.57	9.66×10^{-5}	$1.02 \mathrm{x} 10^{-4}$	LINC00210	rs1995873	1	0.48 1	.13	0.07	1.06	0.35	0.88	0.26
rs2173281	11	0.28	1.23	$5.99 \mathrm{x} 10^{-3}$	1.34	7.72×10^{-5}	0.65	1.80×10^{-4}	$9.19 \mathrm{x} 10^{-5}$	NA	rs2173281	1	0.30 (.97	0.68	0.98	0.73	1.05	0.65
rs11256031	10	0.36	1.33	$1.04 \mathrm{x} 10^{-4}$	1.33	8.45×10^{-5}	0.66	$4.13 \mathrm{x} 10^{-4}$	$9.83 \mathrm{x} 10^{-5}$	NA	rs11256031	1	0.35 (.98	0.78	1.01	0.90	1.02	0.83
rs4973800	c,	0.34	0.82	$7.04 \mathrm{x} 10^{-3}$	0.75	8.81×10^{-5}	1.58	$9.62 \mathrm{x} 10^{-5}$	$9.68 \mathrm{x} 10^{-5}$	LRRC3B	rs4973800	1	0.34 1	.12	0.10	1.06	0.41	0.86	0.15
rs933296	12	0.31	0.87	4.68×10^{-2}	0.75	$9.21 \mathrm{x} 10^{-5}$	1.30	2.79×10^{-2}	$9.48 \mathrm{x} 10^{-5}$	MYL2	rs933296	1	0.32 1	.03	0.72	1.03	0.69	0.90	0.37
rs2207189	1	0.40	1.20	1.08×10^{-2}	1.33	9.45×10^{-5}	0.71	3.10×10^{-3}	1.00×10^{-4}	RNU6-290P	rs2207189	-	0.40 0	.90	0.14	0.94	0.36	1.12	0.31
rs11704083	22	0.49	0.87	5.59×10^{-2}	0.76	$9.52 \mathrm{x} 10^{-5}$	1.40	$3.33 \mathrm{x} 10^{-3}$	$1.02 \mathrm{x} 10^{-4}$	GNB1L	rs11704083	1	0.48 1	60.	0.20	1.00	0.95	0.92	0.46
rs1932543	10	0.43	1.19	$1.59 \mathrm{x} 10^{-2}$	1.32	$9.94 \mathrm{x} 10^{-5}$	D.71	$3.24 \mathrm{x} 10^{-3}$	$1.01 \mathrm{x} 10^{-4}$	NA	rs1932543	1	0.41 0	.90	0.14	0.87	0.05	1.29	0.02
R_1 denotes 1	the rel.	ative ris	sk for	the offsprin	g havii	ng one copy o	of the	variant allele	S_1 denotes 1	the relative risk	for the mother	haviı	ig one o	opy of	the vari	iant alle	ile, I_M		
denotes the	relativ	e risk fo	or a m	aternal ove	r-trans	mission of th	e allel	e, and PV d	enotes p-value	n.									

Figure S17 gives the QQ plots for I_M and S_1 in the SSC Spectrum dataset.

Figure S17: QQ plots for SSC Spectrum dataset

Figure S18: SSC Spectrum Chromosome 7, rs4719103 Maternal Genetic Effect. Regional plot of SNPs highlighted in the SSC Spectrum analysis for maternal genetic effects (S_1 , triangles). Index SNP rs4719103 is shown in purple. Markers in linkage disequilibrium with the index SNP are shown and based on 1000 genomes CEU. Recombination rate plotted in blue. The red line represents the Bayesian threshold for S_1 .

SSC Strict Results

There were three noteworthy imprinting results (one of which overlaps with the SSC Spectrum results) and there were twenty-four independent loci with a maternal genetic effect above the S_1 threshold (six of which overlap with the SSC Strict results), see the Manhattan plots (Figure S19) and Tables S10 and S11. Figure S21 gives an the overlap of findings that where above the threshold in both the SSC Strict and SSC Spectrum. Note that many findings where above the threshold in one of the phenotypes and close but not above the threshold in the other phenotype and hence, were not noted as noteworthy findings. Figure S20 gives the QQ plots for I_M and S_1 in the SSC Strict dataset.

Imprinting Results

Our strongest associations showed evidence for maternal over-transmission on chromosome 14q13 within 10.7kb of the *NFKBIA* gene (rs8013309, $I_M = 2$, Wald p-value = 8.08×10^{-6}). This area was previously linked with intellectual and developmental disabilities in a CNV study [26]. One of our top hits for maternal over-transmission on chromosome 6p is located in the *LRRC16A* gene (near the *HLA* region) (rs16890706, $I_M = 1.94$, Wald p-value = 2.25×10^{-5}), which was previously implicated in language deficits in [27]. Another noteworthy maternal over-transmission result was found on chromosome 2 in the *DCDC2C* gene (rs357977, $I_M = 1.707$, Wald p-value = 7.86×10^{-5}), which was previously implicated in low IQ in autism and other neurodevelopmental disorders [28].

Maternal Genetic Results

We found evidence for a maternal genetic effect on chromosome 14q in the *DAAM1* gene (rs1253005, $S_1 = 1.51$, Wald p-value = 3.84^{-7}). This area was previously implicated in a CNV study for intellectual and developmental disabilities [26]. One of our top hits for maternal genetic effects

is on chromosome 22 in the *SHANK3* gene (rs5770820, $S_1 = 1.46$, Wald p-value = 2.45×10^{-5}), and disruptions in the *SHANK3* gene have been associated with autistic traits and in particular, these disruptions are responsible for the development of Phelan–McDermid syndrome and other non-syndromic ASDs [29]. A noteworthy protective maternal genetic effect result was identified on chromosome 16q21 in the *CDH8* gene (rs11075447, $S_1 = 0.72$, Wald p-value = 5.94×10^{-5}), with evidence of disruptions in *CDH8* in two families being previously linked to autism and learning disability [30].

Figure S19: Manhattan Plots for Imprinting (Figure S19 (a)) and Maternal Genetic Effects (Figure S19 (b)) for Strict Phenotype in SSC dataset

		$V I_M$).55	0.11	0.25			
set		M P'	11	30	18			
latas		1 I_{I}	1	1	-	N		
rict c		PV S	0.39	0.18	0.57	llele, I_l		
\mathbf{P} Sti	ts	S_1	0.90	0.86	0.95	riant a		
ne AG	3P Resul	$PV R_1$	0.72	0.19	0.09	of the va		
in tl	AC	R_1	1.04	0.87	0.86	e copy		
lings		MAF	0.13	0.13	0.28	ring one		
find		R^2	-	1	1	ter hav		
sponding		SNP	rs8013309	rs16890706	rs357977	k for the moth		
the corre		Gene	NA	LRRC16A	DCDC2C	e relative ris		
taset and		R_1 Threshold	$5.01 \mathrm{x} 10^{-5}$	$4.87 \mathrm{x} 10^{-5}$	$8.02 \mathrm{x} 10^{-5}$, S_1 denotes th	enotes p-value.	
Strict da		${ m PV}~I_M$	$8.08 \mathrm{x} 10^{-6}$	$2.25 \mathrm{x} 10^{-5}$	$7.86 \mathrm{x} 10^{-5}$	variant allele	e, and PV d	
SSC		I_M	2.01	1.94	1.71	of the	te allel	
in the S	C Results	$PV S_1$	7.79×10^{-4}	3.52×10^{-3}	$1.32 \mathrm{x} 10^{-1}$	g one copy	aission of th	
sults	SS	S_1	0.72	0.74	0.88	havin	transr	
nting Re		$PV R_1$	$1.15 \mathrm{x} 10^{-6}$	$3.48 \mathrm{x} 10^{-5}$	$6.26 \mathrm{x} 10^{-5}$	the offspring	aternal over-	
nprii		R_1	0.60	0.65	0.71	sk for	or a m	
op In		MAF	0.13	0.12	0.28	ative ri	e risk fe	
0: T		$_{\rm Chr}$	14	9	2	the rel	relativ	
Table S1		SNP	rs8013309	rs16890706	rs357977	R_1 denotes	denotes the	

Table S11: Maternal Genetic Effects Results in the SSC Strict dataset and the corresponding findings in the AGP Strict dataset

						SSC Results								AG	P Resul	$^{\rm lts}$			
SNP	Chr	MAF	R_1	$PV R_1$	S_1	$PV S_1$	I_M	$PV I_M$	S_1 Threshold	Gene	SNP	R2]	MAF	R_1]	$PV R_1$	S_1	$PV S_1$	I_M F	$V I_M$
rs1253005	14	0.43	1.30	$1.23 \mathrm{x} 10^{-3}$	1.51	$3.84 \mathrm{x} 10^{-7}$	0.62	$3.18 \mathrm{x10^{-4}}$	$9.05 \mathrm{x} 10^{-5}$	DAAM1	rs1253005	1	0.43 1	1.04	0.64	0.90	0.22	1.00	0.99
rs9953010	18	0.27	1.23	1.76×10^{-2}	1.48	$2.34 \mathrm{x} 10^{-6}$	0.59	9.86×10^{-5}	$7.96 \mathrm{x} 10^{-5}$	NA	rs9953010	1	0.28 (.91	0.30	1.07	0.49	1.01	0.93
rs6440688	က	0.09	0.77	1.66×10^{-2}	0.58	$5.09 \mathrm{x} 10^{-6}$	1.70	2.40×10^{-3}	$3.86 \mathrm{x} 10^{-5}$	SELT	rs6440688	-	0.09 (.86	0.27	0.86	0.26	1.17	0.43
rs10415705	19	0.42	0.88	1.09×10^{-1}	0.70	$5.32 \mathrm{x} 10^{-6}$	1.43	5.13×10^{-3}	$9.02 \mathrm{x} 10^{-5}$	NA	rs10415705	1	0.42]	L.01	0.94	1.04	0.64	0.98	0.90
rs7939358	11	0.37	0.76	$4.21 \mathrm{x} 10^{-4}$	0.71	$1.63 \mathrm{x} 10^{-5}$	1.62	$1.04 \mathrm{x} 10^{-4}$	8.76×10^{-5}	NA	rs7939358	1	0.36]	L.09	0.33	0.95	0.61	1.11	0.46
rs12052787	7	0.07	1.57	$1.59 \mathrm{x} 10^{-3}$	1.82	$1.85 \mathrm{x} 10^{-5}$	0.53	9.46×10^{-4}	$2.64 \mathrm{x} 10^{-5}$	UGT1A	rs12052787	1	0.06 (.86	0.32	1.06	0.69	1.14	0.56
rs5770820	22	0.21	1.25	$1.45 \mathrm{x} 10^{-2}$	1.46	$2.45 \mathrm{x} 10^{-5}$	0.60	2.50×10^{-4}	$6.99 \mathrm{x} 10^{-5}$	SHANK3	rs5770820	1	0.21 (.76	0.01	0.97	0.78	1.36	0.05
rs1009962	17	0.09	0.69	1.10×10^{-3}	0.60	$2.63 \mathrm{x} 10^{-5}$	2.05	4.70×10^{-5}	$3.55 \mathrm{x} 10^{-5}$	TBX4	rs1009962	1	0.09 (.87	0.29	0.93	0.59	1.26	0.23
rs1000104	9	0.29	1.23	$1.33 \mathrm{x} 10^{-2}$	1.41	$2.67 \mathrm{x} 10^{-5}$	0.66	$1.74 x 10^{-3}$	8.08×10^{-5}	NA	rs1000104	1	0.28 (.98	0.86	1.05	0.57	1.03	0.86
rs10306143	6	0.13	0.87	1.70×10^{-1}	0.64	$2.75 \mathrm{x} 10^{-5}$	1.81	$1.23 \mathrm{x} 10^{-4}$	$4.96 \mathrm{x} 10^{-5}$	PTGS1	rs10306143	1	0.13 (.99	0.92	0.98	0.85	1.04	0.82
rs6967953	7	0.41	1.22	1.53×10^{-2}	1.39	$3.05 \mathrm{x} 10^{-5}$	0.65	8.86×10^{-4}	$8.99 x 10^{-5}$	CHRM2	rs6967953	-	0.41 (.93	0.43	0.85	0.06	1.28	0.08
rs10499761	7	0.18	1.43	$1.14 \mathrm{x} 10^{-4}$	1.47	$3.64 \mathrm{x} 10^{-5}$	0.57	$4.38 \mathrm{x10}^{-5}$	$6.42 \mathrm{x} 10^{-5}$	LOC105375288	rs10499761	1	0.18 (.98	0.84	1.05	0.62	0.99	0.93
rs2539668	7	0.31	1.26	5.68×10^{-3}	1.40	$4.91 \mathrm{x} 10^{-5}$	0.64	8.89×10^{-4}	$8.32 \mathrm{x} 10^{-5}$	NA	rs2539668	1	0.31]	1.09	0.33	1.15	0.12	0.84	0.21
rs7046834	6	0.16	0.86	$1.31 \mathrm{x} 10^{-1}$	0.66	$5.08 \mathrm{x} 10^{-5}$	1.75	$3.13 \mathrm{x} 10^{-4}$	$5.85 \mathrm{x} 10^{-5}$	NA	rs7046834	1	0.14 (.99	0.95	0.96	0.73	1.06	0.71
rs12549180	x	0.19	1.32	$3.34 \mathrm{x} 10^{-3}$	1.45	$5.74 \mathrm{x} 10^{-5}$	0.66	$2.63 \mathrm{x} 10^{-3}$	$6.66 \mathrm{x} 10^{-5}$	NA	rs12549180	1	0.19 (.97	0.77	0.86	0.13	1.04	0.80
rs7534535	Ч	0.25	1.16	8.15×10^{-2}	1.40	$5.88 \mathrm{x} 10^{-5}$	0.69	4.70×10^{-3}	7.62×10^{-5}	ADGRL2	rs7534535	1	0.25 ().92	0.41	1.05	0.62	1.02	0.92
rs10988794	6	0.17	1.11	$2.78 \mathrm{x} 10^{-1}$	1.46	5.90×10^{-5}	0.71	1.99×10^{-2}	$6.21 \mathrm{x} 10^{-5}$	NA	rs10988794	1	0.17]	L.01	0.89	1.03	0.78	0.89	0.44
rs11075447	16	0.43	0.81	$9.43 \mathrm{x} 10^{-3}$	1.00	$5.94 \mathrm{x} 10^{-5}$	1.57	$5.05 \mathrm{x} 10^{-4}$	$9.05 \mathrm{x} 10^{-5}$	CDH8	rs11075447	1	0.43]	L.03	0.78	0.95	0.56	1.02	0.92
rs7719969	ы	0.36	0.84	$2.44 \mathrm{x} 10^{-2}$	0.72	$6.14 \mathrm{x} 10^{-5}$	1.39	$1.11 x 10^{-2}$	$8.71 \mathrm{x} 10^{-5}$	ADAMTS12	rs7719969	1	0.35]	L.04	0.69	1.06	0.50	0.97	0.81
rs10840106	11	0.39	1.24	$7.34 \mathrm{x} 10^{-3}$	1.37	$7.13 x 10^{-5}$	0.64	4.55×10^{-4}	$8.88 \mathrm{x} 10^{-5}$	RPL27A	rs10840106	1	0.39 (.89	0.18	0.91	0.29	1.22	0.16
rs6851029	4	0.26	1.33	$8.65 \mathrm{x} 10^{-4}$	1.39	7.71×10^{-5}	0.65	9.26×10^{-4}	7.82×10^{-5}	NA	NA	0							
rs7612797	n	0.48	1.14	8.36×10^{-2}	1.36	$7.82 \mathrm{x} 10^{-5}$	0.68	1.99×10^{-3}	$9.13 \mathrm{x} 10^{-5}$	FHIT	rs7612797	1	0.49 (.99	0.93	1.13	0.15	0.89	0.39
rs4733037	x	0.36	1.21	$1.73 x 10^{-2}$	1.36	8.46×10^{-5}	0.68	2.38×10^{-3}	8.70×10^{-5}	STMN4	rs4733037	1	0.34]	L.03	0.78	1.02	0.85	0.97	0.84
rs7530962		0.35	0.76	$6.20 \mathrm{x} 10^{-4}$	0.73	$8.48 \mathrm{x10^{-5}}$	1.57	$3.24 \mathrm{x} 10^{-4}$	$8.63 \mathrm{x} 10^{-5}$	NA	rs7530962	1	0.34]	1.07	0.44	1.05	0.59	0.92	0.56
R_1 denotes t	he reli	ative ris	sk for t	the offspring	g havin	ng one copy (of the	variant allele	S_1 denotes t	he relative risk fo	r the mother	navin	g one c	opy of	the varia	ant alle	le, I_M		

denotes the relative risk for a maternal over-transmission of the allele, and PV denotes p-value.

Figure S20: QQ plots for SSC Strict dataset

Figure S21: Summary of SSC results for imprinting, I_M , and maternal genetic effects, S_1 , and the overlap between Strict and Spectrum datasets

References

- [1] Ainsworth HF, Unwin J, Jamison DL, et al.. Investigation of maternal effects, maternal-fetal interactions and parent-of-origin effects (imprinting), using mothers and their offspring. Genet Epidemiol., 35(1):19-45, 2011.
- [2] Weinberg CR, Wilcox AJ, and Lie RT. A log-linear approach to case-parent-triad data: assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet, 62:969-978, 1998.
- [3] Weinberg CR. Methods for detection of parent-of-origin effects in genetic studies of case-parents triads. Am J Hum Genet, 65:229-235, 1999.
- [4] Cordell HJ, Barratt BJ, and Clayton DG. Case/pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet Epidemiol, 26:167-85, 2004.
- [5] Connolly Siobhan, and Heron Elizabeth A. Review of statistical methodologies for the detection of parent-of-origin effects in family trio genome-wide association data with binary disease traits. Briefings in bioinformatics, pages bbu017–, June 2014.

- [6] Pereira Tiago V, Patsopoulos Nikolaos A, Salanti Georgia, and Ioannidis John P A. Discovery properties of genome-wide association signals from cumulatively combined data sets. American journal of epidemiology, 170(10):1197–206, Nov. 2009.
- [7] Purcell S, Neale B, Todd-Brown K, et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 81:559–75, 2007.
- [8] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.
- [9] Price Alkes L, Patterson Nick J, Plenge Robert M, and others. Principal components analysis corrects for stratification in genome-wide association studies. Nature genetics, 38(8):904–9, Aug. 2006.
- [10] International HapMap Consortium. The International HapMap Project. Nature, 426(6968):789–96, Dec. 2003.
- [11] Wray Naomi R, Goddard Michael E, and Visscher Peter M. Prediction of individual genetic risk to disease from genome-wide association studies. Genome research, 17(10):1520–8, Oct. 2007.
- [12] Smith JG, and Newton-Cheh C. Genome-wide association study in humans, volume 573. Methods Mol Biol, Totowa, NJ, US, 2009.
- [13] Wang Kai, Zhang Haitao, Ma Deqiong, and others. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 459(7246):528–33, May 2009.
- [14] Weiss Lauren A, Arking Dan E, Daly Mark J, and Chakravarti Aravinda. A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461(7265):802–8, Oct. 2009.
- [15] Anney R, Klei L, Pinto D, et al.. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet., 19:4072–4082, 2010.
- [16] Wakefield Jon. Bayes factors for genome-wide association studies: comparison with P-values. Genetic epidemiology, 33(1):79–86, Jan. 2009.
- [17] Sanders Stephan J, Murtha Michael T, Gupta Abha R, and others. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397):237–41, May 2012.
- [18] Iossifov Ivan, Ronemus Michael, Levy Dan, and others. De novo gene disruptions in children on the autistic spectrum. Neuron, 74(2):285–99, Apr. 2012.
- [19] Schaaf Christian P, and Zoghbi Huda Y. Solving the autism puzzle a few pieces at a time. Neuron, 70(5):806–8, June 2011.
- [20] Gaugler Trent, Klei Lambertus, Sanders Stephan J, and others. Most genetic risk for autism resides with common variation. Nature genetics, 46(8):881–885, July 2014.
- [21] Wakefield Jon. Commentary: Genome-wide significance thresholds via Bayes factors. International journal of epidemiology, 41(1):286–91, Mar. 2012.

- [22] Wolpert C M, Donnelly S L, Cuccaro M L, and others. De novo partial duplication of chromosome 7p in a male with autistic disorder. American journal of medical genetics, 105(3):222–5, Apr. 2001.
- [23] Yuan Han, and Dougherty Joseph D. Investigation of maternal genotype effects in autism by genomewide association. Autism research : official journal of the International Society for Autism Research, 7(2):245–53, May 2014.
- [24] Wolf JB, and Wade MJ. What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci, 10(1098):1107–1115, 2009.
- [25] Allen-Brady Kristina, Cannon Dale, Robison Reid, McMahon William M, and Coon Hilary. A unified theory of autism revisited: linkage evidence points to chromosome X using a high-risk subset of AGRE families. Autism research : official journal of the International Society for Autism Research, 3(2):47–52, Apr. 2010.
- [26] Kaminsky Erin B, Kaul Vineith, Paschall Justin, and others. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genetics in medicine : official journal of the American College of Medical Genetics, 13(9):777–84, Sept. 2011.
- [27] Nudel R., Simpson N. H., Baird G., and others. Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes, Brain and Behavior, 13(4):418–429, 2014.
- [28] Wang Harold Z, Qin Hai-De, Guo Wei, Samuels Jack, and Shugart Yin Yao. New insights into the genetic mechanism of IQ in autism spectrum disorders. Frontiers in genetics, 4:195, Jan. 2013.
- [29] Peça João, Feliciano Cátia, Ting Jonathan T, and others. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472(7344):437–42, Apr. 2011.
- [30] Pagnamenta Alistair T, Khan Hameed, Walker Susan, and others. Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. Journal of medical genetics, 48(1):48–54, Jan. 2011.