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Supplementary Note
note S1. Analytical model for mass effect on acceleration.

Since the vibration tests involve a rigid platform and a thin (0.3 mm) layer of Ecoflex between

the sensor and the platform, effects of damping can be ignored. The system can thus be described
by

m + kx = F )

where m is the total mass, K is the stiffness of the vibration generator and F is the force applied

on the system. The applied force takes the form of a square wave, according to
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where A is a constant related to the amplitude of the force, H (t/T ) = {1 >0 is Heaviside step

function, and T is the half period of the square wave. By Fourier analysis, the force function can

be written as

F-al > lsin(n—ﬂt) (3)
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By combining Egs. (1) and (3), the solution can be obtained as

N 1 . ( nxt
=4A 4
" n;,a,snﬁ[k—m(nﬂ/T)ZTm( T ) @

And the acceleration is

o0

K= _AA nrz . (mzt} 5
g n;s,snﬂ[sz—m(nn)z}sm T ®)




The acceleration times the sensitivity of the accelerometer (0.3V/g) gives the corresponding

voltage measured in experiment.

note S2. Effect of low-modulus device substrate.

To demonstrate the advantages of soft epidermal electronics over conventional rigid devices, an
idealized 2D vibration model was established using commercial finite element software
ABAQUS. A schematic illustration of this model is in fig. S11. The accelerometer (red box) of
mass 213.6 mg was placed at the middle of the device substrate, and the mass object (yellow
box) of mass 6.8 g was placed either at the middle, on the left or on the right. Two types of
substrate with different stiffnesses were studied to demonstrate the key effects. One substrate
was made of relatively rigid acrylic plate, with Young’s modulus 3.1 GPa, thickness 5 mm and
mass 9.39 g. The other substrate was made of Ecoflex, with Young’s modulus 69 kPa, thickness
5 mm and mass 7.8 g. The width of the substrate was 40 mm, and the size of the mass and
accelerometer were assumed to be 5 mm by 5 mm. Force input was assumed to take the form of
a sine function as the excitation, with a frequency 100 Hz. Modal dynamic method and
frequency analysis were combined to simulate the system vibration. The substrate, mass objects
and the accelerometer were modeled by 2D planner element CPE4R. Four cases were
investigated: without the mass object, and with the mass object on top of the accelerometer, on
the left edge, and on the right edge of the substrate. From the simulation results, when there is no
mass object, the acceleration detected by the accelerometer is similar for both hard and soft
substrates. When mass objects are introduced to the hard substrate, the acceleration amplitude
decreases significantly, without sensitivity to the location of these objects. However, for soft
substrate, placing the mass on top of the accelerometer significantly decreases the acceleration
detected by the accelerometer, but placing it elsewhere has negligible effect. Here, the soft
substrate decouples mechanical loading at one location from mechanical vibration at another

location.
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fig. S1. Device design and circuit layouts. (A) Cross sectional schematic illustration with
thickness and modulus information. (B) Circuit layout of the device before and after chip
bonding. (C) Equivalent circuit diagram.
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fig. S2. Computed x-ray tomography images of the internal structures of the accelerometer

chip. (A) 3-dimensional Micro-CT image viewed from the top. (B) Micro-CT image viewed

from the side.
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fig. S3. Schematic illustration of capacitive ECG electrodes and demonstrations of their

reusability. (A) Structural layout of a capacitive electrode on skin during sensing. (B) Alcohol
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prep wipes can be used to clean the electrodes for repetitive use.
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fig. S4. Adhesion strength of Silbione to the skin and dependence of its thickness on spin

speed. (A) Silicone-skin adhesion test results. (B) Film thickness as a function of spin-coating

speed with fitted curve. (C) Scanning electron micrographs of the cross-sections of measured

samples. (D) The table shows the measured film thicknesses at corresponding spin coating

speeds.
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fig. S5. Measurements of water vapor transmission loss. (A) Experimental set-up. (B)
Calculated water-vapor transmission weight change for films of Silbione. (C) Results of the

experiment on Day 6. (D) Table for the calculation of water-vapor transmission loss on all films.
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fig. S6. Cell viability assay and cytotoxicity test. (A) Immunofluorescent images of the device
on Day 1, (B) Day 3, and (C) Day 5. (D) Results of cell viability assay.
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fig. S7. Mechanical simulation of the circuit interconnects during biaxial stretching. (A)
Optical images of circuit interconnect under pre-stretching and bi-axial 25% stretching. (B)

Mechanical simulation results with an enlarged image of the structures that experience the
largest strain.
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fig. S8. Stress-strain response of the device. (A) Dynamic mechanical analysis of the device

with and without commercial chips bonded.
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fig. S9. Vibration response of the accelerometer chip without analog filters. (A) Vibration

response with time interval between discrete testing frequencies. Vibration response at (B) 1 Hz,
(C) 5 Hz, (D) 10 Hz, (E) 50 Hz, (F) 100 Hz, (G) 250 Hz, (H) 500 Hz.
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fig. S10. Comparison of experimental and simulation results on the effect of mass, tissue
thickness, and signal frequency on measurement response. Spectral power distribution as a
function of mass and tissue thickness at (A) 300 Hz, (B) 400 Hz, (C) 480 Hz.
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fig. S11. Schematic illustration and measurement results of the vibration model to capture
the effects of device modulus. (A) Schematic illustration of the simulation setup. (B) Simulation
results at three mass locations; O corresponds to the case of zero added mass.
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fig. S12. Application of an epidermal mechano-acoustic—electrophysiological device on the
neck. (A) Optical images of sensor placed over the carotid artery. (B) Simultaneous
measurement of ECG and pulse signal during rest. (C) Simultaneous measurement of ECG and
pulse signal after exercise.
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fig. S13. Echocardiogram characterization results on a patient with tricuspid and
pulmonary regurgitation. (A) Echocardiography in the top and ECG at the bottom for tricuspid

valve measurement, and (B) pulmonary valve measurement.
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fig. S14. Acoustic signals from aortic, pulmonary, tricuspid, and mitral sites of a patient
with irregular heartbeat. A representative measurement from an 82 year-old female patient

with diagnosed mitral and tricuspid regurgitation at (A) aortic site, (B) tricuspid site, (C)
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fig. S15. Experiment on LVAD pump thrombosis. (A) Image of a HM Il LVAD device. (B)
Image of a 500 pL blood clot injected into the circulation loop.
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fig. S16. Data captured using a reported device and a commercial microphone in quiet and
noisy environments. Data recorded in a quiet (A) and (B) noisy environment. Data recorded

with a commercial microphone in a (C) quiet and (D) noisy environment.
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fig. S17. Process loop for a speech-based human-machine interface. Process flow of human

machine interface system based on speech sensing.
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fig. S18. Demonstration of noise reduction in time domain speech data. (A) Speech data from
the epidermal device before noise reduction. (B) Significant improvement in S/N ratio results
from application of the noise reduction algorithm. (C) Spectrogram of the speech data before
noise reduction, and (D) after noise reduction. (E) Confusion Matrix of the training data before

noise reduction, and (F) after noise reduction.
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fig. S19. Authentication application. Vibration signal shows distinguishing features when

writing (A) letter “R” in normal style, (B) letter “R” in Roman style, (C) writing “L” with hand

lift, (D) without hand life, and (E) signatures.
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fig. S20. Wireless sensing of BioStamp. (A) Wireless speech sensing can be achieved by
placing BioStamp on the throat surface. (B) Chest location for wireless heart sound sensing. (C)
Normal heart sound (S1 and S>) captured by the BioStamp. Speech data in EMG acquired by the
BioStamp when speaking (D) “Left”, (E) “Right”, and (F) “Down”. Speech data in vibration
acquired by the BioStamp when speaking (G) “Left”, (H) “Right”, and (1) “Down”.



movie S1. Movie of speech recording in a quiet environment.

movie S2. Movie of speech recording in a noisy environment.

movie S3. Movie of speech recognition and voice control of a Pac-Man game with real-time

machine learning and signal classification.





