Title: Highly Sensitive Marker Panel for Guidance in Lung Cancer Rapid Diagnostic Units

Authors: Sonia Blanco-Prieto, Loretta De Chiara, Mar Rodríguez-Girondo, Lorena Vázquez-Iglesias, Francisco Javier Rodríguez-Berrocal, Alberto Fernández-Villar, María Isabel Botana-Rial, María Páez de la Cadena SUPPLEMENTARY FIGURE S1: Annotated Heatmap based on Pearson Correlation of the Studied Molecular Markers in the Training Set

Marker	ker Gender ^a			Age ^a			Smoking ^a		
	Male (n=101)	Female (n=39)	P ^b	≤65 years (n=73)	>65 years (n=67)	P ^b	Yes (n=112)	No (n=28)	P^{b}
EGF (pg/mL)	438.04 40.13-1716.30	347.10 116.45-1187.06	0.490	433.91 40.75-1176.15	431.55 40.13-1716.30	0.995	465.81 40.13-1716.30	334.20 98.01-727.55	0.028
sCD26 (ng/mL)	380.00 136.00-1192.00	453.00 122.00-945.00	0.018	470.00 159.00-1092.00	361.00 122.00-1192.00	0.001	383.50 136.00-1192.00	458.00 122.00-102.00	0.125
CAL (ng/mL)	181.44 7.56-438.32	199.22 33.13-430.40	0.831	181.48 7.56-438.32	190.39 33.13-430.40	0.501	190.84 7.56-438.32	158.14 33.13-430.40	0.300
MMP-1 (pg/mL)	6060.28 1207.70-41668.33	5862.96 1186.61-22436.23	0.258	5988.68 1186.61-22595.70	5916.00 1207.70-41668.33	0.483	6061.80 1186.61-41668.33	5317.19 1207.70-22595.70	0.105
MMP-7 (pg/mL)	24324.18 5026.14-79977.27	22443.39 5383.18-50903.24	0.285	21936.90 5026.14-53466.87	27755.14 5383.18-79977.27	0.001	25145.77 5026.14-79977.27	20767.69 5383.18-50903.24	0.026
MMP-9 (ng/mL)	261.66 21.06-3611.59	215.34 52.79-3300.50	0.154	224.96 21.06-3611.59	261.66 52.79-1526.50	0.783	261.63 21.06-3611.59	183.55 52.79-3300.50	0.077
CEA (pg/mL)	1261.73 141.16-136039.19	1050.94 187.02-82300.26	0.478	1007.82 161.95-82300.26	1458.80 141.16-136039.19	0.094	1356.80 141.16-136039.19	828.39 170.84-102098.59	0.061
CYFRA 21.1 (pg/mL)	1250.35 0.00-173410.17	475.86 0.00-35365.75	0.096	446.05 0.00-43641.44	1932.84 0.00-173410.17	0.004	1155.57 0.00-173410.17	500.10 0.00-19314.33	0.202

SUPPLEMENTARY TABLE S1	. Association of Markers with	Gender. Age and Smokin	g in the Training	Set

^a Median and range values provided ^b Mann-Whitney U test

SUPPLEMENTARY MATERIAL S1: Details of Classification Algorithm based on Lasso Logistic Regression.

We derived a classification rule based on a multivariate combination of the studied markers based on logistic Lasso regression¹. The general aim is to build a decision rule to predict a binary outcome **y** in terms of a set of *p* (molecular) markers **X**=(X₁,...,X_p), using a training sample of size *n*. For each observation i, we estimate its class membership as $\hat{y}_i = I(\hat{p}_i > \hat{c})$, $\hat{p}_i = \hat{P}(y_i = 1 | x_{1i}, ..., x_{pi})$, where \hat{p}_i are the estimated membership probabilities and \hat{c} is the estimated optimal cut-off point based on \hat{p}_i and a given optimality criterion. We consider a logistic lasso regression for the simultaneous estimation of \hat{p}_i and \hat{c} in terms of the set of predictors **X**, through the estimation of the regression coefficients $\boldsymbol{\beta} = (\beta_1, ..., \beta_p)$ corresponding to each of the *p* considered markers. Specifically, $logit(\hat{p}_i) = log\left(\frac{\hat{p}_i}{1-\hat{p}_i}\right) = \beta_0 + x_{i1}\beta_1 + ... + x_{ip}\beta_{1p}$ and the estimation of $\boldsymbol{\beta} = (\beta_1, ..., \beta_p)$ is conducted by maximizing the penalized log-likelihood

$$\sum_{i=1}^{n} [y_i \log(\hat{p}_i) + (1 - y_i) \log(1 - \hat{p}_i)] - Apen(\boldsymbol{\beta})$$

The penalty parameter Λ regularizes the traditional maximum likelihood coefficients by shrinking large coefficients in order to control the bias-variance trade-off. We use a Lasso-type ¹ penalty, with $pen(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_1 = \sum_{j=1}^p |\beta_j|$, which allows for variable selection since some of the resulting coefficients can be exactly zero. In practice, the final estimated regression coefficients $\boldsymbol{\beta}$ are determined by the choice of the optimal (in some sense) Λ , Λ_{opt} .

In our algorithm, we simultaneously chose the penalty parameter Λ_{opt} and cut-off point \hat{c} which provide the classification rule with maximum specificity, given a fixed value of

sensitivity equal to 95%, using 10-fold cross validation in the training set. For each possible value of the penalty parameter (we considered a grid of 170 values of Λ from 0.001 to 0.17), we obtain the corresponding set of regression coefficients in each of the 10 partitions of the training set (leaving aside 1/10 of the training set at each time), and we apply the resulting estimated coefficients to the out-of-sample data, obtaining case probability scores \hat{p}_i^{Λ} for each observation of the training set and possible value of Λ . Each of these 170 scores were subsequently dichotomized to guarantee the desired level of sensitivity 95%, providing $\hat{c}_1^{\Lambda 1}, \dots, \hat{c}_1^{\Lambda 170}$ as possible optimal cut-off points, with different level of specificity. Finally, we chose the penalty parameter Λ_{opt} whose corresponding $\hat{c}_1^{\Lambda opt}$ maximized the specificity.

The algorithm was implemented using the R program (Wirtschafts Universität, Wien, Austria) and using the package $glmnet^2$ for Lasso regularization.

In our case, we considered 8 molecular markers and three extra clinical markers (age, gender and smoking) that entered the model without penalization $(pen(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_1 = \sum_{j=1}^p |\beta_j|$ does not include the regression coefficients corresponding to age, gender and smoking).

The final classification rule corresponds to $\Lambda_{opt} = 0.059$ and $\hat{c} = 0.266$, i.e. $\hat{y}_i = I(\hat{p}_i > 0.266)$, where \hat{p}_i is given by:

$$logit(\hat{p}) = -12.362 + 1.735log_{10}CAL + 0.796log_{10}CEA - 0.067log_{10}CD26$$
$$+ 0.405log_{10}EGF + 0.035age - 0.250I(gender = woman)$$
$$+ 1.715I(smoking)$$

REFERENCES:

Tibshirani, R. Regression shrinkage and selection via the lasso. *J. Royal Statist. Soc. B*. **58**, 267-288 (1996).

2. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. *Journal of Statistical Software*. **33**, 1-22 (2010).

SUPPLEMENTARY FIGURE S2: Optimal Lasso Penalization Parameter.

Specificities corresponding to a fixed value of 95% sensitivity plotted for each possible value of the penalization parameter Λ in logistic Lasso regression. Dashed lines indicate the optimal selected penalization parameter (Λ_{opt}) corresponding to the maximum specificity, determined by 10-fold cross-validation.

LASSO penalty parameter

SUPPLEMENTARY TABLE S2: Diagnostic Measurements of the Proposed 4-Marker Model

Criterion	Measurement
Deviance	131.36
AIC	145.36
BIC	165.95

Abbreviations: AIC= Akaike Information Criterion, BIC=Bayesian Information Criterion

Marker	Case/Control ^a	Median	Range	P^{b}	AUC (95% CI)
EGF (pg/mL)	Control Healthy Benign	349.69 301.65 454.32	62.63-1160.42 109.37-519.29 62.63-1160.42		
	LC NSCLC I+II NSCLC III+IV	759.18 839.81 574.51	78.37-1375.50 722.66-1176.89 170.22-1375.50	0.008 0.001 0.061	0.727 (0.576-0.848)
	SCLC SCLC Limited SCLC Extended	585.35 427.60 585.35	78.37-776.83 78.37-776.83	0.783 - -	
sCD26 (ng/mL)	Control Healthy Benign	456.00 605.50 434.00	228.00-1025.00 308.00-1025.00 228.00-998.00		
	LC NSCLC I+II NSCLC III+IV	380.50 409.00 365.00	165.00-846.00 250.00-598.00 165.00-778.00	0.012 0.214 0.014	0.716 (0.564-0.839)
	SCLC SCLC Limited SCLC Extended	306.00 547.50 306.00	249.00-846.00 249.00-846.00	0.353 - -	
CAL (ng/mL)	Control Healthy Benign	117.94 117.94 128.61	38.67-247.36 39.16-247.36 38.67-234.44		
	LC NSCLC I+II NSCLC III+IV	258.33 265.78 261.10	111.69-482.89 154.34-426.99 126.50-482.89	< 0.001 0.007 <0.001	0.871 (0.739-0.952)
	SCLC SCLC Limited SCLC Extended	190.52 243.28 190.52	111.69-374.88 111.69-374.88 -	0.238	
CEA (pg/mL)	Control Healthy Benign	764.77 764.77 788.36	236.07-4616.82 236.07-4203.63 354.97-4616.82		
	LC NSCLC I+II NSCLC III+IV	2102.93 1787.12 2284.68	374.15-42679.99 839.29-5201.68 374.15-42679.99	0.003 0.039 0.022	0.759 (0.611-0.873)
	SCLC SCLC Limited SCLC Extended	5060.04 3079.00 10139.27	1097.96-10139.27 1097.96-5060.04 -	0.027	

SUPPLEMENTARY TABLE S3: Levels of the Serum Markers included in the 4-Marker Panel for the Validation Set

Abbreviations: LC=Lung Cancer, NSCLC=Non-Small Cell Lung Cancer, SCLC=Small Cell Lung Cancer

^a Sample size in validation set: Control n=22 (Healthy n=8, Benign n=14), NSCLC n=21 (Early stage I+II n=6, Late stage III+IV n=15), SCLC n=3 (Limited stage n=2, Extended stage n=1)

^bMann-Whitney U test for the comparison between the cancer and control groups, and comparison between NSCLC stratified by early and advanced stage *versus* controls

		Minimize AIC ^a		Minimize BIC ^a	
		Sn=95%	Sn=90%	Sn=95%	Sn=90%
Markers included	farkers EGF, sCD26 included		CEA, CYFRA	EGF, CA	L, CEA,
Deviance		107.86		113.50	
AIC		125.86		127.45	
BIC		152.34		148.09	
Cut-off 95% Sn		>0.057		>0.141	
	Sn, Sp (%) train	95.6, 33.3		95.6, 47.2	
_	Sn, Sp (%) test	99.0, 31.8		91.7, 45.4	
Cut-off 90% Sn		>0.433		>0.4	40
	Sn, Sp (%) train	89.7, 75.	0	89.7,	75.0
	Sn, Sp (%) test	91.7, 77.3		83.3, 59.1	

SUPPLEMENTARY TABLE S4: Alternative Model Building Procedures based on AIC and BIC Criteria

Abbreviations: AIC= Akaike Information Criterion, BIC=Bayesian Information Criterion, Sn=Sensitivity,

Sp=Specificity ^a For each of the two fitted models, we calculated two cut-off points based on maximizing the specificity at two different levels of specificity (Sn=95%, Sn=90%). Optimal models were selected using function dredge form the R package MuMIn

		TRAINING SET		VALIDATION SET		
		Lung Cancer (n=68)	Control (n=72)	Lung Cancer (n=24)	Control (n=22)	
Gender ^a						
	Male	55 (80.9%)	46 (63.9%)	20 (83.3%)	14 (63.6%)	
	Female	13 (19.1%)	26 (36.1%)	4 (16.7%)	8 (36.4%)	
Age ^b						
-	Median	69.5	61	64	59.5	
	Range	47-88	24-87	37-86	38-88	
Smoking status ^c						
U	Yes	63 (92.6%)	49 (68.1%)	20 (83.3%)	14 (63.6%)	
	No	5 (7.4%)	23 (31.9%)	4 (16.7%)	8 (36.4%)	
Diagnosis						
0	Healthy		36 (50%)		8 (36.4%)	
	RI		30 (41.7%)		11 (50%)	
	ILD		6 (8.3%)		3 (13.6%)	
	NSCLC	59 (86.8%)		21 (87.5%)		
	ADC	32 (47.1%)		12 (50%)		
	SCC	13 (19.1%)		7 (29.2%)		
	LCC	11 (16.2%)		2 (8.3%)		
	BAC	2 (2.9%)1				
	ND	(1.5%)		0 (10 50()		
	SCLC	9 (13.2%)		3 (12.5%)		
Stage						
	NSCLC					
	I	14 (23.7%)		5 (23.8%)		
	ll	2 (3.4%)		1 (4.8%)		
		15 (25.4%)		6 (28.6%)		
		28 (47.3)		9 (42.9%)		
	Limited	3 (33,3%)		2 (66.6%)		
	Extended	6 (66.6%)		1 (33.3%)		
		- ()		()		

SUPPLEMENTARY	TABLE S5: Patient	Demographics and	Classification of	Lung Cancer
---------------	--------------------------	-------------------------	--------------------------	-------------

Abbreviations: NSCLC=Non Small Cell Lung Cancer, ADC=Adenocarcinoma, SqCC=Squamous Cell Carcinoma, LCC=Large Cell Carcinoma, BAC=Bronchioloalveolar Carcinoma, ND=Not Differentiated Carcinoma, SCLC=Small Cell Lung Cancer, RI=Respiratory Infection, ILD=Interstitial Lung Disease ^a Gender distribution between cancer and controls statistically significant in the training set: *P*=0.037 (Fisher

"Gender distribution between cancer and controls statistically significant in the training set: P=0.037 (Fisher test)

^b Statistically significant differences in age between cancer and controls in the training set: P=0.017 (Mann-Whitney U test)

^c Smoking status distribution between cancer and controls statistically different: P<0.001 in training set (Fisher test)