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(available at advances.sciencemag.org/cgi/content/full/2/11/e1601661/DC1) 

 

 movie S1 (.mov format). Motility of LSH100 WT (helical) H. pylori swimming in 

PGM (15 mg/ml) imaged with 100× lens, 200 fps. 

 movie S2 (.mov format). Flagellar bundle visualization. 

 movie S3 (.mov format). Motility of LSH100 Δcsd6 (rod mutant) H. pylori 

swimming in PGM (15 mg/ml) imaged with 100× lens, 100 fps. 

 movie S4 (.mov format). Motility of LSH100 WT (helical) H. pylori swimming in 

BB10 imaged with 100× lens, 200 fps. 

 movie S5 (.mov format). Motility of LSH100 Δcsd6 (rod mutant) H. pylori 

swimming in BB10 imaged with 40× lens, 30 fps. 
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movie S1. Motility of LSH100 WT (helical) H. pylori swimming in PGM (15 mg/ml) imaged 

with 100× lens, 200 fps. 

 

movie S2. Flagellar bundle visualization. This is movie S1 with increased contrast. 

 

movie S3. Motility of LSH100 Δcsd6 (rod mutant) H. pylori swimming in PGM (15 mg/ml) 

imaged with 100× lens, 100 fps. 

 

movie S4. Motility of LSH100 WT (helical) H. pylori swimming in BB10 imaged with 100× 

lens, 200 fps. Flagellar junction can be identified as more rapid changes in contrast at one end 

than the other during the time interval 2.500s to 2.700s. The end with the more rapid change in 

contrast is identified as the flagellar junction, and in some frames a very faint outline of flagella 

can be seen.  

 

movie S5. Motility of LSH100 Δcsd6 (rod mutant) H. pylori swimming in BB10 imaged with 

40× lens, 30 fps. Flagellar junction can be identified as more rapid changes in contrast at one end 

than the other during the time interval 0.198s to 1.089s. 

 

 

 

 

 



 

fig. S1. Head and flagellar junction trajectories of LSH100 helical H. pylori swimming in 

PGM (15 mg/ml) (movie S1). Red line is the trajectory of head point and blue line of the 

flagellar junction point. The trajectory pitch was obtained for both head and flagellar junction 

trajectories by de-trending the trajectories and measuring the distance between peaks for the 

entire track. As expected, the head and flagellar junction pitches are the same, PT = 1.5 ± 0.2 μm 

(the pitch is the average of the entire run and the error is the standard deviation). The trajectory 

radius is obtained by measuring the distance between the top and bottom envelope functions, 

Rhead = 0.45 ± 0.03 μm, Rjunction = 0.55 ± 0.06 μm (the radius is the average of the entire run and 

the error is the standard deviation). Inset: Example of definition of head and flagellar junction 

points. The head and flagellar junction points have to be defined for every frame because there is 

not a marker or feature in the bacterium’s images. The contour of the body (in black) was aligned 

and centered with CellTool [36]. The head (red) and flagellar junction points (blue) were defined 

as the contour points intercepting the line y = 0. CellTool [36] saves the original alignment angle 

and localization of center point thus the trajectory can be reconstructed. 



 

Numerical calculation methods 

Regularized Stokeslets. To investigate the swimming properties of a helical cell body driven by 

rotating helical flagella, we use the method of regularized Stokeslets (RSM) [46, 47]. The 

flagellar bundle is modeled as a single helical flagellum, so for convenience we refer to it as the 

flagellum in the rest of the Supplementary Materials. In this method the surface of the cell body 

and flagellum is discretized by regularized Stokeslets which are fundamental solutions to the 

Stokes equation for applied localized force distributions ϕ
ϵ
(𝐫) = 15ϵ4𝐟/[8π(r2 + ϵ2)7/2] that are 

smooth approximation for delta function. The small parameter ϵ controls the size of the 

distribution. The total flow velocity is  

 

                                      𝐯(𝐫) = ∑ 𝐒(𝐫 − 𝐫j)𝐟j
N
j=1  

(1) 

 

where f is the vector of localized force of each regularized Stokeslet, r is the position at which 

velocity is being calculated 𝐫j is the position of the Stokeslet, and Sij(𝐱) =
1

8πμ
(

δij(x2+2ϵ2)+xixj

(x2+ϵ2)
3
2  

)  

is the regularized Stokeslet which depends on cutoff parameter ϵ. 

 

To solve equation (1), we need to find localized forces of Stokeslets on the surface of the cell 

and flagellum. Using no-slip boundary conditions on the surface it is convenient to express the 

velocity at each point of the surface to the swimming velocity and rotation in body-fixed-frame 

of the swimmer. This relation can be written as  

 

                                      𝐯(𝐫𝐣) = 𝐕 + 𝛀 × 𝐫𝐣 + �̇�𝐣 (2) 



 

where V and Ω are swimming velocity and rotation vector respectively, rj  are the Stokeslet 

positions placed on material points of the surfaces in the body-fixed-frame, and  �̇�𝐣 are the 

velocity of the Stokeslets with respect to the body-fixed-frame. In our case, the flagellum is 

rotating relative to the cell body with relative rotational velocity of Ω, so rj is fixed for the 

positions on the cell body, but rotates for the flagellum. Thus �̇�𝐣  is the rotational velocity (�̇�𝐣 =

𝛀 × 𝐫𝐣)  of the flagellum and zero for the cell body. To find the six unknowns (components of 

velocity and rotation of the swimmer) in equation (2), we apply zero total force and torque 

conditions for a free swimmer in the fluid, ∑ 𝐟𝐣j = 0, and ∑ 𝐫𝐣 × 𝐟𝐣j = 0, which yields a linear 

system of equations in the body-fixed-frame that can be solved at each time step of flagellum 

rotation.  

 

We use as the origin of the body-fixed-frame the junction point of the body and flagellum, with 

x-axis along the center-line of the flagellum (Fig. 1). The flagellum rotates along this axis with 

constant rotational velocity Ω. Similar to work done by Hyon et al. [37], we only solve for one 

rotation of flagellum and record velocities and rotations in the local frame, because after one full 

rotation of the flagellum in the local frame its position with respect to the cell body will be same 

as the initial state and we can use results for first rotation of the flagellum to reproduce results for 

many other revolutions. By converting these data to the lab frame and integrating velocities we 

find the position of the swimmer in the lab frame, which traces a helical trajectory. Unless 

otherwise specified, we report the average swimming speed, which is the component of the 

instantaneous velocity along the direction of the rotation,Vs = 𝐕. �̂�b. 

 



Geometry used in calculations. The cell body is modeled as a standard helix with its centerline 

positions given by 

 

                𝐫(x) = x�̂� + RB cos(kx) �̂� + RB sin(kx) �̂�                (3) 

where k = 2π/PB is the wave number, RB is the helical radius and PB is the pitch of the cell body.  

The surface of the helix can be represented by the coordinates (x + H(x, ϕ), RB cos(kx) +

M(x, ϕ) , RB sin(kx) + N(x, ϕ)) where 0 ≤ ϕ ≤ 2π   is the polar coordinate for the body’s cross 

section orthogonal to the center-line at point x and H, M and N are some functions of x  and ϕ 

[60]. We discretize the helical surface by choosing points at intervals Δx and Δϕ in x and ϕ, 

respectively, such that the spacing between points (ΔSb) for the cross section and longitudinal 

directions of the helix is uniform. We also use two hemispherical caps for the ends of the helix to 

generate a closed body. To discretize the caps, we try to keep uniform spacing in circular cross 

sections and radial direction of the hemispheres close to the cell body spacing ΔSb. For the cell 

body geometry, we use the mean values for the pitch and helical radius while varying axial 

length, or mean values for the helical radius and axial length while varying pitch. The mean 

values are obtained from histogram of helical parameters previously obtained by Martinez et al. 

[28] using the cell outline software CellTool [36]. 

 

H. Pylori has multiple flagella at one end that bundle form a flagellar bundle during propulsion. 

In our model we treat this flagellar bundle as a single helix. We taper the bundle’s helical radius 

near the cell body [60, 61] and assume the centerline of the bundle is along the x axis so the 

equation of the centerline could be described by 

 



𝐫(x) = x�̂� + (1 − e
−(x

ke
⁄ )

2

 ) R (cos (
2π

P
 x) �̂�  + sin (

2π

P
 x) �̂�) 

(4) 

 

Here P is the pitch of the bundle and ke is the characteristic length of the tapering region and 

considered to be equal to ke= P/2π. To discretize the bundle surface, we first a discretize circular 

cross section with spacing ΔSf then sweep along the center-line creating discretized cross 

sections at the same spacing to place points on the entire surface. Finally, we add two discretized 

hemispherical caps to the ends of the flagellum. The helical properties of the flagellum are given 

in Table (2). 

 

Satisfying observed body rotation or constant torque constraints. The calculations are 

performed by prescribing a constant angular velocity of the flagellum relative to the cell 

body.  Given this relative rotation rate, both the cell body and flagellum rotation rate relative to 

the lab frame are determined by torque balance.  All three rotation rates are proportional to each 

other as well as to the swimming velocities.  To achieve an observed body rotation rate, we scale 

all the rotation rates and velocities by the same amount. Equivalently, we can present the 

calculated swimming speed result as the ratio V/Ωb as in Table 1.  For comparisons of swimming 

speeds between different cell body geometries, it is more realistic to consider that the flagellar 

motor is likely operating in the constant-torque regime of its angular velocity-torque curve. Thus, 

to present results for constant flagellar torque, all the results reported here are 

nondimensionalized using the flagellar torque, which can be obtained from the forces and 

positions of the regularized Stokeslets. 

 

Convergence. We performed convergence tests using regularized Stokeslets to validate the 

results. More Stokeslets on the surface results in more accuracy, but at the cost of computational 



efficiency. So we aim to use a reasonable number of Stokeslets to reduce costs while achieving 

acceptable accuracy for calculations.  In our convergence tests, we separately discretize the body 

and flagellum with different number of Stokeslets on each surface (Nbody, Nflagella, respectively). 

We checked that swimming speeds converged as Nbody, Nflagella are increased. In the reported 

results, we use Nflagella = 4312 and Nbody about 2000, for which the difference in results from our 

most accurate calculations using the largest numbers of Stokeslets is about 1.4%. 

 

Estimates of cell-body and flagellar thrust from a hydrodynamically decoupled model. In 

this model, we calculate resistance matrices for the head and flagellum separately using the RSM. 

The force and torque on the body (𝐅𝐛 and  𝐍𝐛) and flagellum (𝐅𝐟  and  𝐍𝐟) are expressed in terms 

of the resistance matrices as 

 

(
𝐅𝐟

𝐍𝐟
) = 𝐑f (

𝐕
𝛀f

) 

 
(5) 

(
𝐅𝐛

𝐍𝐛
) = 𝐑b (

𝐕
𝛀b

) 
(6) 

 

The origin for the resistance matrices is chosen to be the attachment point of the flagellum on the 

cell body, so V is the translational velocity of the attachment point, and Ωb and Ωf are the 

angular velocities of the cell body and flagellum, respectively, about the attachment point.   

Total hydrodynamic forces and torques are calculated by summing the forces and torques 

resulting from these resistance matrices 

 

(
𝐅
𝐍

) = 𝐑𝐛 (
𝐕

𝛀𝐛
) + 𝐑𝐟 (

𝐕
𝛀𝐛 + 𝛀

) (7) 



 

which ignores interactions between the flagellum and cell body. Applying the constant relative 

rotation rate between the flagellum and body yields   𝛀f =  𝛀b + 𝛀, and by enforcing the force- 

and torque-free constraints for the swimmer, we calculate the instantaneous velocity and body 

rotation rate   

 

(
𝐕

𝛀b
) = −(𝐑f + 𝐑b)−1𝐑f  (

𝟎
𝛀

)   
(8) 

 

As in the numerical calculations, the average swimming velocity is Vs = 𝐕. �̂�b. To assess the 

accuracy of this model, we first compare the swimming velocity calculated by the decoupled 

model to the numerical results including all hydrodynamic interactions previously presented in 

Figure 3A. Figure S2 shows the swimming speeds as a function of axial length for all three 

scenarios presented in Figure 3A, while the inset shows the error in swimming speed relative to 

the results of Figure 3A. The trends in swimming speeds are similar, and the decoupled model is 

within 20% accuracy for shorter helical cell bodies (axial length < 1 μm), and always within 

30% for the biological scenario of a right-handed cell body. Thus, although the decoupled model 

is not quantitatively accurate it is likely to capture the qualitative trends in swimming speeds. 

 

 



 

fig. S2. Swimming speed versus axial length, calculated by decoupled model.  Comparison to 

the results of Fig. 3A reveals the accuracy of the decoupled model.  Inset:  Percent error of the 

decoupled model relative to the results of Fig. 3A. 

 

Using the decoupled model, it is possible to estimate the total drag (DT), and the thrust from the 

cell body (Tb) and flagellum (Tf) separately 

 

𝐃𝐓 = (𝐑b + 𝐑f) (
𝐕
𝟎

) 

 
(9) 

𝐓𝐛 = 𝐑b (
𝟎

𝛀b
) 

 
(10) 

𝐓𝐟 = 𝐑f (
𝟎

𝛀b + 𝛀
) (11) 



Power and efficiency. Figure S3 shows the power (P = N 𝛀) expended by the bacterial 

geometries explored in Fig. 3A. Note the scale of the vertical axis implies that the helicity of the 

body has little (<3%) effect on power expended.  From the power, we can calculate the 

swimming efficiency 

 

η =
V2Rtrans

P
   (12) 

 

where P is the total power, and V and Rtrans are the swimming velocity and translational 

resistance of the cell body in the swimming direction. The resulting efficiency for the geometries 

in Fig. 3A are shown in the inset to fig. S3. Comparing the left-handed, right-handed and rod-

shaped cell bodies at any fixed axial length, and keeping in mind that the power is little affected 

by the cell body geometry (fig. S3), we find that most of the change in swimming efficiency is 

accounted for by the corresponding difference in swimming velocities in Fig. 3A; for example, if 

the right-handed body is 10% faster than the straight body, then the efficiency is approximately a 

factor of 1.21 = 1.12 higher.   

 



 

fig. S3. Swimming power versus axial length for right- and left-handed helical cells and 

rod-shaped cell body. Inset: Swimming efficiency vs axial length for RH and LH helical cells 

and rod-shaped cell body. 

 

 


