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Supplementary Materials 
 
note S1. Crystal structures and electron diffraction patterns of PbTaSe2. 

It has been reported that PbTaSe2 can crystallize in either mmmP /6  or 26mP  symmetry (21, 25), both of 
which share identical x-ray reflection conditions. In reciprocal space, both structures readily show the 
same periodicity, hampering a clear separation of one from the other using associated diffraction 

techniques. In real space, the two structures are nonetheless distinctly different, with the phase of 26mP  
featuring a three-fold Ta network and that of mmmP /6  exhibiting six-fold but randomly distributed Ta 
atoms when observing along the c-axis. In the main text, Fig. 1B shows a typical c-projected HAADF image 

of PbTaSe2, with the Ta network firmly exhibiting the three-fold character of 26mP  and the overlaid 
Pb/Se atomic columns forming a continuous six-fold network. Fig. 1C illustrates the [110]-projected 

HAADF image of PbTaSe2, showing the characteristic 1H-TaSe2 cages of 26mP . Our STEM results along 
with the STM topographic images on Se-surface confirm unambiguously that our PbTaSe2 samples 

crystallize in 26mP . The corresponding electron diffraction patterns are shown in fig. S1, free from any 
symmetry-forbidden reflections, demonstrating the appreciable structural perfection of our samples. 

 

 
 
fig. S1. Electron diffraction patterns along [001] and [110] projection. 
 
 
note S2. Spin-decomposed surface band structures of PbTaSe2. 

 
 

 
 
fig. S2. Projection of the spin polarizations of bands contributed from the surface atoms. (A-C) 
Projection along z, x and y direction, respectively.  
  



note S3. The 2 × 2 superstructure on a Se-terminated surface. 
 

The Se-surface exhibits a 22 superstructure in STM topographic images. In order to study the possibility 
of forming a superstructure, a 22 supercell with slightly displaced atoms is constructed. For Pb-
terminated surfaces, the atoms move back to their original positions and restore the original 11 
structure, consistent with the experimental observation that Pb-termination does not show a 
superstructure. While for Se-terminated surfaces, a new ground state arising from the tiny shift in Ta 
positions is found (fig. S3). The calculated results agree with the experimental observation that Se-
termination shows a 22 superstructure while Pb-termination does not. The calculated atomic 
displacement pattern from also fits the STM topography. Three Ta atoms move toward one Se atom in 
22 unit cells, shifting this Se atom upward slightly (fig. S3A). The shifted Se atoms show brighter 
contrast in topographic image. The atomic displacement of Ta atoms is ~0.07 Å and the energy gain is 
2meV/Ta. 

 

 
 

fig. S3. The simulated surface structure on the Se-terminated surface. (A) The black diamond 
represents a unit cell of 2x2 superstructure. The green and orange spheres represent Se and Ta atoms, 
respectively. The blue arrow indicates the in-plane movement of Ta atoms. (B) The TaSe2 structure 
overlapped with a Se-terminated topographic image. 

 
 

note S4. Verification of helical spin polarization in TSSs by QPI imaging. 
 

For comparison with the measured QPI pattern, the autocorrelation is investigated via the nesting 

function 
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where Nk is the number of k-points. As depicted in Fig. 1F, the outer TSS along ΓK̅̅̅̅  with 𝐸 ≲ 0.5𝑒𝑉 has 

negligible components from the surface atoms because the strong overlapping with the bulk conduction 

bands. The length of the outer TSS in Fig. 4B and fig. S4A is estimated by the contribution of the surface 

atoms from the decomposed surface components (ranging from~80% at M̅ to ~20% at K̅) and the 

measured angular distribution of q1. Thus a window function is applied to suppress the contributions 



from these states with ignorable surface components. The simulated dI/dV(q, E) images from the CEC at 

selected energies without (with) spin components are shown in fig. S4C and S4D (S4E and S4F). 

 

The spin-dependence of QPI process is described by the inner product of the spin orientation s1s2. Only 

two TSSs are taken into account in this calculation to reproduce the QPI patterns from SI-STM 

measurements. It is evident that more scattering processes are allowed when helical spin polarization is 

absent in TSS (fig. S4C and S4D). In contrast, the simulation taking into account the spin components of 

TSSs is in excellent agreement with measured QPI images (fig. S4E and S4F). Thus, our experiment results 

together with the QPI simulation support two TSSs are spin-polarized with opposite helical texture. 

 



 
fig. S4. Spin-dependent QPI. (A) The calculated constant energy contour of two TSSs with spin texture 
at EF. The black arrows represent the in-plane spin direction and the blue/red contours show the sign 
and the magnitude of out-of-plane spin. The gray shaped regions represent the calculated bulk 
conduction bands. Two possible intraband scattering processes (qa and qb) are expected in addition to q1 
and q2 in Fig. 4. qa is forbidden because of opposite helical spin orientaion. qb is not observed because of 
the overlapping between the bulk bands and the outer TSS in  ΓK̅̅̅̅  direction. (B) The zoom-in of (A). The 
QPI simulation (C)(D) without and (E)(F) with helical spin components. The gray and red hexagon 
indicates half and full Brillouin zone, respectively. 
  



S5. Superconducting gap on Se-terminated surface. 
 

 
fig. S5. Temperature dependence of the superconducting gap. (A) The superconducting tunneling 
spectrum on Se-surface at 0.32 K. The black line is BCS fitting with =0.45meV. (B) Temperature 
evolution of superconducting tunneling spectrum on Se-surface. The curves are equally shifted by 20nS 
for clarity. (C) Temperature dependence of superconducting gap. The black line is theoretical calculation 
using BCS theory for measured T𝑐 = 3.6 K. 

 
 

note S6. Single–s-wave gap and two–s-wave gap fitting. 
 

The tunneling current I at a given bias voltage V can be expressed by 

                                                           I(V) ∝  ∫ [𝑓(𝐸) − 𝑓(𝐸 + 𝑒𝑉)]
∞

−∞
𝜌(𝐸)𝑑𝐸                                                               (1) 

where f(E) is the Fermi function and 𝜌(E) is the density of state of sample. Then, we can obtain dI/dV by 

taking the derivative of Eq. (1) 
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A is a constant. For a superconductor, 𝜌(E) is given by 

                                                                              𝜌(𝐸) = |𝐸| √𝐸2 − ∆2⁄                                                                               (3) 

where ∆ is superconducting gap. If the effect of lifetime broadening is taken into calculation, 𝜌(E) can be 

derived in 

                                                                𝜌(𝐸) = 𝑅𝑒(|𝐸 − 𝑖Γ| √(𝐸 − 𝑖Γ)2 − ∆2)⁄                                                             (4) 

where Γ is the energy of lifetime broadening. We fit the measured superconducting spectra with Eq. (2) 

and (4) by Levenberg-Marquardt method with three physical parameters: Teff (effective temperature 

from Fermi function), Γ and ∆. The fitting is converged with Chi-square smaller than 10-9. The fitting 

parameters in Fig. 5A are ∆0 = 0.45meV, Teff = 0.80K, Γ = 3.19x10-7eV and A = 1.14. 



 

For isotropic two s-wave gap fitting, the dI/dV can be expressed by the superposition of the contributions 

from the two gaps 
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where X is the ratio of two gaps and I1 and I2 are the tunneling current from Eq. (1) with different size of 

gap 1 and 2, respectively. The comparison between single and two gap fitting is shown in fig. S6B and 

fig. S6C. 

 
Superconducting gap as function of temperature in the BCS theory can be approximately expressed as 

                                                                 ∆(T) = ∆0tanh(1.74√(𝑇𝑐 𝑇) − 1⁄ )                                                                    (6) 

 

where ∆0 is the gap at zero temperature, and T𝑐 is the critical temperature. T𝑐 = 3.5K and ∆0 = 0.45meV 

for Eq. (6) in Fig. 5C are determined from the measured dI/dV spectra. 

 

 
 

fig. S6. BCS fitting of superconducting tunneling spectrum. (A) The superconducting gap of Nb tip on 
Au (111). The black line is single gap fitting. (B) The single gap and (B) the isotropic two gap fitting of 
BCS theory with 1 = 0.58meV, 2 = 0.42meV. Teff = 0.65K, Γ = 2.45x10-7eV, A = 1.44 and X = 0.17. The 
spectrum is as same as which in Fig. 3A. Even if there exist two gaps, the magnitudes of two gaps would 
be similar by the fitting. Slight anisotropy in s-wave gap can also lead to the measured spectrum. 
  



note S7. Comparison of normalized differential conductance at normal and superconducting 
states on a Pb-terminated surface. 

 
 

fig. S7. Normalized differential conductance taken on Pb-terminated surface. The orange and blue 
curves in the normal state were obtained on the same sample with the same tip by home-built 3He STM, 
whereas the red curve in superconducting state was obtained by home-built cryogenic UHV SI-STM used 
for QPI measurements. The curves are equally shifted by 2a.u. for clarity. The only difference between 
three spectra is the opening of superconducting gap at EF at T=0.3 K. The conductance is not zero at E=0 
for superconducting spectrum due to the large modulation voltage. The two peaks originated from the 
TSSs at E~0.5eV and E~1.0eV persist when the TSSs become superconducting. (Setpoint V=800mV, 
I=1nA, lock-in modulation=0.5mV for blue STS curve; Setpoint V=1.4V, I=300pA, lock-in 
modulation=10mV for orange STS curve; Setpoint V=200mV, I=5pA, lock-in modulation=10mV for red 
STS curve.). 
 
 
note S8. Upper critical field, lattice parameter of Abrikosov lattice, and normalized zero bias 
conductance of a vortex. 

  

We use Ginzburg-Landau formula 
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for fitting zero bias conductance (ZBC) peak of vortex, where  0 is normalized ZBC away from the vortex 

core, x0 and y0 are the position of vortex core, and  is the coherence length. We obtained = 54.2nm. By 

using Ginzburg-Landau equation, the upper critical field Hc2(T)=0/22(T) (0 is the magnetic flux 

quantum), Hc2(T) for field perpendicular to ab plane is 0.082 T at 0.26 K. The magnetic field dependence 

of the vortex core distance between nearest neighbors is shown in fig. S8A. In fig. S8B, the extrapolation 

of linear fit of normalized ZBC under different field exhibits Hc2 =0.087 T.   



 

 
 

fig. S8. Magnetic field dependence of superconducting vortex lattice and vortex bound states. (A) 
The vortex core distance to the nearest neighbor D at different field B. Black line is the lattice constant for 

theoretical Abrikosov vortex BD 32 0 . (B) 0 at different magnetic field with the linear fitting. 

 
 

  



note S9. Spatial distribution of the superconducting gap on a Pb-terminated surface. 
 

 
 

fig. S9. Homogenous superconducting gap on a Pb-terminated surface. (A) Topography taken at 
0.26K on Pb-terminated surface. (Vs=10mV, Is=60pA) (B-D) The distance dependence of superconducting 
gap at 0.26K. Each figure is containing 280 dI/dV spectra. The white alphabet b, c and d in fig. S9A 
represent the linecut of superconducting gap in fig. S9B-S9D, respectively. The white arrow in fig. S9A 
points out the direction. The red arrow points out the crystal orientation. 

 
 

note S10. Topographic images and parameters of differential conductance maps on a Pb-
terminated surface. 

 
To better resolve the smaller q-vector with increasing energy, it is necessary to scan larger field of view 
(FOV) in real space accordingly, which allows us to zoom in the q-space around q=0 and subsequently 
enhance the q-resolution. Nevertheless, the setpoint of maps needs to be different in a large energy range 
due to the drastic increasing of density of states over 0.5 eV. Below, we draw a table to show the 
parameters, the simultaneous topographic images, FFT and the corresponding high resolution 
topographic images of differential conductance maps. 

 



 
 

fig. S10. Topographic images of differential conductance maps on the Pb-terminated surface. (A-D) 
The simultaneous topography of different maps. (E-H) The FFT of fig. S10A-S10D, respectively. (I-L) The 
high resolution topograhy for scale and share calibration is taken after mapping from the FOV of different 
maps. The red hexagon indicates the full Brillouin zone.  

 
  



 
note S11. Setpoint effect of normalized differential conductance maps on a Pb-terminated surface. 

 
The setpoint effect can distort the true physical quantity. We compared different normalized differential 
conductance maps extracted from Map 1-4 (S10) at the overlapped energy below and found no extra 
different signal. 

 

 
 

fig. S11. Bias independence of LDOS mapping and QPI imaging. (A, B), (E, F), (I, J) The normalized 
differential conductance maps from different setpoint bias Vs at overlapped energy. The scale bar in fig. 
S11 (A, E, I) each represents 10 nm.  The red square in the fig. S11 (A, E, I) represents the same area of fig. 
S11 (B, F, J), respectively. (C, D, G, H, K, L) The FFT of fig. S11 (A, B, E, F, I, J), respectively.The red hexagon 
indicates the full Brillouin zone. All data are raw data with linear color scale. 

 
  



note S12. Raw Fourier transform of normalized differential conductance maps on a Pb-terminated 
surface. 
 

 
 

fig. S12. Raw data FFT of normalized differential conductance maps. The red hexagon indicates the 
full Brillouin zone. The data in Fig. 3 are calibrated by the high resolution topography in fig. S10I-S10L. 
Then the non-period noise at center is suppressed and they are taken exponential to increase contrast. 

 
 

note S13. Differential conductance map at Fermi energy. 
 

 
 

fig. S13. Visualization of QPI at Fermi energy. (A) Differential conductance map in a 44 nm FOV at 
Fermi energy. (B) The FFT of differential conductance map at Fermi energy. The red hexagon indicates 
the full Brillouin zone. All data are raw data with linear color scale. 


