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Supplementary Information

Device structure of the entire device
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fig. S1. Cross-sectional device schematic image. Cross-sectional schematic of the device

with explanation of adhesive materials to assemble each device component.



Electrical resistance change of Ag electrodes over the kirigami structure
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fig. S2. Electrical resistance change of Ag electrodes over the kirigami structure.
Normalized resistance change (AR/Ro) of printed Ag electrode over the kirigami structure
as a function of stretchability (AL/Lo), where AR is resistance change from original
resistance of Ro= ~6.12 Q before stretching the substrate and AL is length change by
stretching the kirigami structure shown in an inset photo from the original length of Lo =

~23 mm.



Detail structure of electrical contacts between sheets
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fig. S3. Schematic image of reusable and disposable sensor sheets. Schematic of
reusable and disposable sensor sheets with detailed structure of EGaln chamber and

electrical contacts.



Disposable and reusable sheets
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fig. S4. Images of disposable and reusable sensor sheets. (A) Disposable sheet integrated
with temperature sensor, ECG sensor, and three-axis acceleration sensor. (B) Photograph of
Kirigami structure, which allows significant stretching of the device. (C) Photograph of the
disposable device sheet attached directly onto the skin. (D) Reusable sheet integrated with

CNT-TFTs and UV sensor. Photographs of (E) backside and (F) topside of the acceleration

sensor.



Electrical stability of EGaln and Ag contact under motion
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fig. S5. Electrical stability of EGaln and Ag contact under motion. Resistance change

of EGaln and Ag contact under several motions. The device was attached on a chest.

Photos inside the figure are just images of the actions for the measurements. R and Rg are

resistance during the actions and original resistance before actions.



Mechanical inflexibility of acceleration sensor region

In order to precisely measure acceleration induced by human motion, it is crucial that this
sensor is mechanically inflexible: flexibility in the sensor region can alter the output signal
as the strain values across the device differ when the structure is affected by different
bending conditions — ultimately, this interferes with the signal generated by external
movement. To address the challenge of integrating an inflexible component into an
otherwise flexible device, we designed the structure of the acceleration sensor such that the
flexible PET sheets sandwiched silicone rubber layers, as displayed in Fig. 2C: by taking
the different values of Young’s modulus for silicone rubber (760 kPa) and PET (2.45 GPa)
into consideration, the design allows inflexibility in the acceleration sensing region, despite
the fact that the device is mounted on mechanically flexible polymer materials (fig. S3).
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fig. S6. FEM simulation. The acceleration sensor possesses a PET/Silicon rubber/PET
structure, which is mechanically inflexible (i.e. no stress under bending) due to strain

engineering of the structure that exploits the different Young’s moduli of the materials.



Resistance changes of the acceleration sensor
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fig. S7. Frequency dependence of three-axis acceleration sensor. Resistance change at
different acceleration frequencies measured from the strain Sensor #1 component of the

acceleration sensor when acceleration is applied to (A) Z-, (B) Y-, and (C) X-axis.
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Cycle test of electrical contacts of EGaln between a reusable sheet and a disposable

sheet
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fig. S8. Cycle test of electrical contacts between EGaln and Ag electrodes. (A)
Schematic image of cycle test of electrical contact between EGaln and Ag electrodes. (B)
Measured electrical circuit diagram. (C) Resistance change ratio as a function of attaching
cycles, where Ro and AR are the initial resistance of the circuit as shown in (B) and the

resistance change from Ro after cycling test.



Response time of the UV sensor with different ZnO network film thickness
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fig. S9. Thickness dependence of UV sensors. Response time of the UV sensors with
different thickness of the ZnO network films when (A) UV light is exposed and (B) UV
light is turned off.



On-resistance of CNT-TFT under UV exposure
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fig. S10. TFT characteristics under UV exposure. Real-time on-resistance change of
CNT-TFT at Ves=—3V and Vps =—1 V under UV light exposure. Ro and R are on-

resistance before UV exposure and after UV exposure, respectively.



Circuit diagram of ECG monitoring
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fig. S11. Circuit diagram of ECG recording. Circuit diagram of ECG monitoring used in

this study. The filters are a high pass filter of 0.003 Hz, a low pass filter of 13.3 Hz, a high
pass filter of 0.003 Hz, and a band rejection filter for 60 Hz.



Measurement setup
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fig. S12. Measurement setup. Real-time health monitoring setup. ECG sensor was
connected to an oscilloscope via amplifiers and filters to detect small signal of heartbeat.
Outputs of the acceleration sensor, temperature sensor, and UV sensor were recorded by a
semiconductor analyzer. For switching of CNT-TFTs, a function generator was used to
apply gate bias for the both CNT-TFTs.



Skin temperature measured by the printed sensor and a commercially available IR
sensor
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fig. S13. Skin temperature measurements using the printed temperature sensor and
an IR sensor.



UV detection under sunlight generated by a solar simulator
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fig. S14. UV detection under simulated sunlight. UV power detection under ~50

mW/cm? sunlight generated by a solar simulator.



