Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/2/11/e1600844/DC1

Supplementary Materials for

Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration

William C. W. Chen, Zhouguang Wang, Maria Azzurra Missinato, Dae Woo Park, Daniel Ward Long, Heng-Jui Liu, Xuemei Zeng, Nathan A. Yates, Kang Kim, Yadong Wang

> Published 18 November 2016, *Sci. Adv.* **2**, e1600844 (2016) DOI: 10.1126/sciadv.1600844

This PDF file includes:

- Supplementary Materials and Methods
- fig. S1. Amputated zebrafish hearts and decellularization processes.
- fig. S2. Representative LV images of M- and B-mode echocardiography.
- fig. S3. Histological analysis of mouse hearts after zECM treatment.
- fig. S4. Fibrosis and chronic inflammation.
- fig. S5. Analysis of elastin within the infarct zone in zECM-treated hearts.
- fig. S6. Cardiomyocyte apoptosis.
- fig. S7. Cardiomyocyte proliferation at 6 weeks after MI.
- fig. S8. Echocardiographic analysis of cardiac function in control mice receiving myocardial saline injections and an intraperitoneal sham or DMSO injection with or without the ErbB2 inhibitor AG825 after AMI.
- fig. S9. c-kit⁺ cells do not express mast cell marker tryptase.
- table S1. zECM Protein Identification Probability.
- table S2. mECM Protein Identification Probability.
- table S3. Summary of detected proteins in zECM and mECM.
- table S4. Echocardiographic parameters of infracted mouse hearts following ECM treatment.
- table S5. Echocardiographic parameters of infracted mouse hearts following ECM treatment and ErbB2 inhibitor administration.

SUPPLEMENTARY MATERIALS

Supplementary Materials and Methods

Ventricular amputation and procurement of zebrafish hearts. To obtain healing zebrafish hearts, ventricular resection surgeries were performed as described by Poss et al (15). Briefly, zebrafish were anesthetized in Tricaine (ethyl 3-aminobenzoate methanesulfonate, i.e. MS-222, tricaine methanesulfonate, A-5040; Sigma-Aldrich, St. Louis, MO, USA) and placed dorsally in a humid sponge. A small incision (scalpel 0.15mm, Fine Science Tools, Foster City, CA, USA) was made to expose the ventricle and approximately 20% of the ventricular apex was microscopically removed using iridectomy scissors (Fine Science Tools). After the surgery, fish were returned to water and stimulated to breathe with air bubbles. At 3 days post amputation (3 dpa), methylene blue (an anti-fungal/bacterial agent) was added to the fish tank 1 hr before harvesting. Amputated zebrafish and age-matched uninjured counterparts were lethally anesthetized with Tricaine. Zebrafish were then dipped 3 times in 70% ethanol immediately before harvesting. The whole hearts were extracted with sterile tools and placed on a sterile plate under the dissection microscope. To accentuate the regenerating ventricular apex, only two-thirds of the ventricle (including the apex) was collected for the decellularization. Normal zebrafish ventricles were collected in the same manner (only apical two-thirds). Tools were sterilized with 70% ethanol between each fish. Collected ventricles were immediately washed 3 times in 4% Penicillin/Streptomycin/Amphotericin-B with 1% Gentamycin (P/S/A/G) solution and transported back to the laboratory. Approximately 50 to 60 ventricles were pooled together per batch to obtain sufficient materials for decellularization. All ventricles were washed extensively in 4%, 2%, and 1% gradient P/S/A/G solutions (two times each) in the biosafety cabinet before being subjected to the decellularization process.

Procurement of adult mouse ventricular tissues. Mice were sacrificed, immersed in 70% ethanol for 30 seconds, and wiped clean before removing hearts with two sets of sterile tools (one set for cutting the skin and opening the chest and another set for removing the heart). Collected hearts were immediately washed 3 times in 4% P/S/A/G solution and transported back to the laboratory. Left ventricles were then dissected out and finely chopped to <1 mm³ with sterile tools in the biosafety cabinet. All mouse ventricular pieces were washed extensively in 4%, 2%, and 1% gradient P/S/A/G solutions (two times each) before being subjected to the decellularization process.

Decellularization of cardiac ECM. Zebrafish ventricles and mouse ventricular pieces were carefully transferred to individually weighed, sterile 1.5 ml microcentrifuge tubes containing 1 ml 1% P/S/A/G solution. Tubes were centrifuged at 6,000 g for 3 minutes with careful removal of supernatants and then individually weighed to obtain the collective wet weights of samples. Tubes were subsequently replenished with 1 ml 1% P/S/A/G solution, vortexed to evenly distribute contents, parafilmed to seal

caps, and subjected to three freeze-thaw cycles by submerging in liquid nitrogen for 10 minutes and then completely thawing at 37°C in water bath. Alternatively tubes can be chilled with dry ice for at least 30 minutes or at -80°C for at least 1 hour per cycle before being completely thawed at 37°C in water bath. Tubes were centrifuged at 6,000 g for 3 minutes with careful removal of supernatants and replenished with 1 ml 1% P/S/A/G solution between each freeze-thaw cycle and then vortexed to ensure even distribution of contents before starting the next cycle. After three cycles, erythrocyte lysis was performed twice by adding 1 ml erythrolysis buffer (ELB) to resuspend contents, incubating for 20-30 minutes at room temperature, and centrifuging at 6,000 g for 3 minutes. Samples were then subjected to two more freeze-thaw cycles as described above with 1 ml 1% P/S/A/G solution. Samples were subsequently incubated with 250 U/ml deoxyribonuclease I (DNase I, 18047-019) and 25 U/ml ribonuclease A (RNase A, AM2274) at 37 °C for at least 1 hour (both from Life Technologies, Grand Island, NY, USA). Treatment with DNase I and RNase A was repeated after centrifugation at 6,000 g for 3 minutes and careful removal of the supernatant. After 2 rounds of DNA/RNA lysis, samples were washed three times with sterile 0.9% normal saline (Baxter Healthcare, Deerfield, IL, USA) and frozen at -80°C for 1 hour. Samples were then washed with 0.9% normal saline, centrifuged at 6,000 g for 3 minutes with complete removal of supernatants, and subjected to lyophilization for 72 hours in original tubes in a sterilized chamber. Immediately after lyophilization, tubes were individually weighed to obtain the collective dry weights of lyophilized products. Lyophilized samples were finely crushed and ground for 15-20 minutes into fine powders in original tubes placed in a liquid nitrogen-cooled mini mortar (H37260-0100; Bel-Art Products, Wayne, NJ, USA). Lyophilized powders were stored at -80°C for future use.

Preparation of cardiac ECM suspension and particle size measurement. Prior to applications, lyophilized cardiac ECM powders were weighed in a sterile container, resuspended in 0.9% normal saline, and sonicated in cool water for 15 min. Large particles were then removed by centrifugation at $300 \times g$. Cardiac ECM suspension was collected for immediate use or stored on dry ice for later use. Cardiac ECM particle size was measured by Zetasizer Nano ZS90 (Malvern, Worcestershire, UK) and reported as the mean from 25 measurements. Results were then averaged from measurements of three independent samples. For in vivo administration, 0.5 mg of lyophilized zECM or mECM powders was resuspended in 30 μ l of 0.9% normal saline, sonicated and centrifuged as described above, and transported on dry ice to the operating room prior to the administration.

Myocardial infarction model. The induction of myocardial infarction (MI) and intramyocardial injections have been performed as we previously reported (*59, 60*). In brief, after the induction of anesthesia with 4% isoflurane gas, mice were intubated and inhalationally anesthetized with 2% isoflurane gas throughout the surgery. MI was microscopically induced by permanent ligation of the left anterior descending coronary artery (LAD). Mice were then randomly assigned to one of the four

groups: hzECM, nzECM, mECM, or saline control. Five minutes after the induction of infarction, 30 μ l of zECM or mECM suspension was injected at three sites of the ischemic myocardium (center and two borders of the infarct; 10 μ l for each site). Control mice received injections of 30 μ l normal saline. The investigator who induced MI and performed injections was blinded to the content of the injectant. For ErbB2 inhibition in vivo, the ErbB2 inhibitor AG825 (sc-202045A; Santa Cruz Biotechnology, Dallas, TX, USA) was dissolved in dimethyl sulfoxide (DMSO) and intraperitoneally injected once at 5 mg/kg (20 to 25 μ l in volume) immediately after the cardiac ECM administration (*40, 41*). Control mice received a sham injection or an intraperitoneal injection of 25 μ l DMSO alone.

Echocardiography. Echocardiographic studies were performed by a blinded investigator repeatedly before surgery and at 5 days, 2 weeks, and 6 weeks after surgery to assess the cardiac function, as we previously described (60, 61). Briefly, mice were initially anesthetized with 2% isoflurane gas and subsequently maintained at 1-1.5% isoflurane gas throughout the echocardiographic study. Mice were then immobilized on a heated stage equipped with electrocardiography. Heart rate and respiratory rate were continuously monitored. The body temperature was maintained at 37°C. Echocardiographic parameters were measured using a high-frequency linear probe (MS400, 30 MHz) connected to a high-resolution ultrasound imaging system (Vevo 2100; FUJIFILM VisualSonics, Toronto, Ontario, Canada). M- and B-mode frames were acquired at a frame rate of 235 Hz during each scan. At least three independent M- and B-mode scans (300 frames per scan) were recorded respectively for each animal at each time point. End-systolic dimension (ESD) and end-diastolic dimensions (EDD) were determined from short axis images of the left ventricle using M-mode scan. Ten consecutive beats were measured from M-mode frames. Results were averaged. End-systolic area (ESA) and end-diastolic area (EDA) were measured from short-axis images of the LV using B-mode scan (minimum and maximum LV chamber area respectively). Functional parameters, including the LV fractional shortening (LVFS), LV fractional area change (LVFAC), and LV ejection fraction (LVEF), were determined as previously described (62, 63). Mice that died, displayed morphological/behavioral abnormality, or were sacrificed for histological analysis nefore 6 weeks post-injection were not included in echocardiographic studies.

3D post Amputation

Note: * For hzECM only

fig. S1. Amputated zebrafish hearts and decellularization processes. (A) Representative images of zebrafish hearts: (A) healthy, (B) 1-day, and (C) 3-day post amputation. Roughly 70% of the ventricular tissue (dotted lines), including the regenerating area in the amputated heart, is harvested.
(B) The work flow of production of decellularized zebrafish heart ECM. (C) DNA assay shows residual DNA contents in decellularized ECM: hzECM, nzECM, and mECM; results are normalized to DNA contained in normal zebrafish hearts by unit dry weight.

fig. S2. Representative LV images of M- and B-mode echocardiography. End-systolic dimension (ESD) and end-diastolic dimension (EDD) are indicated by yellow lines in (**A**). Dotted circles in (**B**) approximate the left ventricular wall at the end-diastole.

fig. S3. Histological analysis of mouse hearts after zECM treatment. (A) Representative H&E staining images of serially sectioned mouse hearts at 6 weeks post-MI. 1, 2, and 3 approximate the section level in the model heart (scale bars = 1 mm). (B) Analysis of the infarct size with H&E stained sections at level 1 (N = 4 per group). (C) Analysis of the left ventricular wall thickness with H&E stained sections at level 1 (N = 4 per group). **p<0.01, ***p<0.001 compared to mECM and saline; *p<0.05 hzECM vs nzECM). All quantitative data represent means ± SD.

fig. S4. Fibrosis and chronic inflammation. (A) Myocardial fibrosis at 6 weeks post-MI is revealed by Masson's trichrome stain in transverse sections of hearts injected with saline, mECM, nzECM, or hzECM (collagen in blue/purple, cardiac muscle in red; scale bars = 1 mm). (B) Detection of chronic phagocytic cell infiltration by anti-mouse CD68 immunohistochemistry at 6 weeks post-MI in transverse sections of hearts injected with saline, mECM, nzECM, or hzECM (CD68 in green; scale bars = 50 μ m).

fig. S5. Analysis of elastin within the infarct zone in zECM-treated hearts. Representative images show anti-elastin immunostaining (elastin in green and DAPI in blue) at the infarct zone in normal, saline control, mECM-, hzECM-, and nzECM-treated hearts. Quantification of the elastin content at the infarct zone indicates significantly more elastin is preserved in both hzECM- and nzECM-treated hearts. *p<0.05, **p<0.01, ***p<0.001, compared to saline and mECM. All quantitative data represent means ± SD.

fig. S6. Cardiomyocyte apoptosis. Dual immunofluorescent detection of cleaved caspase-3+/cTnT+ apoptotic cardiomyocytes at 3 days post-MI at the infarct area (cleaved caspase-3 in red, cTnT in green, and DAPI in blue; scale bars = 100 μ m).

fig. S7. Cardiomyocyte proliferation at 6 weeks after MI. (A) Dual immunofluorescent detection of cTnT+/Ki67+ cardiomyocytes at 6 weeks post-MI at the mid-infarct level of mouse left ventricles (scale bars = 50 μ m). Quantification of cTnT+/Ki67+ cardiomyocytes at the (B) infarct and (C) peri-infarct border zone. All *p*>0.05. All quantitative data represent means ± SD.

fig. S9. c-kit⁺ cells do not express mast cell marker tryptase. Dual immunofluorescent detection of c-kit (CD117) and tryptase at 3 days post-MI showed no c-kit+ cells expressing tryptase in zECM and control groups (CD117 in red, tryptase in green, and DAPI in blue; scale bars = 100 μm).

Supplemental Table S1_Danre							
Identified Protein	Gene	Accession	MW	nzEC	nzEC	hzEC	hzEC
	Name	#		M-1	M-2	M-1	M-2
143BA_DANRE 14-3-3 protein beta/alpha-A GN=ywhaba	ywhaba	Q5PRD0	28	88%		64%	100%
			kDa	(88%)		(64%)	(100%)
A2ARG7_DANRE Uncharacterized protein OS=Danio rerio GN=atp5ib	atp5ib	A2ARG7	8	100%	100%	100%	100%
PE=4 SV=2			kDa	(100%)	(100%)	(100%)	(100%)
A3KPR4_DANRE Histone H4 OS=Danio rerio GN=wu:fe37d09 PE=3	wu:fe37d09	A3KPR4	11	100%	100%	100%	62%
SV=1		(+2)	kDa	(100%)	(100%)	(100%)	(62%)
A4VAK4_DANRE Heat shock protein 1 OS=Danio rerio GN=hspb1 PE=2	GN=hspb1	A4VAK4	22	100%	100%	100%	100%
SV=1		(+1)	kDa	(100%)	(100%)	(100%)	(100%)
A8BBI6_DANRE Lrrc15 (Fragment) OS=Danio rerio GN=lrrc15 PE=2	GN=lrrc15	A8BBI6	58	91%	81%	100%	52%
SV=1			kDa	(91%)	(81%)	(100%)	(52%)
A8E5I7_DANRE Voltage-dependent anion channel 3 OS=Danio rerio	vdac3	A8E5I7	30	100%	100%	100%	100%
GN=vdac3 PE=2 SV=1		(+2)	kDa	(100%)	(100%)	(100%)	(100%)
A8WG85_DANRE Ckmt2 protein OS=Danio rerio GN=ckmt2 PE=2 SV=1	ckmt2	A8WG85	46	96%	66%	100%	68%
		(+1)	kDa	(96%)	(66%)	(100%)	(68%)
A8WGC6_DANRE ATP synthase subunit beta OS=Danio rerio GN=atp5b	atp5b	A8WGC6	55	100%	100%	100%	100%
		400204	kDa	(100%)	(100%)	(100%)	(100%)
A9C3Q4_DANKE Uncharacterized protein US=Danio rerio GN=atp2a2a	atp2a2a	A9C3Q4	115 1-De	100%			/6% (76%)
PE=2 SV=1	o oo daal	(+2)	KDa 71	(100%)	1000/	560/	(70%)
A9J152_DANKE Acadvi protein OS=Danio reno GN=acadvi $PE=2.5V=1$	acadvi	(+2)	/1 1/De	98% (08%)	100%	30% (56%)	80% (80%)
RODOE7 DANDE Uncharacterized protein OS-Danie ratio CN-emlel	omlo1	(+2) BODOE7		(98%)	100%	(30%)	(80%)
DE-2 SV-1	child I	DOROF	22 kDa	(100%)	(100%)	(100%)	(100%)
BOROK9 DANRE Uncharacterized protein OS-Danio rerio GN-sitch211-	sich211-	BUBUKO	10 KDa	(10070)	(10070)	99%	81%
103n10 5 PF-4 SV-1	103n10.5	DOROR	kDa			(99%)	(81%)
B3DFS9 DANRE Myosin heavy polypeptide 11 smooth muscle	myh11a	B3DES9	228			())/0)	99%
OS=Danio rerio GN=mvh11a PE=2 SV=1	mynrra	(+1)	kDa				(99%)
B3DJP9 DANRE Myosin, heavy polypeptide 6, cardiac muscle, alpha	mvh6	B3DJP9	223	100%	100%	100%	100%
OS=Danio rerio GN=myh6 PE=2 SV=1)		kDa	(100%)	(100%)	(100%)	(100%)
CHCH6 DANRE Coiled-coil-helix-coiled-coil-helix domain-containing	chchd6	Q63ZW2	28	100%	100%	98%	100%
protein 6, mitochondrial OS=Danio rerio GN=chchd6 PE=2 SV=1			kDa	(100%)	(100%)	(98%)	(100%)
COX2_DANRE Cytochrome c oxidase subunit 2 OS=Danio rerio GN=mt-	mt-co2	Q9MIY7	26	100%	100%	70%	100%
co2 PE=3 SV=1		-	kDa	(100%)	(100%)	(70%)	(100%)
E7EZX1_DANRE Histone H2A OS=Danio rerio GN=CR762436.4 PE=3	CR762436.4	E7EZX1	14	100%	100%	100%	100%
SV=1		(+4)	kDa	(100%)	(100%)	(100%)	(100%)
E7F1L7_DANRE Uncharacterized protein OS=Danio rerio	CU302436.1	E7F1L7	292		51%	100%	100%
GN=CU302436.1 PE=4 SV=1			kDa		(51%)	(100%)	(100%)

E7F5J9_DANRE Uncharacterized protein OS=Danio rerio GN=tnni1b	tnni1b	E7F5J9	21	100%	100%	100%	100%
PE=4 SV=1		(+2)	kDa	(100%)	(100%)	(100%)	(100%)
E7FAV6_DANRE Uncharacterized protein OS=Danio rerio	LOC564077	E7FAV6	57	100%	100%	54%	100%
GN=LOC564077 PE=4 SV=1			kDa	(100%)	(100%)	(54%)	(100%)
E7FES0_DANRE Uncharacterized protein OS=Danio rerio PE=4 SV=1		E7FES0	30	100%		98%	97%
			kDa	(100%)		(98%)	(97%)
E9QCD1_DANRE Uncharacterized protein OS=Danio rerio GN=fga PE=2	fga	E9QCD1	50			100%	100%
SV=1			kDa			(100%)	(100%)
E9QCG6_DANRE Uncharacterized protein OS=Danio rerio GN=col1a2	colla2	E9QCG6	127	100%	100%	100%	100%
PE=2 SV=1		(+1)	kDa	(100%)	(100%)	(100%)	(100%)
E9QG44_DANRE Uncharacterized protein OS=Danio rerio PE=3 SV=1		E9QG44	17		73%	78%	100%
			kDa		(73%)	(78%)	(100%)
E9QGR6_DANRE Uncharacterized protein OS=Danio rerio GN=tmod1	tmod1	E9QGR6	40		100%		
PE=4 SV=1			kDa		(100%)		
F1Q615_DANRE Uncharacterized protein OS=Danio rerio GN=mybpc3	mybpc3	F1Q615	144	55%	100%		99%
PE=2 SV=1			kDa	(55%)	(100%)		(99%)
F1Q766_DANRE Uncharacterized protein OS=Danio rerio GN=zgc:56085	zgc:56085	F1Q766	47	100%	100%	100%	100%
PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
F1Q9A0_DANRE Uncharacterized protein (Fragment) OS=Danio rerio	sorbs2a	F1Q9A0	141	100%	100%	100%	100%
GN=sorbs2a PE=4 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
F1QBP1_DANRE Uncharacterized protein OS=Danio rerio GN=myoz2b	myoz2b	F1QBP1	29	100%	89%	100%	100%
PE=4 SV=1			kDa	(100%)	(89%)	(100%)	(100%)
F1QDL1_DANRE Uncharacterized protein OS=Danio rerio GN=col1a1b	col1a1b	F1QDL1	137	100%	76%	95%	100%
PE=4 SV=1		(+1)	kDa	(100%)	(76%)	(95%)	(100%)
F1QG64_DANRE Histone H2B OS=Danio rerio GN=zgc:112234 PE=3	zgc:112234	F1QG64	15	100%	98%	100%	100%
SV=1			kDa	(100%)	(98%)	(100%)	(100%)
F1QJ99_DANRE Uncharacterized protein (Fragment) OS=Danio rerio	cox5ab	F1QJ99	17	100%	100%	100%	61%
GN=cox5ab PE=2 SV=1		(+1)	kDa	(100%)	(100%)	(100%)	(61%)
F1QJK4_DANRE Uncharacterized protein OS=Danio rerio GN=si:ch211-	si:ch211-	F1QJK4	196				100%
150d5.2 PE=4 SV=2	150d5.2		kDa				(100%)
F1QKG7_DANRE Uncharacterized protein OS=Danio rerio GN=tpm4a	tpm4a	F1QKG7	33	100%	100%	100%	100%
PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
F1QSE1_DANRE Uncharacterized protein OS=Danio rerio GN=vmhcl	vmhcl	F1QSE1	223	100%	100%	100%	100%
PE=2 SV=1		(+1)	kDa	(100%)	(100%)	(100%)	(100%)
F1R3F7_DANRE Uncharacterized protein OS=Danio rerio GN=si:ch1073-	si:ch1073-	F1R3F7	30	100%	100%	68%	85%
329n19.2 PE=4 SV=1	329n19.2	(+1)	kDa	(100%)	(100%)	(68%)	(85%)
F1R446_DANRE Uncharacterized protein OS=Danio rerio GN=spna2 PE=2	spna2	F1R446	285	100%	100%	100%	100%
SV=1			kDa	(100%)	(100%)	(100%)	(100%)
F1R6I1_DANRE Uncharacterized protein (Fragment) OS=Danio rerio	LOC402880	F1R6I1	20	100%	100%	100%	100%

GN=LOC402880 PE=4 SV=1		(+1)	kDa	(100%)	(100%)	(100%)	(100%)
F1R8U0_DANRE Uncharacterized protein OS=Danio rerio	zgc:153629	F1R8U0	48	100%	100%	100%	100%
GN=zgc:153629 PE=3 SV=1	U	(+1)	kDa	(100%)	(100%)	(100%)	(100%)
F1R8W3_DANRE Uncharacterized protein OS=Danio rerio GN=desma	desma	F1R8W3	56	100%	100%	100%	100%
PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
F1RBH3_DANRE Uncharacterized protein OS=Danio rerio GN=chchd6b	chchd6b	F1RBH3	26	100%			51%
PE=4 SV=1		(+1)	kDa	(100%)			(51%)
H9GYI1_DANRE Uncharacterized protein (Fragment) OS=Danio rerio	zgc:101560	H9GYI1	21	100%	100%	100%	100%
GN=zgc:101560 PE=4 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
HBB2_DANRE Hemoglobin subunit beta-2 OS=Danio rerio GN=ba2 PE=1	ba2	Q90485	16	60%		100%	100%
SV=3			kDa	(60%)		(100%)	(100%)
K2C8_DANRE Keratin, type II cytoskeletal 8 OS=Danio rerio GN=krt8	krt8	Q6NWF6	58	100%	100%	100%	100%
PE=1 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
LAMC1_DANRE Laminin subunit gamma-1 OS=Danio rerio GN=lamc1	lamc1	Q1LVF0	176	100%	100%	88%	100%
PE=2 SV=2			kDa	(100%)	(100%)	(88%)	(100%)
MYG_DANRE Myoglobin OS=Danio rerio GN=mb PE=2 SV=3	mb	Q6VN46	16	100%	100%	100%	100%
			kDa	(100%)	(100%)	(100%)	(100%)
Q08BA1_DANRE ATP synthase subunit alpha OS=Danio rerio GN=atp5a1	atp5a1	Q08BA1	60	100%	100%	100%	100%
PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q1RLV5_DANRE Uncharacterized protein (Fragment) OS=Danio rerio	slmapa	Q1RLV5	50			64%	100%
GN=slmapa PE=2 SV=1			kDa			(64%)	(100%)
Q2YDR5_DANRE Actinin, alpha 2 OS=Danio rerio GN=actn2 PE=2 SV=1	actn2	Q2YDR5	103	100%			47%
			kDa	(100%)			(47%)
Q3YAA0_DANRE Integrin beta OS=Danio rerio GN=itgb1b PE=2 SV=1	itgb1b	Q3YAA0	88	100%	75%		100%
			kDa	(100%)	(75%)		(100%)
Q4JHL7_DANRE Voltage-dependent anion channel 2 OS=Danio rerio	vdac2	Q4JHL7	30	100%	100%	100%	100%
GN=vdac2 PE=2 SV=1		(+1)	kDa	(100%)	(100%)	(100%)	(100%)
Q4VBU7_DANRE Cytochrome c oxidase subunit Vaa OS=Danio rerio	cox5aa	Q4VBU7	16	100%	100%	100%	100%
GN=cox5aa PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q4VBV1_DANRE Cytochrome b-c1 complex subunit 7 OS=Danio rerio	uqcrb	Q4VBV1	13	100%	100%	99%	80%
GN=uqcrb PE=3 SV=1			kDa	(100%)	(100%)	(99%)	(80%)
Q58XP5_DANRE Fibronectin 1b OS=Danio rerio GN=fn1b PE=2 SV=1	fn1b	Q58XP5	276				100%
			kDa				(100%)
Q5BJA2_DANRE Uncharacterized protein OS=Danio rerio GN=ndufa5	ndufa5	Q5BJA2	13	100%	51%	100%	100%
PE=4 SV=1			kDa	(100%)	(51%)	(100%)	(100%)
Q68EI6_DANRE Cyc1 protein (Fragment) OS=Danio rerio GN=cyc1 PE=2	cyc1	Q68EI6	33	100%	100%	100%	100%
SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q6DEH8_DANRE Uncharacterized protein OS=Danio rerio GN=sh3bgr	sh3bgr	Q6DEH8	21	98%	94%		100%
PE=2 SV=1			kDa	(98%)	(94%)		(100%)

Q6DGK4_DANRE Zgc:92880 OS=Danio rerio GN=zgc:92880 PE=2 SV=1	zgc:92880	Q6DGK4	16			95%	100%
	C	(+1)	kDa			(95%)	(100%)
Q6DRD1_DANRE ATP synthase oligomycin sensitivity conferral protein	atp50	Q6DRD1	22	100%	100%	100%	100%
OS=Danio rerio GN=atp5o PE=2 SV=1	-	-	kDa	(100%)	(100%)	(100%)	(100%)
Q6IQ59_DANRE Ubiquinol-cytochrome c reductase core protein II	uqcrc2b	Q6IQ59	48	100%	100%	100%	100%
OS=Danio rerio GN=uqcrc2b PE=2 SV=1	•		kDa	(100%)	(100%)	(100%)	(100%)
Q6IQR3_DANRE Actin, alpha, cardiac muscle 1a OS=Danio rerio	actc1a	Q6IQR3	42	100%	100%	100%	100%
GN=actc1a PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q6NSN3_DANRE Ubiquinol-cytochrome c reductase core protein I	uqcrc1	Q6NSN3	52	98%	98%	98%	100%
OS=Danio rerio GN=uqcrc1 PE=2 SV=1		(+1)	kDa	(98%)	(98%)	(98%)	(100%)
Q6NYE1_DANRE Fibrinogen, B beta polypeptide OS=Danio rerio GN=fgb	fgb	Q6NYE1	54			100%	100%
PE=2 SV=1			kDa			(100%)	(100%)
Q6NYV3_DANRE Uncharacterized protein OS=Danio rerio GN=h1f0	h1f0	Q6NYV3	21	100%	100%	100%	100%
PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q6P0T0_DANRE NADH dehydrogenase (Ubiquinone) Fe-S protein 8,	ndufs8a	Q6P0T0	24	100%	100%	84%	92%
(NADH-coenzyme Q reductase) OS=Danio rerio GN=ndufs8a PE=2 SV=1			kDa	(100%)	(100%)	(84%)	(92%)
Q6PC77_DANRE ATP synthase, H+ transporting, mitochondrial F0	atp5h	Q6PC77	18	100%	100%	100%	100%
complex, subunit d OS=Danio rerio GN=atp5h PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q6PEI6_DANRE Aconitase 2, mitochondrial OS=Danio rerio GN=aco2	aco2	Q6PEI6	85	100%	100%	81%	100%
PE=2 SV=1			kDa	(100%)	(100%)	(81%)	(100%)
Q6PFS4_DANRE Inner membrane protein, mitochondrial (Mitofilin)	immt	Q6PFS4	83	100%	100%	100%	100%
OS=Danio rerio GN=immt PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q6TNQ9_DANRE Succinate dehydrogenase complex, subunit A,	sdha	Q6TNQ9	73	54%	100%	73%	97%
flavoprotein (Fp) OS=Danio rerio GN=sdha PE=2 SV=1			kDa	(54%)	(100%)	(73%)	(97%)
Q6VYM3_DANRE Natriuretic peptide OS=Danio rerio GN=nppa PE=3	nppa	Q6VYM3	12			79%	100%
SV=1			kDa			(79%)	(100%)
Q6ZM23_DANRE Uncharacterized protein OS=Danio rerio GN=cox6c	сохбс	Q6ZM23	8	98%	100%	100%	100%
PE=2 SV=1			kDa	(98%)	(100%)	(100%)	(100%)
Q7T3F0_DANRE Tropomyosin 4 OS=Danio rerio GN=tpm4a PE=2 SV=1	tpm4a	Q7T3F0	29	57%	85%		100%
			kDa	(57%)	(85%)		(100%)
Q7ZSY4_DANRE Cardiac troponin T OS=Danio rerio GN=tnnt2a PE=2	tnnt2a	Q7ZSY4	34	100%	100%	100%	100%
SV=1		(+2)	kDa	(100%)	(100%)	(100%)	(100%)
Q7ZUP6_DANRE Isocitrate dehydrogenase [NADP] OS=Danio rerio	idh2	Q7ZUP6	50	100%	100%	61%	100%
GN=idh2 PE=2 SV=1			kDa	(100%)	(100%)	(61%)	(100%)
Q7ZVG7_DANRE Fibrinogen, gamma polypeptide OS=Danio rerio	fgg	Q7ZVG7	49			100%	100%
GN=fgg PE=2 SV=1			kDa			(100%)	(100%)
Q7ZVX2_DANRE ATPase, Na+\/K+ transporting, beta 1a polypeptide	atp1b1a	Q7ZVX2	35	100%	100%	100%	100%
OS=Danio rerio GN=atp1b1a PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q7ZYY3_DANRE Heat shock protein 9 OS=Danio rerio GN=hspa9 PE=2	hspa9	Q7ZYY3	74	91%			100%

SV=1			kDa	(91%)			(100%)
Q800V7_DANRE Cardiac troponin C OS=Danio rerio GN=tnnc1a PE=2	tnnc1a	Q800V7	18	100%	100%	100%	100%
SV=1		-	kDa	(100%)	(100%)	(100%)	(100%)
Q801M3_DANRE Myosin light chain 2 Mlc2a OS=Danio rerio GN=myl7	myl7	Q801M3	19	100%	100%	100%	100%
PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q803B0_DANRE Heat shock 60kD protein 1 (Chaperonin) OS=Danio rerio	hspd1	Q803B0	61	100%	100%	100%	100%
GN=hspd1 PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q804G9_DANRE Annexin OS=Danio rerio GN=anxa2a PE=2 SV=1	anxa2a	Q804G9	38			100%	100%
			kDa			(100%)	(100%)
Q8JHI0_DANRE Solute carrier family 25 alpha, member 5 OS=Danio rerio	slc25a5	Q8JHI0	33	100%	100%	100%	100%
GN=slc25a5 PE=2 SV=1			kDa	(100%)	(100%)	(100%)	(100%)
Q9DGL6_DANRE ATPase, Na+/K+ transporting, alpha 1 polypeptide	atp1a1	Q9DGL6	113	97%	100%		100%
OS=Danio rerio GN=atp1a1 PE=2 SV=1			kDa	(97%)	(100%)		(100%)
Q9PTR4_DANRE Alpha-cardiac actin OS=Danio rerio GN=actc1a PE=2	actc1a	Q9PTR4	42			100%	
SV=1			kDa			(100%)	
Q9W6T5_DANRE Lamin B2 OS=Danio rerio GN=lmnb2 PE=2 SV=1	lmnb2	Q9W6T5	66		99%	100%	100%
			kDa		(99%)	(100%)	(100%)

Note: The percentage in the table indicates the identification probability of the specified protein.

Supplemental Table S2_Mouse					
Identified Protein	Gene Name	Accession #	MW	mECM-1	mECM-2
A2A513_MOUSE Keratin, type I cytoskeletal 10 OS=Mus	Krt10	A2A513	57	100%	100%
musculus GN=Krt10 PE=3 SV=1		(+3)	kDa	(100%)	(100%)
A3KGU7_MOUSE Spectrin alpha chain, non-erythrocytic 1	Sptan1	A3KGU7	285	100%	48% (48%)
OS=Mus musculus GN=Sptan1 PE=2 SV=1	-	(+1)	kDa	(100%)	
ACADV_MOUSE Very long-chain specific acyl-CoA	Acadvl	P50544	71	67% (67%)	100%
dehydrogenase, mitochondrial OS=Mus musculus GN=Acadvl PE=1 SV=3			kDa		(100%)
ACON_MOUSE Aconitate hydratase, mitochondrial OS=Mus	Aco2	Q99KI0	85		100%
musculus GN=Aco2 PE=1 SV=1		-	kDa		(100%)
ACTN2_MOUSE Alpha-actinin-2 OS=Mus musculus GN=Actn2	Actn2	Q9JI91	104	100%	100%
PE=1 SV=2		-	kDa	(100%)	(100%)
ACTS_MOUSE Actin, alpha skeletal muscle OS=Mus musculus	Acta1	P68134	42	100%	95% (95%)
GN=Acta1 PE=1 SV=1			kDa	(100%)	
ADT1_MOUSE ADP/ATP translocase 1 OS=Mus musculus	Slc25a4	P48962	33	100%	100%
GN=Slc25a4 PE=1 SV=4			kDa	(100%)	(100%)
ALBU_MOUSE Serum albumin OS=Mus musculus GN=Alb	Alb	P07724	69	100%	100%
PE=1 SV=3			kDa	(100%)	(100%)
ANXA2_MOUSE Annexin A2 OS=Mus musculus GN=Anxa2	Anxa2	P07356	39		100%
PE=1 SV=2			kDa		(100%)
AT1A1_MOUSE Sodium/potassium-transporting ATPase subunit	Atp1a1	Q8VDN2	113	100%	100%
alpha-1 OS=Mus musculus GN=Atp1a1 PE=1 SV=1			kDa	(100%)	(100%)
AT1B1_MOUSE Sodium/potassium-transporting ATPase subunit	Atp1b1	P14094	35	84% (84%)	100%
beta-1 OS=Mus musculus GN=Atp1b1 PE=1 SV=1			kDa		(100%)
ATP5I_MOUSE ATP synthase subunit e, mitochondrial OS=Mus	Atp5i	Q06185	8 kDa	91% (91%)	100%
musculus GN=Atp5i PE=1 SV=2					(100%)
ATPA_MOUSE ATP synthase subunit alpha, mitochondrial	Atp5a1	Q03265	60	100%	100%
OS=Mus musculus GN=Atp5a1 PE=1 SV=1			kDa	(100%)	(100%)
ATPB_MOUSE ATP synthase subunit beta, mitochondrial	Atp5b	P56480	56	100%	100%
OS=Mus musculus GN=Atp5b PE=1 SV=2			kDa	(100%)	(100%)

ATPD_MOUSE ATP synthase subunit delta, mitochondrial	Atp5d	Q9D3D9	18	96% (96%)	100%
OS=Mus musculus GN=Atp5d PE=1 SV=1			kDa		(100%)
ATPO_MOUSE ATP synthase subunit O, mitochondrial OS=Mus	Atp50	Q9DB20	23	100%	100%
musculus GN=Atp5o PE=1 SV=1			kDa	(100%)	(100%)
B1ASQ2_MOUSE Apolipoprotein O OS=Mus musculus	Apoo	B1ASQ2	23	38% (38%)	100%
GN=Apoo PE=4 SV=1		(+1)	kDa		(100%)
B1B0C7_MOUSE Basement membrane-specific heparan sulfate	Hspg2	B1B0C7	469	49% (49%)	100%
proteoglycan core protein OS=Mus musculus GN=Hspg2 PE=2		(+1)	kDa		(100%)
SV=1					
CALX_MOUSE Calnexin OS=Mus musculus GN=Canx PE=1	Canx	P35564	67		100%
SV=1			kDa		(100%)
CAV1_MOUSE Caveolin-1 OS=Mus musculus GN=Cav1 PE=1	Cav1	P49817	21	100%	100%
SV=1			kDa	(100%)	(100%)
CD36_MOUSE Platelet glycoprotein 4 OS=Mus musculus	Cd36	Q08857	53	100%	100%
GN=Cd36 PE=1 SV=2			kDa	(100%)	(100%)
CH60_MOUSE 60 kDa heat shock protein, mitochondrial	Hspd1	P63038	61		100%
OS=Mus musculus GN=Hspd1 PE=1 SV=1			kDa		(100%)
CHCH3_MOUSE Coiled-coil-helix-coiled-coil-helix domain-	Chchd3	Q9CRB9	26	100%	100%
containing protein 3, mitochondrial OS=Mus musculus			kDa	(100%)	(100%)
GN=Chchd3 PE=1 SV=1					
CISY_MOUSE Citrate synthase, mitochondrial OS=Mus	Cs	Q9CZU6	52	41% (41%)	100%
musculus GN=Cs PE=1 SV=1			kDa		(100%)
CO1A1_MOUSE Collagen alpha-1(I) chain OS=Mus musculus	Col1a1	P11087	138	100%	100%
GN=Col1a1 PE=1 SV=4			kDa	(100%)	(100%)
CO1A2_MOUSE Collagen alpha-2(I) chain OS=Mus musculus	Col1a2	Q01149	130	100%	100%
GN=Col1a2 PE=2 SV=2			kDa	(100%)	(100%)
CO6A2_MOUSE Collagen alpha-2(VI) chain OS=Mus musculus	Col6a2	Q02788	110	100%	54% (54%)
GN=Col6a2 PE=2 SV=3			kDa	(100%)	
COX2_MOUSE Cytochrome c oxidase subunit 2 OS=Mus	Mtco2	P00405 (+1)	26	100%	100%
musculus GN=Mtco2 PE=1 SV=1			kDa	(100%)	(100%)
COX41_MOUSE Cytochrome c oxidase subunit 4 isoform 1,	Cox4i1	P19783	20	100%	100%
mitochondrial OS=Mus musculus GN=Cox4i1 PE=1 SV=2			kDa	(100%)	(100%)

COX5A_MOUSE Cytochrome c oxidase subunit 5A,	Cox5a	P12787	16	100%	100%
mitochondrial OS=Mus musculus GN=Cox5a PE=1 SV=2			kDa	(100%)	(100%)
CRYAB_MOUSE Alpha-crystallin B chain OS=Mus musculus	Cryab	P23927	20	100%	100%
GN=Cryab PE=1 SV=2			kDa	(100%)	(100%)
CX6B1_MOUSE Cytochrome c oxidase subunit 6B1 OS=Mus	Cox6b1	P56391	10	100%	95% (95%)
musculus GN=Cox6b1 PE=1 SV=2			kDa	(100%)	
CY1_MOUSE Cytochrome c1, heme protein, mitochondrial	Cyc1	Q9D0M3	35	100%	100%
OS=Mus musculus GN=Cyc1 PE=1 SV=1			kDa	(100%)	(100%)
D3YYT0_MOUSE Cadherin-2 OS=Mus musculus GN=Cdh2	Cdh2	D3YYT0	94	100%	100%
PE=2 SV=1		(+1)	kDa	(100%)	(100%)
DESM_MOUSE Desmin OS=Mus musculus GN=Des PE=1	Des	P31001	53	100%	100%
SV=3			kDa	(100%)	(100%)
DHSA_MOUSE Succinate dehydrogenase [ubiquinone]	Sdha	Q8K2B3	73	100%	100%
flavoprotein subunit, mitochondrial OS=Mus musculus GN=Sdha		-	kDa	(100%)	(100%)
PE=1 SV=1					
DHSB_MOUSE Succinate dehydrogenase [ubiquinone] iron-	Sdhb	Q9CQA3	32	100%	100%
sulfur subunit, mitochondrial OS=Mus musculus GN=Sdhb PE=1			kDa	(100%)	(100%)
SV=1					
DPEP1_MOUSE Dipeptidase 1 OS=Mus musculus GN=Dpep1	Dpep1	P31428	46	39% (39%)	100%
PE=1 SV=2			kDa		(100%)
E9Q1X8_MOUSE Voltage-dependent calcium channel subunit	Cacna2d1	E9Q1X8	123	100%	76% (76%)
alpha-2/delta-1 OS=Mus musculus GN=Cacna2d1 PE=2 SV=2		(+5)	kDa	(100%)	
E9Q800_MOUSE Mitochondrial inner membrane protein	Immt	E9Q800	76	100%	100%
OS=Mus musculus GN=Immt PE=2 SV=1			kDa	(100%)	(100%)
ECHA_MOUSE Trifunctional enzyme subunit alpha,	Hadha	Q8BMS1	83	100%	100%
mitochondrial OS=Mus musculus GN=Hadha PE=1 SV=1			kDa	(100%)	(100%)
ECHB_MOUSE Trifunctional enzyme subunit beta,	Hadhb	Q99JY0	51	100%	100%
mitochondrial OS=Mus musculus GN=Hadhb PE=1 SV=1		-	kDa	(100%)	(100%)
F6QYE1_MOUSE Calsequestrin OS=Mus musculus GN=Casq2	Casq2	F6QYE1	48	100%	100%
PE=2 SV=1	_	(+1)	kDa	(100%)	(100%)
F8VQJ3_MOUSE Laminin subunit gamma-1 OS=Mus musculus	Lamc1	F8VQJ3	177	100%	100%
GN=Lamc1 PE=2 SV=1		-	kDa	(100%)	(100%)

F8WHP8_MOUSE ATP synthase subunit f, mitochondrial	Atp5j2	F8WHP8	9 kDa	100%	69% (69%)
OS=Mus musculus GN=Atp5j2 PE=2 SV=1	1.0			(100%)	
F8WIT2_MOUSE Annexin OS=Mus musculus GN=Anxa6 PE=2	Anxa6	F8WIT2	75	100%	100%
SV=1		(+1)	kDa	(100%)	(100%)
G3UX26_MOUSE Voltage-dependent anion-selective channel	Vdac2	G3UX26	30		100%
protein 2 (Fragment) OS=Mus musculus GN=Vdac2 PE=4 SV=1		(+1)	kDa		(100%)
G3X8R0_MOUSE Receptor accessory protein 5, isoform CRA_a	Reep5	G3X8R0	21	57% (57%)	100%
OS=Mus musculus GN=Reep5 PE=4 SV=1			kDa		(100%)
G3X9L6_MOUSE MCG55033 OS=Mus musculus	Gm10250	G3X9L6	19	100%	100%
GN=Gm10250 PE=4 SV=1		(+1)	kDa	(100%)	(100%)
H14_MOUSE Histone H1.4 OS=Mus musculus GN=Hist1h1e	Hist1h1e	P43274	22	100%	100%
PE=1 SV=2			kDa	(100%)	(100%)
HBB1_MOUSE Hemoglobin subunit beta-1 OS=Mus musculus	Hbb-b1	P02088	16	100%	100%
GN=Hbb-b1 PE=1 SV=2			kDa	(100%)	(100%)
HSPB1_MOUSE Heat shock protein beta-1 OS=Mus musculus	Hspb1	P14602 (+1)	23	100%	67% (67%)
GN=Hspb1 PE=1 SV=3			kDa	(100%)	
IDH3A_MOUSE Isocitrate dehydrogenase [NAD] subunit alpha,	Idh3a	Q9D6R2	40	40% (40%)	100%
mitochondrial OS=Mus musculus GN=Idh3a PE=1 SV=1			kDa		(100%)
ITB1_MOUSE Integrin beta-1 OS=Mus musculus GN=Itgb1	Itgb1	P09055	88	100%	100%
PE=1 SV=1			kDa	(100%)	(100%)
J3QQ13_MOUSE Troponin T, cardiac muscle OS=Mus musculus	Tnnt2	J3QQ13	36	100%	100%
GN=Tnnt2 PE=2 SV=1		(+7)	kDa	(100%)	(100%)
K1C42_MOUSE Keratin, type I cytoskeletal 42 OS=Mus	Krt42	Q6IFX2	50	100%	100%
musculus GN=Krt42 PE=1 SV=1			kDa	(100%)	(100%)
K22E_MOUSE Keratin, type II cytoskeletal 2 epidermal	Krt2	Q3TTY5	71	100%	100%
OS=Mus musculus GN=Krt2 PE=1 SV=1			kDa	(100%)	(100%)
K2C1_MOUSE Keratin, type II cytoskeletal 1 OS=Mus musculus	Krt1	P04104	66	100%	100%
GN=Krt1 PE=1 SV=4			kDa	(100%)	(100%)
K2C5_MOUSE Keratin, type II cytoskeletal 5 OS=Mus musculus	Krt5	Q922U2	62	100%	100%
GN=Krt5 PE=1 SV=1			kDa	(100%)	(100%)
K2C8_MOUSE Keratin, type II cytoskeletal 8 OS=Mus musculus	Krt8	P11679	55	96% (96%)	100%
GN=Krt8 PE=1 SV=4			kDa		(100%)

K3W4Q8_MOUSE Basigin OS=Mus musculus GN=Bsg PE=4	Bsg	K3W4Q8	24	100%	100%
SV=1		(+2)	kDa	(100%)	(100%)
KCRM_MOUSE Creatine kinase M-type OS=Mus musculus	Ckm	P07310	43	100%	100%
GN=Ckm PE=1 SV=1			kDa	(100%)	(100%)
KCRS_MOUSE Creatine kinase S-type, mitochondrial OS=Mus	Ckmt2	Q6P8J7	47	100%	100%
musculus GN=Ckmt2 PE=1 SV=1			kDa	(100%)	(100%)
KRT85_MOUSE Keratin, type II cuticular Hb5 OS=Mus	Krt85	Q9Z2T6	56	100%	
musculus GN=Krt85 PE=2 SV=2			kDa	(100%)	
KT33B_MOUSE Keratin, type I cuticular Ha3-II OS=Mus	Krt33b	Q61897	46	100%	
musculus GN=Krt33b PE=2 SV=2			kDa	(100%)	
LAMA2_MOUSE Laminin subunit alpha-2 OS=Mus musculus	Lama2	Q60675	344	100%	
GN=Lama2 PE=1 SV=2			kDa	(100%)	
LAMB1_MOUSE Laminin subunit beta-1 OS=Mus musculus	Lamb1	P02469	197	100%	100%
GN=Lamb1 PE=1 SV=3			kDa	(100%)	(100%)
LMNA_MOUSE Prelamin-A/C OS=Mus musculus GN=Lmna	Lmna	P48678 (+1)	74	96% (96%)	100%
PE=1 SV=2			kDa		(100%)
MLRV_MOUSE Myosin regulatory light chain 2,	Myl2	P51667	19	100%	100%
ventricular/cardiac muscle isoform OS=Mus musculus GN=Myl2			kDa	(100%)	(100%)
PE=1 SV=3					
MYH6_MOUSE Myosin-6 OS=Mus musculus GN=Myh6 PE=1	Myh6	Q02566	224	100%	100%
SV=2			kDa	(100%)	(100%)
MYH7_MOUSE Myosin-7 OS=Mus musculus GN=Myh7 PE=1	Myh7	Q91Z83	223	100%	100%
SV=1			kDa	(100%)	(100%)
MYH9_MOUSE Myosin-9 OS=Mus musculus GN=Myh9 PE=1	Myh9	Q8VDD5	226	100%	100%
SV=4			kDa	(100%)	(100%)
MYL3_MOUSE Myosin light chain 3 OS=Mus musculus	Myl3	P09542	22	100%	100%
GN=Myl3 PE=1 SV=4			kDa	(100%)	(100%)
MYOZ2_MOUSE Myozenin-2 OS=Mus musculus GN=Myoz2	Myoz2	Q9JJW5	30	37% (37%)	100%
PE=1 SV=1			kDa		(100%)
NDUA5_MOUSE NADH dehydrogenase [ubiquinone] 1 alpha	Ndufa5	Q9CPP6	13	100%	
subcomplex subunit 5 OS=Mus musculus GN=Ndufa5 PE=1			kDa	(100%)	
SV=3					

NDUB7_MOUSE NADH dehydrogenase [ubiquinone] 1 beta	Ndufb7	Q9CR61	16	74% (74%)	100%
subcomplex subunit 7 OS=Mus musculus GN=Ndufb7 PE=1		_	kDa		(100%)
SV=3					
NDUBA_MOUSE NADH dehydrogenase [ubiquinone] 1 beta	Ndufb10	Q9DCS9	21	100%	100%
subcomplex subunit 10 OS=Mus musculus GN=Ndufb10 PE=1			kDa	(100%)	(100%)
SV=3					
NDUS1_MOUSE NADH-ubiquinone oxidoreductase 75 kDa	Ndufs1	Q91VD9	80	100%	100%
subunit, mitochondrial OS=Mus musculus GN=Ndufs1 PE=1			kDa	(100%)	(100%)
SV=2					
NDUS8_MOUSE NADH dehydrogenase [ubiquinone] iron-sulfur	Ndufs8	Q8K3J1	24	100%	100%
protein 8, mitochondrial OS=Mus musculus GN=Ndufs8 PE=1			kDa	(100%)	(100%)
SV=1					
NIPS2_MOUSE Protein NipSnap homolog 2 OS=Mus musculus	Gbas	O55126 (+1)	33		100%
GN=Gbas PE=2 SV=1			kDa		(100%)
PGS2_MOUSE Decorin OS=Mus musculus GN=Dcn PE=2	Dcn	P28654	40	100%	100%
SV=1			kDa	(100%)	(100%)
PHB_MOUSE Prohibitin OS=Mus musculus GN=Phb PE=1	Phb	P67778	30	100%	100%
SV=1			kDa	(100%)	(100%)
PTRF_MOUSE Polymerase I and transcript release factor	Ptrf	O54724	44	100%	100%
OS=Mus musculus GN=Ptrf PE=1 SV=1			kDa	(100%)	(100%)
Q8R5L1_MOUSE Complement component 1 Q subcomponent-	C1qbp	Q8R5L1	31	83% (83%)	100%
binding protein, mitochondrial OS=Mus musculus GN=C1qbp			kDa		(100%)
PE=2 SV=1					
Q9CQB4_MOUSE Cytochrome b-c1 complex subunit 7 OS=Mus	Uqcrb	Q9CQB4	14	100%	100%
musculus GN=Uqcrb PE=3 SV=1		(+1)	kDa	(100%)	(100%)
QCR1_MOUSE Cytochrome b-c1 complex subunit 1,	Uqcrc1	Q9CZ13	53	100%	100%
mitochondrial OS=Mus musculus GN=Uqcrc1 PE=1 SV=2			kDa	(100%)	(100%)
QCR2_MOUSE Cytochrome b-c1 complex subunit 2,	Uqcrc2	Q9DB77	48	100%	100%
mitochondrial OS=Mus musculus GN=Uqcrc2 PE=1 SV=1			kDa	(100%)	(100%)
SPTB2_MOUSE Spectrin beta chain, non-erythrocytic 1 OS=Mus	Sptbn1	Q62261	274		100%
musculus GN=Sptbn1 PE=1 SV=2			kDa		(100%)
TBB4B_MOUSE Tubulin beta-4B chain OS=Mus musculus	Tubb4b	P68372	50	100%	
GN=Tubb4b PE=1 SV=1			kDa	(100%)	

THIM_MOUSE 3-ketoacyl-CoA thiolase, mitochondrial OS=Mus	Acaa2	Q8BWT1	42	86% (86%)	100%
musculus GN=Acaa2 PE=1 SV=3			kDa		(100%)
TNNC1_MOUSE Troponin C, slow skeletal and cardiac muscles	Tnnc1	P19123	18	100%	100%
OS=Mus musculus GN=Tnnc1 PE=2 SV=1			kDa	(100%)	(100%)
TNNI3_MOUSE Troponin I, cardiac muscle OS=Mus musculus	Tnni3	P48787	24	100%	100%
GN=Tnni3 PE=1 SV=2			kDa	(100%)	(100%)
TPM1_MOUSE Tropomyosin alpha-1 chain OS=Mus musculus	Tpm1	P58771	33	100%	100%
GN=Tpm1 PE=1 SV=1			kDa	(100%)	(100%)
USMG5_MOUSE Up-regulated during skeletal muscle growth	Usmg5	Q78IK2	6 kDa	100%	100%
protein 5 OS=Mus musculus GN=Usmg5 PE=1 SV=1				(100%)	(100%)
VDAC1_MOUSE Isoform Mt-VDAC1 of Voltage-dependent	OS	Q60932-2	31	100%	100%
anion-selective channel protein 1 OS=Mus musculus GN=Vdac1			kDa	(100%)	(100%)
VIME_MOUSE Vimentin OS=Mus musculus GN=Vim PE=1	Vim	P20152	54	100%	100%
SV=3			kDa	(100%)	(100%)
VINC_MOUSE Vinculin OS=Mus musculus GN=Vcl PE=1	Vcl	Q64727	117	100%	100%
SV=4			kDa	(100%)	(100%)

Note: The percentage in the table indicates the identification probability of the specified protein.

Supplemental Table S3					
Proteins in common					
mECM	nzECM	hzECM			
Mouse gene (accession #, MW)	Zfish gene (accession #, MW)	Zfish gene (accession #, MW)			
acadvl (P50544, 71 kDa)	acadvl (A9JT52 (+2), 71 kDa)	acadvl (A9JT52 (+2), 71 kDa)			
Aco2 (Q99KI0, 85 kDa)	aco2 (Q6PEI6, 85 kDa)	aco2 (Q6PEI6, 85 kDa)			
Actn2 (Q9JI91, 104 kDa)	actn2 (Q2YDR5, 103 kDa)	actn2 (Q2YDR5, 103 kDa)			
Anxa2 (P07356, 39 kDa)		anxa2a (Q804G9, 38 kDa)			
Atp1a1 (Q8VDN2, 113 kDa)	atp1a1 (Q9DGL6, 113 kDa)	atp1a1 (Q9DGL6, 113 kDa)			
Atp1b1 (P14094, 35 kDa)	atp1b1a (Q7ZVX2, 35 kDa)	atp1b1a (Q7ZVX2, 35 kDa)			
Atp5a1 (Q03265, 60 kDa)	atp5a1 (Q08BA1, 60 kDa)	atp5a1 (Q08BA1, 60 kDa)			
Atp5b (P56480, 56 kDa)	atp5b (A8WGC6, 55 kDa)	atp5b (A8WGC6, 55 kDa)			
Atp5o (Q9DB20, 23 kDa)	atp5o (Q6DRD1, 22 kDa)	atp5o (Q6DRD1, 22 kDa)			
Ckmt2 (Q6P8J7, 47 kDa)	ckmt2 (A8WG85 (+1), 46 kDa)	ckmt2 (A8WG85 (+1), 46 kDa)			
Col1a1 (P11087, 138 kDa)	col1a1b (F1QDL1 (+1), 137 kDa)	col1a1b (F1QDL1 (+1), 137 kDa)			
Col1a2 (Q01149, 130 kDa)	col1a2 (E9QCG6 (+1), 127 kDa)	col1a2 (E9QCG6 (+1), 127 kDa)			
Cox5a (P12787, 16 kDa)	cox5aa (Q4VBU7, 16 kDa)	cox5aa (Q4VBU7, 16 kDa)			
	cox5ab (F1QJ99 (+1), 17 kDa)	cox5ab (F1QJ99 (+1), 17 kDa)			
Cyc1 (Q9D0M3, 35 kDa)	cyc1 (Q68EI6, 33 kDa)	cyc1 (Q68El6, 33 kDa)			
Des (P31001, 53 kDa)	desma (F1R8W3, 56 kDa)	desma (F1R8W3, 56 kDa)			

Hspb1 (P14602 (+1), 23 kDa)	hspb1 (A4VAK4 (+1), 22 kDa)	hspb1 (A4VAK4 (+1), 22 kDa)
Hspd1 (P63038, 61 kDa)	hspd1 (Q803B0, 61 kDa)	hspd1 (Q803B0, 61 kDa)
Immt (E9Q800, 76 kDa)	immt (Q6PFS4, 83 kDa)	immt (Q6PFS4, 83 kDa)
ltgb1 (P09055, 88 kDa)	itgb1b (Q3YAA0, 88 kDa)	itgb1b (Q3YAA0, 88 kDa)
Krt8 (P11679, 55 kDa)	krt8 (Q6NWF6, 58 kDa)	krt8 (Q6NWF6, 58 kDa)
Lamc1 (F8VQJ3, 177 kDa)	lamc1 (Q1LVF0, 176 kDa)	lamc1 (Q1LVF0, 176 kDa)
Mtco2 (P00405 (+1), 26 kDa)	mt-co2 (Q9MIY7, 26 kDa)	mt-co2 (Q9MIY7, 26 kDa)
Myh6 (Q02566, 224 kDa)	myh6 (B3DJP9, 223 kDa)	myh6 (B3DJP9, 223 kDa)
Myh7 (Q91Z83, 223 kDa)	myl7 (Q801M3, 19 kDa)	myl7 (Q801M3, 19 kDa)
Myoz2 (Q9JJW5, 30 kDa)	myoz2b (F1QBP1, 29 kDa)	myoz2b (F1QBP1, 29 kDa)
Ndufa5 (Q9CPP6, 13 kDa)	ndufa5 (Q5BJA2, 13 kDa)	ndufa5 (Q5BJA2, 13 kDa)
Ndufs8 (Q8K3J1, 24 kDa)	ndufs8a (Q6P0T0, 24 kDa)	ndufs8a (Q6P0T0, 24 kDa)
Sdha (Q8K2B3, 73 kDa)	sdha (Q6TNQ9, 73 kDa)	sdha (Q6TNQ9, 73 kDa)
Tnnc1 (P19123, 18 kDa)	tnnc1a (Q800V7, 18 kDa)	tnnc1a (Q800V7, 18 kDa)
Tnnt2 (J3QQ13 (+7), 36 kDa)	tnnt2a (Q7ZSY4 (+2), 34 kDa)	tnnt2a (Q7ZSY4 (+2), 34 kDa)
Uqcrb (Q9CQB4 (+1), 14 kDa)	uqcrb (Q4VBV1, 13 kDa)	uqcrb (Q4VBV1, 13 kDa)
Uqcrc1 (Q9CZ13, 53 kDa)	uqcrc1 (Q6NSN3 (+1), 52 kDa)	uqcrc1 (Q6NSN3 (+1), 52 kDa)
Uqcrc2 (Q9DB77, 48 kDa)	uqcrc2b (Q6IQ59, 48 kDa)	uqcrc2b (Q6IQ59, 48 kDa)
Vdac2 (G3UX26 (+1), 30 kDa)	vdac2 (Q4JHL7 (+1), 30 kDa)	vdac2 (Q4JHL7 (+1), 30 kDa)

	Note:	Pink color = uncharacterized protein
		Bold = protein detected only in hzECM
Proteins not in common		
mECM	nzECM	hzECM
Mouse gene (accession #, MW)	Zfish gene (accession #, MW)	Zfish gene (accession #, MW)
Acaa2 (Q8BWT1, 42 kDa)	actc1a (Q6IQR3, 42 kDa)	actc1a (Q6IQR3, 42 kDa)
Acta1 (P68134, 42 kDa)	actc1a (Q9PTR4, 42 kDa)	actc1a (Q9PTR4, 42 kDa)
Alb (P07724, 69 kDa)	atp2a2a (A9C3Q4 (+2), 115 kDa)	atp2a2a (A9C3Q4 (+2), 115 kDa)
Anxa6 (F8WIT2 (+1), 75 kDa)	atp5h (Q6PC77, 18 kDa)	atp5h (Q6PC77, 18 kDa)
Apoo (B1ASQ2 (+1), 23 kDa)	atp5ib (A2ARG7, 8 kDa)	atp5ib (A2ARG7, 8 kDa)
Atp5d (Q9D3D9, 18 kDa)	ba2 (Q90485, 16 kDa)	ba2 (Q90485, 16 kDa)
Atp5i (Q06185, 8 kDa)	chchd6 (Q63ZW2, 28 kDa)	chchd6 (Q63ZW2, 28 kDa)
Atp5j2 (F8WHP8, 9 kDa)	chchd6b (F1RBH3 (+1), 26 kDa)	chchd6b (F1RBH3 (+1), 26 kDa)
Bsg (K3W4Q8 (+2), 24 kDa)	cmlc1 (B0R0F7, 22 kDa)	cmlc1 (B0R0F7, 22 kDa)
C1qbp (Q8R5L1, 31 kDa)	cox6c (Q6ZM23, 8 kDa)	cox6c (Q6ZM23, 8 kDa)
Cacna2d1 (E9Q1X8 (+5), 123 kDa)	CR762436.4 (E7EZX1 (+4), 14 kDa)	CR762436.4 (E7EZX1 (+4), 14 kDa)
Canx (P35564, 67 kDa)	CU302436.1 (E7F1L7, 292 kDa)	CU302436.1 (E7F1L7, 292 kDa)

Casq2 (F6QYE1 (+1), 48 kDa)		fga (E9QCD1, 50 kDa)
Cav1 (P49817, 21 kDa)		fgb (Q6NYE1, 54 kDa)
Cd36 (Q08857, 53 kDa)		fgg (Q7ZVG7, 49 kDa)
Cdh2 (D3YYT0 (+1), 94 kDa)	fn1b (Q58XP5, 276 kDa)	fn1b (Q58XP5, 276 kDa)
Chchd3 (Q9CRB9, 26 kDa)	hlf0 (Q6NYV3, 21 kDa)	hlf0 (Q6NYV3, 21 kDa)
Ckm (P07310, 43 kDa)	hspa9 (Q7ZYY3, 74 kDa)	hspa9 (Q7ZYY3, 74 kDa)
Col6a2 (Q02788, 110 kDa)	idh2 (Q7ZUP6, 50 kDa)	idh2 (Q7ZUP6, 50 kDa)
Cox4i1 (P19783, 20 kDa)	lmnb2 (Q9W6T5, 66 kDa)	lmnb2 (Q9W6T5, 66 kDa)
Cox6b1 (P56391, 10 kDa)	LOC402880 (F1R6I1 (+1), 20 kDa)	LOC402880 (F1R6I1 (+1), 20 kDa)
Cryab (P23927, 20 kDa)	LOC564077 (E7FAV6, 57 kDa)	LOC564077 (E7FAV6, 57 kDa)
Cs (Q9CZU6, 52 kDa)	Irrc15 (A8BBI6, 58 kDa)	Irrc15 (A8BBI6, 58 kDa)
Dcn (P28654, 40 kDa)	mb (Q6VN46, 16 kDa)	mb (Q6VN46, 16 kDa)
Dpep1 (P31428, 46 kDa)	mybpc3 (F1Q615, 144 kDa)	mybpc3 (F1Q615, 144 kDa)
Gbas (O55126 (+1), 33 kDa)	myh11a (B3DFS9 (+1), 228 kDa)	myh11a (B3DFS9 (+1), 228 kDa)
Gm10250 (G3X9L6 (+1), 19 kDa)		nppa (Q6VYM3, 12 kDa)
Hadha (Q8BMS1, 83 kDa)	sh3bgr (Q6DEH8, 21 kDa)	sh3bgr (Q6DEH8, 21 kDa)
Hadhb (Q99JY0, 51 kDa)	si:ch1073-329n19.2 (F1R3F7 (+1), 30 kDa)	si:ch1073-329n19.2 (F1R3F7 (+1), 30 kDa)
Hbb-b1 (P02088, 16 kDa)		si:ch211-103n10.5 (B0R0K9, 19 kDa)
Hist1h1e (P43274, 22 kDa)	si:ch211-150d5.2 (F1QJK4, 196 kDa)	si:ch211-150d5.2 (F1QJK4, 196 kDa)

Hspg2 (B1B0C7 (+1), 469 kDa)	slc25a5 (Q8JHI0, 33 kDa)	slc25a5 (Q8JHI0, 33 kDa)
Idh3a (Q9D6R2, 40 kDa)		slmapa (Q1RLV5, 50 kDa)
Krt1 (P04104, 66 kDa)	sorbs2a (F1Q9A0, 141 kDa)	sorbs2a (F1Q9A0, 141 kDa)
Krt10 (A2A513 (+3), 57 kDa)	spna2 (F1R446, 285 kDa)	spna2 (F1R446, 285 kDa)
Krt2 (Q3TTY5, 71 kDa)	tmod1 (E9QGR6, 40 kDa)	tmod1 (E9QGR6, 40 kDa)
Krt33b (Q61897, 46 kDa)	tnni1b (E7F5J9 (+2), 21 kDa)	tnni1b (E7F5J9 (+2), 21 kDa)
Krt42 (Q6IFX2, 50 kDa)	tpm4a (F1QKG7, 33 kDa)	tpm4a (F1QKG7, 33 kDa)
Krt5 (Q922U2, 62 kDa)	tpm4a (Q7T3F0, 29 kDa)	tpm4a (Q7T3F0, 29 kDa)
Krt85 (Q9Z2T6, 56 kDa)	vdac3 (A8E5I7 (+2), 30 kDa)	vdac3 (A8E5I7 (+2), 30 kDa)
Lama2 (Q60675, 344 kDa)	vmhcl (F1QSE1 (+1), 223 kDa)	vmhcl (F1QSE1 (+1), 223 kDa)
Lamb1 (P02469, 197 kDa)	wu:fe37d09 (A3KPR4 (+2), 11 kDa)	wu:fe37d09 (A3KPR4 (+2), 11 kDa)
Lmna (P48678 (+1), 74 kDa)	ywhaba (Q5PRD0, 28 kDa)	ywhaba (Q5PRD0, 28 kDa)
Myh9 (Q8VDD5, 226 kDa)	zgc:101560 (H9GYI1, 21 kDa)	zgc:101560 (H9GYI1, 21 kDa)
Myl2 (P51667, 19 kDa)	zgc:112234 (F1QG64, 15 kDa)	zgc:112234 (F1QG64, 15 kDa)
Myl3 (P09542, 22 kDa)	zgc:153629 (F1R8U0 (+1), 48 kDa)	zgc:153629 (F1R8U0 (+1), 48 kDa)
Ndufb10 (Q9DCS9, 21 kDa)	zgc:56085 (F1Q766, 47 kDa)	zgc:56085 (F1Q766, 47 kDa)
Ndufb7 (Q9CR61, 16 kDa)		zgc:92880 (Q6DGK4 (+1), 16 kDa)
Ndufs1 (Q91VD9, 80 kDa)		
OS (Q60932-2, 31 kDa)		
Phb (P67778, 30 kDa)		

Ptrf (O54724, 44 kDa)	Note:	Pink color = uncharacterized protein
Reep5 (G3X8R0, 21 kDa)		Bold = protein detected only in hzECM
Sdhb (Q9CQA3, 32 kDa)		
Slc25a4 (P48962, 33 kDa)		
Sptan1 (A3KGU7 (+1), 285 kDa)		
Sptbn1 (Q62261, 274 kDa)		
Tnni3 (P48787, 24 kDa)		
Tpm1 (P58771, 33 kDa)		
Tubb4b (P68372, 50 kDa)		
Usmg5 (Q78IK2, 6 kDa)		
Vcl (Q64727, 117 kDa)		
Vim (P20152, 54 kDa)		

Supplemental Table T4. Echocardiographic parameters of infarcted mouse hearts following ECM treatment

Fractional Area C	Change
-------------------	--------

Mean \pm SD (%)	0D	5D	2W	6VV
hzECM	$\textbf{57.12} \pm \textbf{3.53}$	$\textbf{54.35} \pm \textbf{4.83}$	$\textbf{47.47} \pm \textbf{4.74}$	$\textbf{45.29} \pm \textbf{4.40}$
nzECM	$\textbf{57.12} \pm \textbf{3.53}$	$\textbf{43.80} \pm \textbf{7.35}$	$\textbf{45.13} \pm \textbf{5.67}$	$\textbf{37.88} \pm \textbf{2.44}$
mECM	$\textbf{57.12} \pm \textbf{3.53}$	$\textbf{45.39} \pm \textbf{3.21}$	$\textbf{36.13} \pm \textbf{3.50}$	$\textbf{29.97} \pm \textbf{2.77}$
Saline	$\textbf{57.12} \pm \textbf{3.53}$	$\textbf{40.05} \pm \textbf{5.28}$	$\textbf{32.27} \pm \textbf{4.43}$	$\textbf{25.23} \pm \textbf{4.72}$

Ejection Fraction

Mean \pm SD (%)	0D	5D	2W	6VV
hzECM	$\textbf{72.36} \pm \textbf{2.24}$	$\textbf{68.24} \pm \textbf{3.84}$	$\textbf{62.75} \pm \textbf{5.62}$	59.83 ± 4.58
nzECM	$\textbf{72.36} \pm \textbf{2.24}$	59.64 ± 5.87	$\textbf{60.33} \pm \textbf{5.54}$	51.31 ± 2.39
mECM	$\textbf{72.36} \pm \textbf{2.24}$	$\textbf{60.32} \pm \textbf{3.02}$	$\textbf{50.03} \pm \textbf{3.14}$	$\textbf{43.61} \pm \textbf{3.46}$
Saline	$\textbf{72.36} \pm \textbf{2.24}$	$\textbf{57.21} \pm \textbf{4.88}$	$\textbf{45.57} \pm \textbf{5.47}$	38.02 ± 4.56

End-Diastolic Area

Mean \pm SD (mm ²)	0D	5D	2VV	6VV
hzECM	$\textbf{9.83} \pm \textbf{1.08}$	$\textbf{11.89} \pm \textbf{0.77}$	14.65 ± 1.90	17.08 ± 1.38
nzECM	$\textbf{9.83} \pm \textbf{1.08}$	11.60 ± 1.04	13.72 ± 1.19	17.61 ± 1.80
mECM	$\textbf{9.83} \pm \textbf{1.08}$	$\textbf{13.73} \pm \textbf{1.21}$	16.65 ± 1.07	$\textbf{20.95} \pm \textbf{1.20}$
Saline	$\textbf{9.83} \pm \textbf{1.08}$	$\textbf{13.37} \pm \textbf{1.77}$	$\textbf{16.88} \pm \textbf{2.62}$	$\textbf{20.07} \pm \textbf{4.36}$

End-Systolic Area

Mean \pm SD (mm ²)	0D	5D	2W	6VV
hzECM	$\textbf{4.24} \pm \textbf{0.79}$	$\textbf{5.41} \pm \textbf{0.39}$	$\textbf{7.72} \pm \textbf{1.41}$	$\textbf{9.33} \pm \textbf{0.90}$
nzECM	$\textbf{4.24} \pm \textbf{0.79}$	$\textbf{6.49} \pm \textbf{0.76}$	$\textbf{7.51} \pm \textbf{0.84}$	10.96 ± 1.40
mECM	$\textbf{4.24} \pm \textbf{0.79}$	$\textbf{7.48} \pm \textbf{0.55}$	$\textbf{10.64} \pm \textbf{0.94}$	14.67 ± 1.03
Saline	$\textbf{4.24} \pm \textbf{0.79}$	$\textbf{8.05} \pm \textbf{1.52}$	11.48 ± 2.29	15.04 ± 3.62

Supplemental Table T5. Echocardiographic parameters of infarcted mouse hearts following ECM treatment and ErbB2 inhibitor administration

Fractional Area Change

Mean ± SD (%)	0D	5D	2W	6VV
hzECM	$\textbf{57.12} \pm \textbf{3.53}$	46.11 ± 4.21	$\textbf{38.16} \pm \textbf{4.52}$	$\textbf{30.14} \pm \textbf{4.55}$
nzECM	$\textbf{57.12} \pm \textbf{3.53}$	$\textbf{44.37} \pm \textbf{5.24}$	$\textbf{36.46} \pm \textbf{6.71}$	$\textbf{29.18} \pm \textbf{4.38}$
mECM	$\textbf{57.12} \pm \textbf{3.53}$	42.37± 3.30	$\textbf{35.02} \pm \textbf{3.47}$	$\textbf{27.45} \pm \textbf{2.50}$
Saline	$\textbf{57.12} \pm \textbf{3.53}$	$\textbf{39.48} \pm \textbf{4.76}$	$\textbf{31.87} \pm \textbf{3.68}$	$\textbf{25.16} \pm \textbf{4.91}$

Ejection Fraction

Mean \pm SD (%)	0D	5D	2W	6VV
hzECM	$\textbf{72.36} \pm \textbf{2.24}$	$\textbf{60.44} \pm \textbf{5.13}$	$\textbf{51.37} \pm \textbf{5.95}$	$\textbf{43.49} \pm \textbf{5.21}$
nzECM	$\textbf{72.36} \pm \textbf{2.24}$	58.51 ± 5.32	$\textbf{49.35} \pm \textbf{4.98}$	$\textbf{41.29} \pm \textbf{2.83}$
mECM	$\textbf{72.36} \pm \textbf{2.24}$	$\textbf{56.24} \pm \textbf{2.11}$	$\textbf{47.63} \pm \textbf{3.34}$	$\textbf{39.21} \pm \textbf{3.44}$
Saline	$\textbf{72.36} \pm \textbf{2.24}$	53.37 ± 4.33	$\textbf{43.76} \pm \textbf{4.12}$	$\textbf{37.22} \pm \textbf{5.65}$

End-Diastolic Area

Mean \pm SD (mm ²)	0D	5D	2W	6VV
hzECM	$\textbf{9.83} \pm \textbf{1.08}$	$\textbf{13.39} \pm \textbf{0.84}$	$\textbf{16.35} \pm \textbf{1.28}$	19.50 ± 1.43
nzECM	$\textbf{9.83} \pm \textbf{1.08}$	13.99 ± 1.12	16.71 ± 1.41	19.91 ± 1.95
mECM	$\textbf{9.83} \pm \textbf{1.08}$	14.72 ± 1.04	17.45 ± 1.50	$\textbf{21.05} \pm \textbf{1.17}$
Saline	9.83 ± 1.08	14.38 ± 1.58	17.85 ± 1.92	21.96 ± 2.25

End-Systolic Area

Mean \pm SD (mm ²)	0D	5D	2W	6VV
hzECM	$\textbf{4.24} \pm \textbf{0.79}$	$\textbf{7.21} \pm \textbf{0.43}$	10.11 ± 0.94	13.32 ± 1.10
nzECM	$\textbf{4.24} \pm \textbf{0.79}$	7.78 ± 0.61	10.62 ± 1.41	$\textbf{13.96} \pm \textbf{1.01}$
mECM	$\textbf{4.24} \pm \textbf{0.79}$	$\textbf{8.49} \pm \textbf{0.48}$	11.33 ± 0.53	15.27 ± 1.53
Saline	$\textbf{4.24} \pm \textbf{0.79}$	$\textbf{9.13} \pm \textbf{1.23}$	$\textbf{12.18} \pm \textbf{1.72}$	$\textbf{15.93} \pm \textbf{2.21}$