Supplemental Material

Chatterjee and Banoth et al., 2016

Description of variance-based global sensitivity analysis

We have implemented a variance-based global sensitivity analysis to determine the kinetic parameters that play a critical role in signaling crosstalk. We randomly and simultaneously varied a select set of kinetic parameters within a pre-defined range ($\pm 25\%$ of the nominal value) with iterative quasi-Monte Carlo sampling. We had earlier defined the crosstalk index as the ratio of total RelA nuclear activity induced in a 24-hour time period upon costimulation to the sum of the RelA nuclear activities induced by individual stimuli (Fig. 2C). We quantified the contribution of the uncertainty in each individual group of input parameters to the uncertainty of the model output (the crosstalk index) by estimating total effect indexes and standardized regression coefficients as described below.

First, we assumed that $Y = f(\mathbf{X})$ represents a nonlinear mathematical relationship that has been computationally modeled, where Y is the model output and **X** is the array of inputs. The variance decomposition scheme described earlier, suggests (46):

$$V(Y) = \sum_{i} V_{i} + \sum_{i} \sum_{j>i} V_{ij} + \dots + V_{12\dots k}$$
(Eq. 1)

where V(Y) indicates the total unconditional variance and V_i (also known as the "first order effect") reflects the partial variance of the model output when the *i*th parameter (i = 1, 2, ..., k) is fixed for a set of simulations. Succeeding terms in the equation represent partial variances when more than one parameter is fixed while changing the others using Monte Carlo sampling. As described previously (21), a first-order partial variance term V_i can be written as:

$$V_i = V_{X_i} \left[E_{\mathbf{X}_{\sim i}}(Y|X_i) \right] \tag{Eq. 2}$$

Here, **X** indicates an $N \times k$ matrix, where k is the total number of parameter groups being simultaneously perturbed and N is the total number of model simulations or the sample size. For any simulation chosen from N, X_i depicts a generic parameter. In the expression $(Y|X_i)$, Y indicates the scalar model output when X_i is the input for simulations. The expectation $E_{\mathbf{X}_{\sim i}}(Y|X_i)$ in Eq. 2 is computed using the $N \times (k - 1)$ matrix, denoted as $\mathbf{X}_{\sim i}$, which excludes the *i*th column while X_i is held constant during the simulations. The variance in the expected values $E_{\mathbf{X}_{\sim i}}(Y|X_i)$ obtained for simulations carried out for all values of X_i is given by $V_{X_i}[E_{\mathbf{X}_{\sim i}}(Y|X_i)]$. Accordingly, the first-order sensitivity index for the *i*th parameter (S_i) is defined as:

$$S_i = \frac{V_{X_i} \left[E_{\mathbf{X}_{\sim i}}(Y|X_i) \right]}{V(Y)} \tag{Eq. 3}$$

However, the first-order sensitivity index does not account for higher-order interactions. To circumvent this problem, the total effect index was derived as a variance-based index (47) that collectively estimates the first-order and all other higher-order influences of a given parameter or a group of parameters on the model output. The total effect index is described as follows:

$$S_{Ti} = \frac{E_{\mathbf{X}_{\sim i}} [V_{X_i}(Y|\mathbf{X}_{\sim i})]}{V(Y)} = 1 - \frac{V_{\mathbf{X}_{\sim i}} [E_{X_i}(Y|\mathbf{X}_{\sim i})]}{V(Y)}$$
(Eq. 4)

As such, the total effect index (S_{Ti}) is better suited for multiparametric analyses to identify sensitive and insensitive parameters unambiguously. The total effect index of the *i*th parameter is a measure of the residual of the first-order effect of $\mathbf{X}_{\sim i}$ subtracted from the total unconditional variance V(Y).

Here, we used the Sobol quasi-random sequences for selected parameter values (Fig. 2B and table S1) for Monte Carlo sampling (46). Notably, it was shown that quasi-random, low-discrepancy sequences, such as the Sobol sequence, exhibit superior convergence properties compared to pseudo-random number generators (21). We used the algorithm described below (21) to calculate the total effect index of the i^{th} parameter as follows:

$$E_{\mathbf{X}_{\sim i}}[V_{X_{i}}(Y|\mathbf{X}_{\sim i})] = \frac{1}{2N} \sum_{J=1}^{N} \left\{ f(\mathbf{A})_{J} - f(\mathbf{A}_{\mathbf{B}}^{(i)})_{J} \right\}^{2}$$
(Eq. 5)

A and **B** represent differently sampled (quasi-random) matrices, where each column (*i*) consists of various values of a given kinetic parameter within the predefined range. The matrix $\mathbf{A}_{\mathbf{B}}^{(i)}$ is generated by the substitution of the *i*th column of **A** with the *i*th column of **B**. The *J*th row (*J* = 1, 2, ..., *N*) of the matrices (**A**)_{*I*} and ($\mathbf{A}_{\mathbf{B}}^{(i)}$)_{*I*} was used iteratively in the quasi Monte Carlo simulations.

Adhering to Saltelli et. al. (21), we chose a more efficient radial sampling strategy for this algorithm. A standard bootstrapping technique was used to calculate the error range of the total effect indexes to avoid possible bias in the data. Error ranges of the bootstrapping were as follows: GR-6: \pm 0.0003351; GR-7: \pm 0.0000042; GR-8: \pm 0.0000049; GR-9: \pm 0.0004891; GR-15: \pm 0.0001252; GR-16: \pm 0.0000055; GR-17: \pm 0.0000051; GR-18: \pm 0.0003309; GR-19: \pm 0.0001258; GR-37: \pm 0.0001248; GR-38: \pm 0.0000039; GR-39: \pm 0.0000010; GR-40: \pm 0.0000092; and GR-41: \pm 0.0000441. The convergence of the total effect index S_{Ti} was verified through $N \times (k+1)$ number of simulations, where N was varied from 10 to 1000 for k = 14 parameter groups (see fig. S3A). Our analysis revealed that the total effect index for different parameter groups ceases to fluctuate when the sample number is sufficiently high. We showed the result for N = 1000 simulations (Fig. 2D).

Finally, we calculated standardized regression coefficients using these randomly sampled values for a given parameter group as independent variables and crosstalk index output as the dependent variable (fig. S3B) (48). Sample parameters and crosstalk outputs were scaled to their respective standard deviations. Regression coefficients of these standardized data were calculated by least square methods and plotted (Fig. 2E). A two-tailed student's *t* test confirmed a statistically significant deviation from the null value for the parameter groups GR-6, GR-9, GR-15, GR-18, GR-19, and GR-37 (Fig. 2E). A residual plot derived from our regression analyses (fig. S3C) revealed randomly scattered, standardized errors were distributed uniformly about the independent variable axis.

Fig. S1. NF-κB signaling in fibroblasts and macrophages. (A and B) Immortalized mouse embryonic fibroblasts (MEFs) (A) and RAW 264.7 macrophage cells (B) were stimulated for the indicated times with LPS and αLTβR before being subjected to EMSA and supershift analyses of the DNA-binding activity of NF-κB. The arrow and arrowhead indicate RelA and RelB DNA binding complexes, respectively. Nuclear DNA binding activity of RelA was revealed by supershifting RelB with an anti-RelB antibody. Similarly, DNA binding activity of RelB was unmasked by supershifting RelA. Data are representative of three experiments. (C) Supershift analysis with antibodies against the indicated NF-κB subunits were performed to examine RelA activity induced in fibroblasts 16 hours after they were stimulated with LPS (L), αLTβR (B), or both (LB). Data are representative of three experiments. (D) Primary MEFs were stimulated for the indicated times with LPS alone (at either of the two indicated concentrations), αLTβR (0.3 µg/ml), or both before being subjected to RelA-EMSA analysis. Data are representative of three experiments. (E) Primary bone marrow–derived macrophages (BMDMs) were stimulated with LPS alone (at either of the two indicated concentrations), αLTβR (0.3 µg/ml), or both sefore being subjected to RelA-EMSA analysis. Data are representative of three experiments. Data are representative of three experiments. (E) Primary bone marrow–derived macrophages (BMDMs) were stimulated with LPS alone (at either of the two indicated concentrations), αLTβR (0.3 µg/ml), or both before being subjected to RelA-EMSA analysis. Data are representative of three experiments.

Fig. S2. Constitutive expression of *Nfkb2* **in various cell lines.** Fibroblasts, J774.1 cells, and RAW 264.7 cells were subjected to quantitative RT-PCR analysis of the basal amount of *Nfkb2* mRNA normalized to that of *Actb* mRNA. Data are representative of three experiments.

Fig. S3. Variance-based global sensitivity analysis of NF- κ B system model v. 1.0. (A) Examination of the convergence of total effect indexes for the individual parameter groups presented in Fig. 2D. (B) Regression analysis of the standardized variables. The parameter group numbers used as independent variables are shown in the top right corner of each plot. Standardized regression coefficient values are depicted in the bottom left corner of each plot. (C) Residual plots for standardized regression analysis reveal that the residuals are distributed evenly on both sides of the regression curves (magenta line) for these plots. These results ascertain that there is no noticeable nonlinearity in the dependent variables and that linear regression is appropriate.

Β

five-κB promoter:

CACATTCCACAGCTGGATCCAAGCTAG**GGGACTTTCC**GCTTG**GGGACTTTCC**GCT G**GGGACTTTCC**GCTG**GGGACTTTCC**GCTG**GGGACTTTCC**GCGGTGACTCTAGAGG G**TATATA**ATGGAAGCTCGAATTCCAGCTTGGCATTCCGGTACTGTTGGTAAA**ATG**

one-kB promoter:

CACATTCCACAGCTGGATCCAAGCTAG**TCTACTTTCC**GCTTG**TCTACTTTCC**GCT G**TCTACTTTCC**GCTG**GGGACTTTCC**GCTG**TCTACTTTCC**GCGGTGACTCTAGAGG G**TATATA**ATGGAAGCTCGAATTCCAGCTTGGCATTCCGGTACTGTTGGTAAA**ATG**

Fig. S4. The enhanced rate of RelA-responsive I κ B α synthesis is inversely correlated with pathway crosstalk. (A) Graph showing the crosstalk index as a function of the rate constant corresponding to the RelA-induced synthesis of *Nfkbia* mRNA. The crosstalk index was computed from the activity of nuclear RelA induced between 16 and 24 hours of model simulations. (B) DNA sequences corresponding to the five- κ B–containing promoter and the one- κ B–containing promoter that were used in this study to produce I κ B α in *Nfkbia*^{-/-} fibroblasts. The κ B elements are indicated in blue, whereas the mutated κ B elements are indicated in magenta. The TATA box and the start codon are shown in green.

Fig. S5. Smar1 inhibits RelA-induced Nfkbia expression during LPS signaling. (A) Primary MEFs and BMDMs were treated for 1 hour with LPS before being subjected to quantitative RT-PCR analysis of *Nfkbia* mRNA abundance normalized to that of *Actb* mRNA. Data are means \pm SEM of three independent experiments, *P < 0.05 by two-tailed student's t test. (B) Immortalized fibroblasts, J774.1 cells, and RAW 264.7 cells were treated with TNF for the indicated times before being subjected to quantitative RT-PCR analysis of *Nfkbia* mRNA abundance normalized to that of *Actb* mRNA. Data are means ± SEM of three independent experiments. *P < 0.01. (C) Primary MEFs and BMDMs were fractionated to generate nuclear extracts and nuclear pellets, which were then analyzed by Western blotting with antibodies against the indicated proteins. TFIID served as a loading control. Western blots are representative of two experiments. (D) Immortalized wild type fibroblasts transduced with retrovirus particles expressing either a scrambled shRNA or a Smar1-specific shRNA were subjected to Western blotting analysis with antibodies against the indicated proteins. Residual amount of Smarl upon knockdown was quantified and presented as % of control cells. (E) RAW 264.7 cells were transfected with either p3XFLAG-CMV or p3XFLAG-CMV-Smar1. Forty hours later, the cells were analyzed by Western blotting with antibodies against the indicated proteins. The arrow indicates FLAG-tagged Smar1. Relative amounts of Smar1 protein was quantified and indicated at the bottom of the immunoblot. Data are means \pm SEM of three independent experiments.

Param	Reaction	Parameter	Parameter grouping	Justification for parameter grouping and
eter #		value/rate	(group identity)	inclusion or exclusion for perturbation
(k.)		constant		
(K _n)				
1	→tIkBa	6.20E-02 nM min ⁻¹	signal independent	excluded; core promoter architecture, which is
		mvi.mm	constitutive synthesis	invariant in different cell-types, largely
			of mRNA encoding	determines the rate of constitutive mRNA
			ΙκΒα (GR-1)	synthesis. Accordingly, rate constant related to
				constitutive synthesis of Nfkbia mRNA
				encoding IkB α were excluded from the
				sensitivity analyses.
-	- N 411-D1	2.005.02	-ilindd4	
2	Тикво	2.00E-03 nM.min ⁻¹	signal independent	excluded; Justification for exclusion is similar
			constitutive synthesis	to GR-1.
			of mRNA encoding	
			ΙκΒβ (GR-2)	
3	→tIkBe	2 50F-04	signal independent	excluded: Justification for exclusion is similar
		nM.min ⁻¹	agnetitutiva synthesis	to CP 1
				10 GK-1.
			of mRINA encoding	
			ΙκΒε (GR-3)	
4	→ tp100	1.90E-04	signal independent	excluded ; Justification for exclusion is similar
		nM.min ⁻¹	constitutive synthesis	to GR-1.
			of mRNA encoding	
			p100/Nfkb2 (GR-4)	
5	→tNFkB1 (NFkB1	1.40E-05	signal independent	excluded ; Justification for exclusion is similar
	represents RelA:p50	nM.min ⁻¹	constitutive synthesis	to GR-1.
	dimer)		of mRNA encoding	
			composite RelA:p50	
			species (GR-5)	
6	→tIkBa (Induced by	4.00E-07 nM ⁻² .min ⁻¹	NF-κB induced	included; GR-6 represent signal

Table S1. List of parameter groups and kinetic rate constants.

	RelA:p50)		synthesis of Nfkbia	responsiveness of the Nfkbia promoter. NF-KB
			mRNA encoding ΙκΒα	induced expression of a given target gene
10	→tIkBa(Induced by	4.00E-07 nM ⁻² .min ⁻¹	(GR-6)	exhibits variability in different cell-types
	RelA:p52)			owing to differences in the chromatin
				regulations, such as acetylation, methylation
				etc (19) . Given the chromatin effects
				associated with a given promoter is rather
				independent of the identity of the NF-KB
				dimers, RelA:p50 and RelA:p52 mediated
				transcriptional synthesis rate constants were
				grouped together.
7	→tIkBb (Induced by	1.20E-08 nM ⁻² .min ⁻¹	NF-κB induced	included; GR-7 represent signal
	RelA:p50)		synthesis of Nfkbib	responsiveness of the Nfkbib promoter,
11	→tIkBb(Induced by	1.20E-08	mRNA encoding ΙκΒβ	justification for grouping and inclusion is
	RelA:p52)	nM ⁻² .min ⁻¹	(GR-7)	similar to GR-6.
	1 /			
0	Atll Da(Induced by	5 00E 00		included. CD 9 concernent sizes.
		1 1 1 1 1 2 - 1 1 9		
0	PolA:p50)	nM ⁻² .min ⁻¹		rannonsiyanasa of the <i>Mikhia</i> promotor
0	RelA:p50)	nM ⁻² .min ⁻¹	synthesis of <i>Nfkbie</i>	responsiveness of the <i>Nfkbie</i> promoter,
8 12	RelA:p50) →tIkBe(Induced by	5.00E-09	synthesis of <i>Nfkbie</i> mRNA encoding ΙκΒε	responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is
12	RelA:p50) →tIkBe(Induced by RelA:p52)	5.00E-09 nM ⁻² .min ⁻¹	synthesis of <i>Nfkbie</i> mRNA encoding ΙκΒε (GR-8)	responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6.
12	 RelA:p50) →tIkBe(Induced by RelA:p52) 	5.00E-09 nM ⁻² .min ⁻¹	synthesis of <i>Nfkbie</i> mRNA encoding ΙκΒε (GR-8)	responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6.
o 12 9	 RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by D 1A 50) 	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹	<pre>NF-κB induced synthesis of Nfkbie mRNA encoding IκBε (GR-8) NF-κB induced</pre>	included, GR-8 represent signal responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal
9	 RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) 	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹	<pre>NF-κB induced synthesis of Nfkbie mRNA encoding IκBε (GR-8) NF-κB induced synthesis of Nfkb2</pre>	included, GR-8 represent signal responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the <i>Nfkb2</i> promoter, included; GR-9 represent signal
9 13	RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹	NF-κB induced synthesis of Nfkbie mRNA encoding IκBε (GR-8) NF-κB induced synthesis of Nfkb2 mRNA encoding p100	 included, GR-8 represent signal responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the <i>Nfkb2</i> promoter, justification for grouping and inclusion is
9 13	 RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by RelA:p52) 	5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹	 NF-κB induced synthesis of <i>Nfkbie</i> mRNA encoding IκBε (GR-8) NF-κB induced synthesis of <i>Nfkb2</i> mRNA encoding p100 (GR-9) 	responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included ; GR-9 represent signal responsiveness of the <i>Nfkb2</i> promoter, justification for grouping and inclusion is similar to GR-6.
9 13	 RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by RelA:p52) 	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹	 NF-κB induced synthesis of <i>Nfkbie</i> mRNA encoding IκBε (GR-8) NF-κB induced synthesis of <i>Nfkb2</i> mRNA encoding p100 (GR-9) 	 included, GR-8 represent signal responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the <i>Nfkb2</i> promoter, justification for grouping and inclusion is similar to GR-6.
9 12 13	RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by RelA:p52) tIkBa →	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹	 NF-кВ induced synthesis of <i>Nfkbie</i> mRNA encoding IκBε (GR-8) NF-кВ induced synthesis of <i>Nfkb2</i> mRNA encoding p100 (GR-9) constitutive 	included, GR-8 represent signal responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the <i>Nfkb2</i> promoter, justification for grouping and inclusion is similar to GR-6. excluded; GR-10 represent signal independent
9 13	RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by RelA:p52) ↓tp100(Induced by RelA:p52) tlkBa →	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹	INF-κB induced synthesis of Nfkbie mRNA encoding IκBε (GR-8) NF-κB induced synthesis of Nfkb2 mRNA encoding p100 (GR-9) constitutive degradation of Nfkbia	included, GR-8 represent signal responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the <i>Nfkb2</i> promoter, justification for grouping and inclusion is similar to GR-6. excluded; GR-10 represent signal independent degradation of <i>Nfkbia</i> mRNA, which depends
9 12 13	RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by RelA:p52) tlkBa →	nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 3.50E-02 min ⁻¹	 NF-κB induced synthesis of <i>Nfkbie</i> mRNA encoding IκBε (GR-8) NF-κB induced synthesis of <i>Nfkb2</i> mRNA encoding p100 (GR-9) constitutive degradation of <i>Nfkbia</i> mRNA (GR-10) 	included, GR-8 represent signal responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the <i>Nfkb2</i> promoter, justification for grouping and inclusion is similar to GR-6. excluded; GR-10 represent signal independent degradation of <i>Nfkbia</i> mRNA, which depends on the genetic sequence of the mRNA, and
9 12 13 14	RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by RelA:p52) tlkBa →	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 3.50E-02 min ⁻¹	 NF-κB induced synthesis of <i>Nfkbie</i> mRNA encoding IκBε (GR-8) NF-κB induced synthesis of <i>Nfkb2</i> mRNA encoding p100 (GR-9) constitutive degradation of <i>Nfkbia</i> mRNA (GR-10) 	included, GR-8 represent signal responsiveness of the Nfkbie promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the Nfkb2 promoter, justification for grouping and inclusion is similar to GR-6. excluded; GR-10 represent signal independent degradation of Nfkbia mRNA, which depends on the genetic sequence of the mRNA, and expected to be invariant in different cell-types.
9 12 13	RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by RelA:p52) tIkBa →	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 3.50E-02 min ⁻¹	 NF-κB induced synthesis of <i>Nfkbie</i> mRNA encoding IκBε (GR-8) NF-κB induced synthesis of <i>Nfkb2</i> mRNA encoding p100 (GR-9) constitutive degradation of <i>Nfkbia</i> mRNA (GR-10) 	included, GR-8 represent signal responsiveness of the <i>Nfkbie</i> promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the <i>Nfkb2</i> promoter, justification for grouping and inclusion is similar to GR-6. excluded; GR-10 represent signal independent degradation of <i>Nfkbia</i> mRNA, which depends on the genetic sequence of the mRNA, and expected to be invariant in different cell-types.
0 12 9 13 14 15	RelA:p50) →tIkBe(Induced by RelA:p52) →tp100(Induced by RelA:p50) →tp100(Induced by RelA:p52) tlkBa →	5.00E-09 nM ⁻² .min ⁻¹ 5.00E-09 nM ⁻² .min ⁻¹ 2.00E-08 nM ⁻² .min ⁻¹ 3.50E-02 min ⁻¹ 3.00E-03	INF-κB induced synthesis of Nfkbie mRNA encoding IκBε (GR-8) NF-κB induced synthesis of Nfkb2 mRNA encoding p100 (GR-9) constitutive degradation of Nfkbia mRNA (GR-10) constitutive	included, GR-8 represent signal responsiveness of the Nfkbie promoter, justification for grouping and inclusion is similar to GR-6. included; GR-9 represent signal responsiveness of the Nfkb2 promoter, justification for grouping and inclusion is similar to GR-6. excluded; GR-10 represent signal independent degradation of Nfkbia mRNA, which depends on the genetic sequence of the mRNA, and expected to be invariant in different cell-types. excluded; Justification for exclusion is similar

		min ⁻¹	mRNA (GR-11)	to GR-10.
16	tIkBe →	4.00E-03	constitutive	excluded; Justification for exclusion is similar
		min	degradation of Nfkbie	to GR-10.
			mRNA (GR-12)	
17	tp100 →	1.60E-03	constitutive	excluded; Justification for exclusion is similar
		11111	degradation of Nfkb2	to GR-10.
			mRNA (GR-13)	
18	tNFkB1 →	1.00E-03	constitutive	excluded ; Justification for exclusion is similar
			degradation of mRNA	to GR-10.
			encoding RelA:p50	
			species (GR-14)	
19	→IkBa	1.00E+00 min ⁻¹	translational synthesis	included; GR-15 represent constitutive
			of ΙκΒα (GR-15).	synthesis of IkB α proteins from <i>Nfkbia</i>
				mRNAs. A recent study by Kristensen et. al.,
				(22) have demonstrated that protein synthesis
				rate varies considerably among different cell
				types. Hence these groups were included in
				global sensitivity analysis.
20	→IkBb	1.00E+00	translational synthesis	included ; justification for inclusion is similar
		min ²	of ΙκΒβ (GR-16).	to GR-15.
21	→IkBe	1.00E+00	translational synthesis	included ; justification for inclusion is similar
			of ΙκΒε (GR-17).	to GR-15.
22	→ p100	5.00E-01 min ⁻¹	translational synthesis	included; justification for inclusion is similar
			of p100/Nfkb2(GR-	to GR-15.
			18).	
23	→RelA:p50	1.00E+00 min ⁻¹	translational synthesis	included ; GR-19 represents the composite
			of RelA:p50 species in	reaction depicting the production of RelA:p50
			the model (GR-19).	dimers in our mathematical model. With a
				similar justification as that of GR-15, we

				included this group in the global sensitivity
				analysis.
24	IkBa →	1.38E-01	signal independent,	excluded; GR-20 represents signal-
			constitutive	independent, constitutive degradation of $I\kappa B\alpha$
63	IkBa:RelA:p50→	6.00E-05 min ⁻¹	degradation of $I\kappa B\alpha$ in	either in its free form or in NF-κB complexes.
	RelA:p50		its free or NF-κB	Constitutive degradation rates are different for
67	IkBa:RelA:p52→	6.00E-05	bound form in the	free and NF- κ B-bound I κ B α . A change in the
	RelA:p52		cytoplasm and nucleus	rate of degradation for bound $I\kappa B\alpha$ is likely to
			(GR-20)	impact the free protein degradation rate.
				Accordingly, they were grouped together. As
				discussed, Kristensen et. al., (22) have
				demonstrated that constitutive protein
				degradation rates are unlikely to vary among
				different cell-types. So this parameter group
				was excluded.
25	IkBb →	2.07E-01 min ⁻¹	signal independent,	excluded; justification for grouping and
(1		C 00E 05	constitutive	exclusion is similar to GR-20.
04		6.00E-05 min ⁻¹	degradation of $I\kappa B\beta$ in	
	RelA:p50		its free or NF-κB	
68	IkBb:RelA:p52 →	6.00E-05	bound form in the	
	RelA:p52	min ¹	cytoplasm and nucleus	
			(GR-21)	
26	IkBe →	1.73E-01	signal independent,	excluded; justification for grouping and
			constitutive	exclusion is similar to GR-20.
65	IkBe:RelA:p50→	6.00E-05 min ⁻¹	degradation of IkBE in	
	RelA:p50		its free or NF-κB	
69	IkBe:RelA:p52→	6.00E-05	bound form in the	
	RelA:p52	min ⁻¹	cytoplasm and nucleus	
	Ter ipo 2		(CP 22)	
			(GK-22)	
27	IkBd →	2.40E-04	signal independent,	excluded; justification for grouping and
		min ⁻		

66 70	IkBd:RelA:p50→ RelA:p50 IkBd:RelA:p52→	6.00E-05 min ⁻¹ 6.00E-05	constitutive degradation of IκBδ in its free or NF-κB	exclusion is similar to GR-20.
	RelA:p52		cytoplasm and nucleus (GR-23)	
28	p100 →	4.00E-01 min ⁻¹	signal independent, constitutive degradation of unbound p100 in the cytoplasm and nucleus (GR-24)	excluded ; justification for grouping and exclusion is similar to GR-20.
29	RelA:p50 →	2.40E-04 min ⁻¹	signal independent, constitutive	excluded; GR-25 represents signal- independent, constitutive degradation of
71	IkBa:RelA:p50→ IkBa	6.00E-05 min ⁻¹	degradation of RelA:p50 dimer in its	RelA:p50 either in its free form or in IKB bound complexes. Justification for grouping
72	IkBb:RelA:p50→ IkBb	6.00E-05 min ⁻¹	free or IκB bound form, in the cytoplasm and nucleus (GR-25)	and exclusion is similar to GR-20.
73	IkBe:RelA:p50→ IkBe	6.00E-05 min ⁻¹		
74	IkBd:RelA:p50→ IkBd	6.00E-05 min ⁻¹		
30	RelA:p52 →	2.40E-04 min ⁻¹	signal independent,	excluded; GR-26 represents signal-
75	IkBa:RelA:p52 → IkBa	6.00E-05 min ⁻¹	degradation of RelA:p52 dimer in its	RelA:p52 either in its free form or in IKB bound complexes. Justification for grouping
76	IkBb:RelA:p52→ IkBb	6.00E-05 min ⁻¹	free or IKB bound form, in the cytoplasm and nucleus (GR-26)	and exclusion is similar to GR-20.
77	IkBe:RelA:p52→ IkBe	6.00E-05 min ⁻¹		

78	IkBd:RelA:p52→ IkBd p100+p100→IkBd	6.00E-05 min ⁻¹ 8.10E-02 nM ⁻¹ .min ⁻¹	p100 homo- oligomerization reaction (GR-27)	excluded ; Fundamental biophysical characteristics intrinsic to p100 determine its oligomerization rate and this parameter is unlikely to change in different cell-types (19).
47	RelA:p50 + IkBa → IkBa:RelA:p50	3.00E-02 nM ⁻¹ .min ⁻¹	association between RelA NF-κB dimers	excluded; Fundamental biophysical characteristics intrinsic to the interacting molecules determine their association rate
51	RelA:p52 + IkBa →IkBa:RelA:p52	1.50E-03 nM ⁻¹ .min ⁻¹	cytoplasm and nucleus (GR-28)	parameters and these parameters are unlikely to change in different cell-types (19).
48	RelA:p50 + IkBb → IkBb:RelA:p50	3.00E-02 nM ⁻¹ .min ⁻¹	association between RelA NF-κB dimers and μββ in the	excluded ; Justification for grouping and exclusion is similar to GR-28.
52	RelA:p52 + IkBb →IkBb:RelA:p52	1.50E-03 nM ⁻¹ .min ⁻¹	cytoplasm and nucleus (GR-29)	
49	RelA:p50 + IkBe → IkBe:RelA:p50	3.00E-02 nM ⁻¹ .min ⁻¹	association between RelA NF-κB dimers and IκBε in the	excluded ; Justification for grouping and exclusion is similar to GR-28.
53	RelA:p52 + IkBe →IkBe:RelA:p52	1.50E-03 nM ⁻¹ .min ⁻¹	cytoplasm and nucleus (GR-30)	
50	RelA:p50 + IkBd → IkBd:RelA:p50	3.00E-02 nM ⁻¹ .min ⁻¹	association between RelA NF-κB dimers and IκBð in the	excluded ; Justification for grouping and exclusion is similar to GR-28.
54	RelA:p52 + IkBd →IkBd:RelA:p52	1.50E-03 nM ⁻¹ .min ⁻¹	cytoplasm and nucleus (GR-31)	

104 55	IkBd⇒p100+p100 IkBa:RelA:p50 →RelA:p50 + IkBa	1.20E-05 min ⁻¹ 6.00E-05 min ⁻¹	dissociation of IκBð/p100 homo- oligomer (GR-32) dissociation of the complex composed of ReIA NF-κB dimers	 excluded; Fundamental biophysical characteristics intrinsic to p100 determine the dissociation rate of p100 oligomer and this parameter is unlikely to change in different cell-types (19). excluded; GR-33 represents dissociation rates of NF-κB-IκBα complexes. Fundamental biophysical characteristics of the interacting
59	RelA:p52 + IkBa	6.00E-05	and IκBα in the cytoplasm and nucleus (GR-33)	molecules determine these rate parameters and these parameters are unlikely to change in different cell-types (19).
56	IkBb:RelA:p50 →RelA:p50 + IkBb	6.00E-05 min ⁻¹	dissociation of the complex composed of RelA NF-κB dimers	excluded ; Justification for grouping and exclusion is similar to GR-33.
60	IkBb:RelA:p52 →RelA:p52 + IkBb	6.00E-05 min ⁻¹	and IκBβ in the cytoplasm and nucleus (GR-34)	
57	IkBe:RelA:p50 →RelA:p50 + IkBe	6.00E-05 min ⁻¹	dissociation of the complex composed of RelA NF-кB dimers	excluded ; Justification for grouping and exclusion is similar to GR-33.
61	IkBe:RelA:p52 →RelA:p52 + IkBe	6.00E-05 min ⁻¹	and IκBε in the cytoplasm and nucleus (GR-35)	
58	IkBd:RelA:p50 →RelA:p50 + IkBd	6.00E-05 min ⁻¹	dissociation of the complex composed of RelA NF-кB dimers	excluded ; Justification for grouping and exclusion is similar to GR-33.
60	IkBd:RelA:p52 →RelA:p52 + IkBd	6.00E-05 min ⁻¹	and IKBô in the cytoplasm and nucleus (GR-36)	
31	IkBa + NEMO-	1.95E-03 nM ⁻¹ .min ⁻¹	NEMO-IKK2	included; GR-37 represents IKK2 mediated

	IKK2		mediated degradation	degradation of IrBa in its free or NE rB
			of free or RelA:p50 or	hound form Quantitative as well as cuslitative
79	NEMO-IKK2	1.95E-03	Baldur 52 hound lyBa	bound form. Quantitative as wen as quantative
	+IkBa:RelA:p50	nivi .min	KerA.p32 bound iKB0	variations in receptor and adapter complexes in
	→RelA:p50		in the cytoplasm. (GR -	different cell-types impart changes in the
			37)	signal strength (19) , which is expected to alter
82	NEMOIKK2	1.95E-03 nM ⁻¹ .min ⁻¹		IKK2 mediated degradation rates. As such, the
	+IkBa:RelA:p52			variation in IKK2 mediated degradation rate of
	→RelA:p52			a given $I\kappa B$ species is independent of the
				complex in which the $I\kappa B$ species belongs.
				Accordingly, all three IKK2 mediated $I\kappa B\alpha$
				degradation rates were grouped together.
32	IkBb + NEMO-	5.00E-04 nM ⁻¹ .min ⁻¹	NEMO-IKK2	included; GR-38 represents IKK2 mediated
	ІКК2→		mediated degradation	degradation of $I\kappa B\beta$ in its free or NF- κB
80	NFMO-IKK2	5.00F-04	of free or RelA:p50 or	bound form, justification for grouping and
	+IkBb:RelA:p50	nM ⁻¹ .min ⁻¹	RelA:p52 bound IκBβ	inclusion is similar to GR-37.
			in the cytoplasm.	
	- KeiA.p50		(GR-38)	
83	NEMO-IKK2+	5.00E-04		
	IkBb:RelA:p52	nM ⁻¹ .min ⁻¹		
	→RelA:p52			
33	IkBe + NEMO-	5.00E-04 nM ⁻¹ .min ⁻¹	NEMO-IKK2	included; GR-39 represents IKK2 mediated
	ІКК2→		mediated degradation	degradation of IkB ϵ in its free or NF-kB bound
81	NEMO-IKK2	5.00F-04	of free or RelA:p50 or	form, justification for grouping and inclusion
01	+IkBe·RelA:p50	nM ⁻¹ .min ⁻¹	RelA:p52 bound IkBe	is similar to GR-37.
	► PolA:p50		in the cytoplasm. (GR-	
	- KeiA.p50		39)	
84	NEMO-IKK2+	5.00E-04	1	
	IkBe:RelA:p52	nM ⁻¹ .min ⁻¹		
	→RelA:p52			
34	IkBd+NIK-IKK1→	1.00E-03 nM ⁻¹ .min ⁻¹	NIK-IKK1 mediated	included; GR-40 represents NIK-IKK1
85	NIK-IKK1	1.00F-03	degradation of free or	mediated degradation of $I\kappa B\delta$ in its free or NF-
		nM ⁻¹ .min ⁻¹	RelA:p50 or RelA:p52	
1		1	1	

	+IkBd:RelA:p50		bound IkBô in the	κB bound form. Quantitative as well as
	→RelA:p50		cytoplasm. (GR-40)	qualitative variations in receptor and adapter
				complexes in different cell-types impart
86	NIK-IKK1	1.00E-03 nM ⁻¹ .min ⁻¹		changes in the signal strength (19) , which is
	+lkBd:RelA:p52 →			expected to be reflected in NIK-IKK1
	RelA:p52			mediated degradation rates. As such, the
				variation in NIK-IKK1 mediated degradation
				rate of $I\kappa B\delta$ is independent of the complex in
				which $I\kappa B\delta$ belongs. Accordingly, all three
				NIK-IKK1 mediated IkBô degradation rates
				were grouped together.
105	NIK-IKK1	4.20E-03 nM ⁻¹ .min ⁻¹	NIK-IKK1 mediated	included; GR-41 represents NIK-IKK1
	+p100 → RelA:p52		RelA:p52 generation	mediated generation of RelA:p52 dimer from
			from p100 (GR-41)	p100. Justification for inclusion is similar to
				GR-40.
35	IkBa → IkBan	9.00E-02	nuclear import of free	excluded; GR-42 represents nuclear import of
		min ⁻¹	IкBs or RelA NF-кB	various NF-KB/IKB species. Cell-type specific
36	IkBb → IkBbn	9.00E-03 min ⁻¹	dimers or IкB-NF-кВ	changes in the abundance and biochemical
37	IkBe → IkBen	4.50E-02	complexes (GR-42)	composition of nuclear pores has been
		min ⁻¹		observed (49). These variations are expected to
38	IkBd → IkBdn	4.50E-02 min ⁻¹		affect nuclear import rates (grouped together)
39	RelA:p50 →	5.40E+00	-	of various NF-KB/IKB complexes similarly.
	RelA:p50n	min ⁻¹		However, prior modeling analyses confirmed
	-			that these parameters are not rate limiting (19)
87	IkBa:RelA:p50→	2.70E-01 min ⁻¹	-	and therefore were excluded from the global
	IkBa:RelA:p50n			sensitivity analysis.
00	IIrDh, Dal Am 50	2 70E 02	-	
00		2.70E-02 min ⁻¹		
	IkBb:ReIA:p50n			
89	IkBe:RelA:p50→	1.30E-01	_	
	IkBe:RelA:p50n	min ⁻¹		
90	IkBd:RelA:p50→	2.70E-01 min ⁻¹		

	IkBd:RelA:p50n			
40	RelA:p52 →	5.40E+00		
	RelA:p52n			
91	IkBa:RelA:p52→	2.70E-01	-	
	IkBa:RelA:p52n	min [.]		
92	IkBb:RelA:p52→	2.70E-02		
	IkBb:RelA:p52n			
93	IkBe:RelA:p52→	1.30E-01	_	
	IkBe:RelA:p52n			
94	IkBd:RelA:p52→	2.70E-01		
	IkBd:RelA:p52n			
41	IkBan → IkBa	1.20E-02 min ⁻¹	nuclear export of free	excluded; GR-43 represents nuclear export of
42	IkBbn → IkBb	1.20E-02	IкBs or RelA NF-кВ	various NF-KB/IKB species, justification for
		min ⁻¹	dimers or ΙκΒ-NF-κΒ	grouping and inclusion is similar to GR-42.
43	IkBen → IkBe	1.20E-02 min ⁻¹	complexes (GR-43)	
44	IkBdn → IkBd	1.20E-02 min ⁻¹		
45	RelA:p50n	1.80E-03	-	
	→RelA:p50			
95	IkBa:RelA:p50n→	8.30E-01		
	IkBa:RelA:p50			
96	IkBb:RelA:p50n→	4.10E-01	-	
	IkBb:RelA:p50			
97	IkBe:RelA:p50n→	4.10E-01	-	
	IkBe:RelA:p50			
98	IkBd:RelA:p50n→	4.10E-01	-	
	IkBd:RelA:p50	min ⁻¹		

46	RelA:p52n → RelA:p52	1.80E-03 min ⁻¹
99	IkBa:RelA:p52n→ IkBa:RelA:p52	8.30E-01 min ⁻¹
100	IkBb:RelA:p52n→ IkBb:RelA:p52	4.10E-01 min ⁻¹
101	IkBe:RelA:p52n→ IkBe:RelA:p52	4.10E-01 min ⁻¹
102	IkBd:RelA:p52n→ IkB2:RelA:p52	4.10E-01 min ⁻¹

Model species	Nomenclature	Location
IkBα	IkBa	cytoplasm
IkBαn	IkBan	nucleus
<i>Nfkbia</i> mRNA	tIkBa	cytoplasm
IkBβ	IkBb	cytoplasm
IkBβn	IkBbn	nucleus
<i>Nfkbib</i> mRNA	tIkBb	cytoplasm
IkBε	IkBe	cytoplasm
IkBεn	IkBen	nucleus
<i>Nfkbie</i> mRNA	tIkBe	cytoplasm
IkBδ	IkBd	cytoplasm
IkBδn	IkBdn	nucleus
p100	p100	cytoplasm
<i>Nfkb2</i> mRNA	tp100	cytoplasm
RelA:p50	RelA:p50	cytoplasm
RelA:p50n	RelA:p50n	nucleus
NFkB1 mRNA	tNFkB1	cytoplasm
RelA:p52	RelA:p52	cytoplasm
RelA:p52n	RelA:p52n	nucleus
IkBa:RelA:p50	IkBaN:RelA:p50	cytoplasm
IkBa:RelA:p50n	IkBa:RelA:p50n	nucleus
IkBβ: RelA:p50	IkBb:RelA:p50	cytoplasm
IkBβ:RelA:p50n	IkBb:RelA:p50n	nucleus
IkBe:RelA:p50	IkBe:RelA:p50	cytoplasm
IkBe:RelA:p50n	IkBe:RelA:p50n	nucleus
IkBô:RelA:p50	IkBd:RelA:p50	cytoplasm
IkB\delta:RelA:p50n	IkBd:RelA:p50n	nucleus
IkBa:RelA:p52	IkBa:RelA:p52	cytoplasm
IkBa:RelA:p52n	IkBa:RelA:p52n	nucleus
IkBβ:RelA:p52	IkBb:RelA:p52	cytoplasm
IkBβ:RelA:p52n	IkBb:RelA:p52n	nucleus
IkBe:RelA:p52	IkBe:RelA:p52	cytoplasm
IkBe:RelA:p52n	IkBe:RelA:p52n	nucleus
IkBô:RelA:p52	IkBd:RelA:p52	cytoplasm
IkB8:RelA:p52n	IkBd:RelA:p52n	nucleus
NEMO-IKK2	NEMO-IKK2	cytoplasm
NIK-IKK1	NIK-IKK1	cytoplasm

Table S2. List of notations used in the model to describe different biochemical species.