Understanding the dynamics of Toll-like Receptor 5 response to flagellin and its regulation by estradiol

Ignacio Caballero^{2,3}, James Boyd⁴, Carmen Almiñana², Javier A. Sánchez-López², Shaghayegh Basatvat², Mehrnaz Montazeri², Nasim Maslehat Lay², Sarah Elliott², David G. Spiller⁴, Michael R. White⁴, Alireza Fazeli^{1,2,*}

¹Institute of Biomedicine and Translational Medicine, Department of Pathophysiology, University of Tartu, Tartu, Estonia

²Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom.

³ISP, INRA, Université Tours, 37380, Nouzilly, France.

⁴Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.

*Fazeli@ut.ee

Supplementary data

Table S1. Primers used for evaluation of gene expression by quantitative real-time PCR amplification.

Gene	Forward primer	Reverse primer	Annealing	Product
			T (°C)	size (bp)
TLR5	CACCAAACCAGGGATGCTAT	CCTGTGTATTGATGGGCAAA	58	111
ΙκΒα	CCCTACACCTTGCCTGTGAG	CGTGTGGCCATTGTAGTTGG	62	116
IL-1ra	CCAGCAAGATGCAAGCCTTCAGAAT	CCAGACTTGACACAGGACAGGC	60	129
ESR1	GAATCTGCCAAGGAGACTCG	ATCTCTCTGGCGCTTGTGTT	60	288
B-actin	CAAGATCATTGCTCCTCCTG	ATCCACATCTGCTGGAAGG	62	152
B2M	TATGCCTGCCGTGTGAACCA	GCGGCATCTTCAAACCTCCA	62	98

Figure S1. Schematic depiction of the three different reporter constructs used: i) a reporter vector that contains $5x \ \kappa B$ binding sites and the ELAM minimum promoter driving the expression of secreted alkaline phosphatase (SEAP), used to measure NF-κB transcription activity (pNifty2-SEAP); ii) a reporter vector that contains $5x \ TPA$ responsive elements (TRE) and a the IFN-β minimum promoter driving the expression of secreted alkaline phosphatase (SEAP). AP-1 binds to TRE and transcription activity is related to SEAP secretion (pNifty-3-A-SEAP); iii) a vector expressing RelA fused to the Discosoma sp. red fluorescent protein dsRed-Express (RelA-dsRedxp), used to evaluate RelA translocation pulses into the nucleus; and iv) a reporter vector containing a $3.5 \ kb$ promoter region from the TLR5 locus driving SEAP expression, used to evaluate TLR5 gene expression.

Figure S2. Analysis of RelA-dsRedxp dynamics in MCF7 cells responding or not to flagellin stimulation. MCF7 cells were transiently transfected with RelA-dsRedxp and preincubated or not (control) with 10 nM E2 for 24 h before stimulation with 100 ng/ml of flagellin. (A and B) Time course of nuclear:total fluorescence intensities of RelA-dsRedxp in control MCF7 cells responding (A) or not (B) to flagellin stimulation. (C and D) Time course of nuclear:total fluorescence intensities of RelA-dsRedxp in MCF7 cells pre-incubated with 10 nm E2 responding (C) or not (D) to flagellin stimulation.

Figure S3. Estradiol modulates ESR1 gene expression. Real-time qPCR analysis of ESR1 gene expression in MCF7 cells cultured in the presence of 10 nM E2 or not (control) and stimulated with 100 ng/ml of flagellin for 1, 2, 4 and 8 h before collection. Data are

representative of at least five three independent experiments. Error bars denote SEM. The asterix (*) indicates a significant difference (p<0.05).

Figure S4. Estrogen receptors modulate TNF-α activation of NF-κB transcription activity. MCF7 cells transiently transfected with pNifty2-SEAP were pre-incubated with ER agonists PPT, DPN or G1 (1000 nM) for 24 h and then stimulated with 100 ng/ml of flagellin and supernatant collected at 6 and 24 h. Samples were analyzed using NovaBrightTM Secreted Placental Alkaline Phosphatase (SEAP) Enzyme Reporter Gene Chemiluminescent Detection System 2.0. Control Data of NF-kB activity are reported as the fold induction of SEAP activity over untreated controls. Different letters (a and b) indicate significant differences (p<0.05).

Figure S1

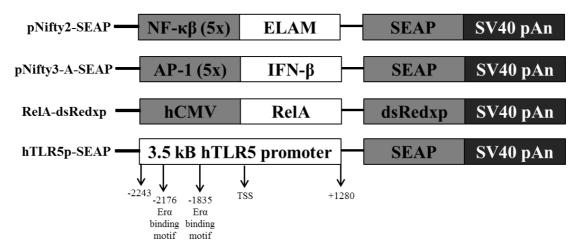


Figure S2

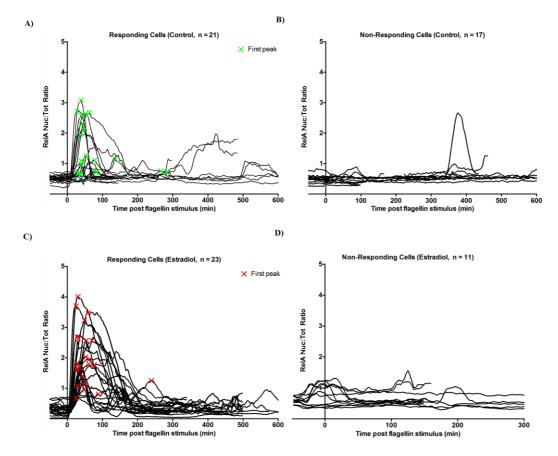


Figure S3

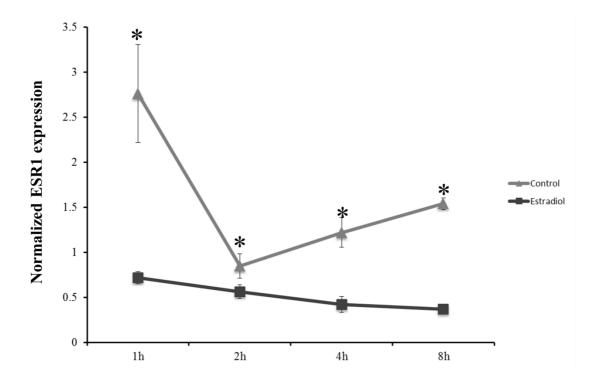
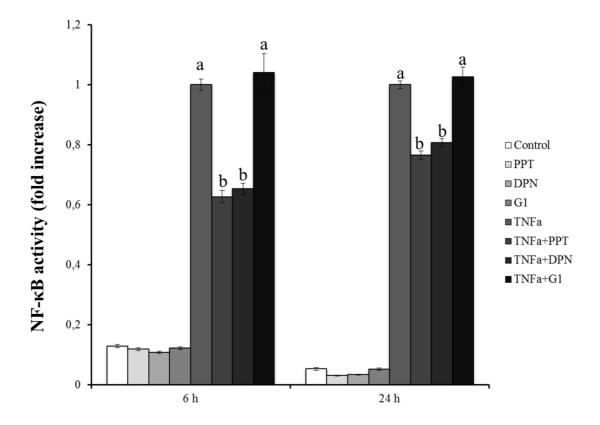



Figure S4

