Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/2/11/e1501662/DC1

Supplementary Materials for

KDM5 lysine demethylases are involved in maintenance of 3'UTR length

Lauren P. Blair, Zongzhi Liu, Ramon Lorenzo D. Labitigan, Lizhen Wu, Dinghai Zheng, Zheng Xia, Erica L. Pearson, Fathima I. Nazeer, Jian Cao, Sabine M. Lang, Rachel J. Rines, Samuel G. Mackintosh, Claire L. Moore, Wei Li, Bin Tian, Alan J. Tackett, Qin Yan

> Published 18 November 2016, *Sci. Adv.* **2**, e1501662 (2016) DOI: 10.1126/sciadv.1501662

This PDF file includes:

- fig. S1. Mass spectrometry results.
- fig. S2. Western blot analysis of TAP-tagged proteins.
- fig. S3. Materials for in vitro RNA binding experiments.
- fig. S4. Loss of Jhd2 does not affect processing or polyA-dependent termination in vitro.
- fig. S5. RT-qPCR and Western blot analysis for Jhd2 mRNA and protein used in *PMA1* studies.
- fig. S6. RT-qPCR and Western blot analysis for Jhd2 mRNA and protein used in *KlCYC1* studies.
- fig. S7. Metagene plots of H3K4me3 levels.
- Legends for tables S1 to S3
- table S4. Plasmids used in this study.
- table S5. Yeast strains used in this study.
- table S6. Primers used in this study.

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/2/11/e1501662/DC1)

- table S1 (Microsoft Excel format). Jhd2 bound peaks identified using SICER.
- table S2 (Microsoft Excel format). Pcf11 bound peaks identified using SICER.
- table S3 (Microsoft Excel format). List of genes with APA after Jhd2 deletion.

fig. S1. Mass spectrometry results. (**a**) Representation of proteins found in our mass spectrometric analysis of proteins affinity purifying with Jhd2. MS/MS confirmation of Yra1 (**b**) and Hrp1 (**c**).

fig. S2. Western blot analysis of TAP-tagged proteins. TAP-tagged protein levels of input and co-affinity purifications from (**a**) TAP-tagged strains overexpressing FLAG-Jhd2 without (left panel) and with (right panel) RNase treatment or (**b**) Hrp1-TAP or wild-type strains expressing endogenous levels of Jhd2. Membranes were blotted with HRP-conjugated rabbit IgG which recognizes the Protein A portion of the TAP tag. N.D., not determined.

b. BIO-GACGACUAGCCAUGCCAUUG

a.

C.	Program	Reference	Secondary Structure
	RNAfold	Nucleic Acids Res. 2008 July 1; 36(Web Server issue): W70–W74.	none
	Sfold	Nucleic Acids Res. 32 (Web Server issue): W135-41.	none
	RNA structure	BMC Bioinformatics, 11:129. (2010).	none
d.			
	JmjN PHD	JmjC	

fig. S3. Materials for in vitro RNA binding experiments. (**a**) Verification of recombinant 6xHIS-Jhd2 purification using anti-Jhd2 and anti-HIS antibodies. (**b**) Sequence of RNA 20-mer used in in vitro RNA binding assays. (**c**) Three different RNA secondary structure prediction programs show no secondary structure of the random 20-mer. (**d**) Predicted domain structure of Jhd2 contains a PHD finger, which could bind nucleic acids.

fig. S4. Loss of Jhd2 does not affect processing or polyA-dependent termination in vitro. (a) *In vitro* cleavage reactions with extracts from wild-type cells or jhd2 deleted cells. Unreacted precursor RNA is shown in the lane marked (Pre), and the positions of precursor and the upstream cleavage product indicated on the right side. The downstream cleavage product is rapidly degraded because it lacks a protective cap structure and is not visible in these reactions.
(b) *In vitro* transcription reactions with extracts from wild-type cells or jhd2 deleted cells and the DNA templates diagrammed at the top of the panel. The signal derived from upstream cassettes (84 and 100 nt) is compared to that from the downstream cassettes (120, 131, and 145 nt) to determine the effect of a polyA site. Regardless of whether the extract was made from cells with or without *JHD2*, less RNA was recovered from cassettes located downstream of the polyA site (lanes marked "+").

fig. S5. RT-qPCR and Western blot analysis for Jhd2 mRNA and protein used in PMA1

studies. Jhd2 mRNA (a, b) and protein (c) levels in the indicated strains.

fig. S6. RT-qPCR and Western blot analysis for Jhd2 mRNA and protein used in *KlCYC1*

studies. mRNA (a) and protein (b) levels of Jhd2 overexpressing strains.

fig. S7. Metagene plots of H3K4me3 levels. Metagene plots of H3K4me3 levels near the TSSs (left), proximal polyA sites (middle), or distal polyA sites (right) of (a) all genes, genes showing
(b) lengthened transcripts and (c) shortened transcripts. RPM, reads per million mapped reads.

table S1. Jhd2 bound peaks identified using SICER. TSS and TTS denote the start and end of ORFs, respectively. Provided as an excel file.

table S2. Pcf11 bound peaks identified using SICER. TSS and TTS denote the start and end of ORFs, respectively. Provided as an excel file.

table S3. List of genes with APA after Jhd2 deletion. Fold change represents the distal ratio in Jhd2 deletion stain versus that in wild-type strain. Provided as an excel file.

table S4. Plasmids used in this study.

Name	Description	Reference
LPB054	pAD4M	Nat Struct Mol Biol. 2007 Mar;14(3):243-5.
LPB055	pAD4M-FLAG-JHD2 (WT)	Nat Struct Mol Biol. 2007 Mar;14(3):243-5.
LPB056	pAD4M-FLAG-JHD2H427A	Nat Struct Mol Biol. 2007 Mar;14(3):243-5.
LPB057	KICYC1	Yeast 2001; 18:1347-1355
LPB059	pRSF Duet	Novagen
LPB062	JHD2 in LPB059	this study

table S5. Yeast strains used in this study. Plasmids introduced to the yeast strains are listed in table S4.

Name	Genotype	Reference
LBY001	MATa JHD2::TAP-HIS3 his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	Open Biosystems
LBY017	MATa PCF11::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	Open Biosystems
LBY024	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	BY4741
LBY025	MATa leu2-3, 112 ura3-52 can1-100 ade2-1 his3-11 trp1-11 bar1 Δ	Yeast, 2005; 22(1):43-56
LBY028	MATa ura3-1 trp1D ade2-1 leu2-3,112 his3-11,15 pcf11-2	Mol. Cell. Biol., 1997, 17(3) 1102-1109.
LBY029	MATα jhd2::KAN his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0	Open Biosystems
LBY038	MAT α his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0	BY4742
LBY039	MATα jhd2::KAN his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0 [LPB054]	This study
LBY040	MATα jhd2::KAN his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0 [LPB055]	This study
LBY041	MAT α jhd2::KAN his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0 [LPB056]	This study
LBY060	MATa JHD2::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY061	MATa PBP1::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY062	MATa MPE1::TAP-HIS3 his3∆1 leu2∆0 met15∆0 ura3∆0 [LPB055]	This study
LBY063	MATa PAP1::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY064	MATa FIP1::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY065	MATa YTH1::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY067	MATa CFT2::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY068	MATa REF2::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY069	MATa RNA14::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY070	MATa PFS2::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY071	MATa RNA15::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY072	MATa PTI1::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY073	MATa PCF11::TAP-HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [LPB055]	This study
LBY075	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0; CLP1::TAP::HIS3MX6	Mol. Cell. Biol., 2012, 32(7) 1321-1331.
LBY076	MATa his3∆1 leu2∆0 met15∆0 ura3∆0; HRP1::TAP::HIS3MX6	Mol. Cell. Biol., 2012, 32(7) 1321-1331.
LBY081	MATa leu2-3, 112 ura3-52 can1-100 ade2-1 his3-11 trp1-11 bar1Δ [LPB054+LPB057]	This study
LBY082	MATa leu2-3, 112 ura3-52 can1-100 ade2-1 his3-11 trp1-11 bar1Δ [LPB055+LPB057]	This study
LBY083	MATa leu2-3, 112 ura3-52 can1-100 ade2-1 his3-11 trp1-11 bar1Δ [LPB056+LPB057]	This study
LBY090	MATα ura3-52 his3 Δ 200 leu2 Δ 1 trp1 Δ 63 met15 Δ 0 lys2-128 gal10 Δ 56	RNA (2007), 13:1756-1764
LBY091	MATα ura3-52 his3 Δ 200 leu2 Δ 1 trp1 Δ 63 met15 Δ 0 lys2-128 gal10 Δ 56 [LPB054]	This study
LBY092	MATα ura3-52 his3 Δ 200 leu2 Δ 1 trp1 Δ 63 met15 Δ 0 lys2-128 gal10 Δ 56 [LPB055]	This study
LBY093	MATα ura3-52 his3 Δ 200 leu2 Δ 1 trp1 Δ 63 met15 Δ 0 lys2-128 gal10 Δ 56 [LPB056]	This study
LBY094	MATα his3D1 leu2Δ0 lys2Δ0 ura3Δ0 [LPB054]	This study

table S6. Primers used in this study.

Name	Reference/Comments	Sequence
JHD2 F	this study	TCGCAAGACAAATGATCCAA
JHD2 R	this study	CCGTTTCCGACGATACAAGT
scGAPDH F	this study	TCTTCCATCTTCGATGCTTCCGCT
scGAPDH R	this study	TAAGCCTTGGCAACGTGTTCAACC
PMA1-1 F	Mol Cell, 33, 215-226	TGTATTTCCTAATGCGGCACT
PMA1-1 R	Mol Cell, 33, 215-226	CCCGAAAGGCATATGGATAACA
PMA1-2 F	Mol Cell, 33, 215-226	TCGACGACGAAGACAGTGATA
PMA1-2 R	Mol Cell, 33, 215-226	CCGTAAGATGGGTCAGTTTGTAAAT
PMA1-4 F	Mol Cell, 33, 215-226	ACTGCTCAAACTGTTAGCGA
PMA1-4 R	Mol Cell, 33, 215-226	TTCCTTAGCAATACCAACAGCATCA
PMA1-5 F	Mol Cell, 33, 215-226	GTCTGGATCTGGTCTATCGG
PMA1-5 R	Mol Cell, 33, 215-226	CGTTCATCAATCTGTCAAAGGC
PMA1-6 F	Mol Cell, 33, 215-226	GCCGCTTATTTCCTACTAGAGTT
PMA1-6 R	Mol Cell, 33, 215-226	GGTGTGTGTGTGGATAAAATATTAGAATG
PMA1-7 F	Mol Cell, 33, 215-226	TGCAAGATGTTTGTATAGAGGGAC
PMA1-7 R	Mol Cell, 33, 215-226	ATAGAAGAGCTGGGCAGGA
KICYC-CDS F	this study	AACGTCTTGTGGGATGAACA
KICYC-CDS R	this study	тсөтттстөтсстттссттс
KICYC-3UTR F	this study	ACACCGTGAGTTTTGCCTTA
KICYC-3UTR R	this study	TGATCTTTTGATCTTTATGACGAAG
YNL289W 1F	this study, for CDS	ATTCTGCTCAAGTCGCCAGT
YNL289W 1R	this study, for CDS	GCAGAGTGGGTGTGTAGACG
YNL289W 2F	this study, for 3'UTR	TGCAGAAGTTTTCTCTCAGTGG
YNL289W 2R	this study, for 3'UTR	CCGGTTCGCACTACGATACT
YHR103W 1F	this study, for CDS	GTTCCAGCGAGATGCTTCCTA
YHR103W 1R	this study, for CDS	TCCAGCCCTTGACCTTCCTAA
YHR103W 2F	this study, for 3'UTR	GTTTCCCAATTGTTGCTGGT
YHR103W 2R	this study, for 3'UTR	CCATAAAATTCTTCCGCATGT
YHR215W 1F	this study, for CDS	GGTGGTTCTGGGCCATACTA

YHR215W 1R	this study, for CDS	AAGACAATGCTCCGCTGAAT	
YHR215W 2F	this study, for 3'UTR	TTCCTTGCCTTACTTTTCTTATTATTT	
YHR215W 2R	this study, for 3'UTR	AAACAAAATGCGTTTATGACAGTT	
hGAPDH F	JBC, 288:9408-9417	CGAGATCCCTCCAAAATCAA	
hGAPDH R	JBC, 288:9408-9417	GTCTTCTGGGTGGCAGTGAT	
CCND1 1F	this study	AACTACCTGGACCGCTTCCT	
CCND1 1R	this study	CCACTTGAGCTTGTTCACCA	
CCND1 2F	this study	ACGCTTTGTCTGTCGTGATG	
CCND1 2R	this study	GTGCAACCAGAAATGCACAG	
KDM5B F	JBC, 288:9408-9417	CCATAGCCGAGCAGACTGG	
KDM5B R	JBC, 288:9408-9417	GGATACGTGGCGTAAAATGAAGT	
KDM5A F	Cell Reports 6, 868–877	CCATAGCCGAGCAGACTGG	
KDM5B R	Cell Reports 6, 868–877	GGATACGTGGCGTAAAATGAAGT	
DICER1 1F	Nature, 510: 412–416	CTCATTATGACTTGCTATGTCGCCTTG	
DICER1 1R	Nature, 510: 412–416	CACAATCTCACATGGCTGAGAAG	
DICER1 2F	Nature, 510: 412–416	TGCTTTCCGCAGTCCTAACTATG	
DICER1 2R	Nature, 510: 412–416	AATGCCACAGACAAAAATGACC	