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1.	Supplementary	experimental	procedures	

	

Study	data	sets		

RNA	expression	data	sets		

The	UKBEC	data	set		

 

Brain tissues originated from 134 Caucasian European individuals (with two exceptions, 1 of 

Mexican ancestry and 1 of Chinese ancestry, see further details under Table S1).  Of these, 101 brains 

were obtained from the MRC sudden Death Brain and Tissue Bank, Edinburgh, UK (Millar et al., 2007) 

33 of them originating from the Sun Health Research Institute (SHRI, USA), an affiliate of Sun Health 

Corporation, USA (Beach et al., 2008). None of the individuals had neuropathologically diagnosable 

conditions, or presented with neurological or neuropsychiatric conditions. A detailed description of the 

samples used in the study, tissue processing and dissection is provided in the in Trabzuni et al. (Beach, 

2008; Trabzuni et al., 2013). All the samples had fully informed consent for retrieval and were authorized 

for ethically approved scientific investigation (National Hospital for Neurology and Neurosurgery and 

Institute of Neurology Research Ethics Committee, 10/H0716/3).   

The brain samples were extracted post mortem from up to 10 brain regions per individual. The 

individuals aged from 16 (the youngest) to 102 years. For each individual, the samples were produced 

from up to 10 different anatomical brain regions: Frontal cortex (FCTX) from Brodmann areas 8 and 9, 

Cerebellar cortex (CRBL), Hippocampus (HIPP), Substantia Nigra (SNIG), Putamen (PUTM), Thalamus 

(THAL), Medulla (specifically, the inferior olivary nucleus) (MEDU), Temporal Cortex (TCTX) and the 

Occipital cortex (OCTX) from Brodmann area 17 and from intralobular white matter (WHMT, which was 

separated from the grey matter).  In terms of aging altered genes, we detected genes that were detected as 
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differentially expressed in different brain regions, subsets of brain regions or in a brain-wide fashion and 

aging altered cell specific genes.  

The	NABEC	data	set	

 

To further increase the number of samples and add an external, independent dataset for computational 

validation purposes, we examined a large additional independent dataset of 607 post mortem brain 

samples originating from 305 control individuals (N = 101 females and 204 males) between the ages 16 to 

101 that had no neuropathological diagnosis nor neurological or neuropsychiatric conditions. Sub-

dissected samples from cerebellar and frontal cortex brain regions were frozen before processing 

(Ramasamy et al., 2013a). The dataset included an overall of 607 Illumina HT12 v3 BeadChip microarray 

raw CEL files, which interrogated RNA from 305 post mortem FCTX brain samples, and 302 CRBL 

samples from the same individuals.  

REST	FCTX	data	set	

 

RNA extraction from 39 human cortical samples, as well as microarray hybridization protocols were 

previously described under (Loerch et al., 2008), the minimal age was 24 and the maximal - 106.  The 

microarray platform used is Affymetrix Human Genome U133plus 2.0 Arrays. Postmortem human 

cortical samples were derived from subjects that did not carry a diagnosis of Alzheimer’s disease or 

another neurodegenerative disease, and showed neuropathological findings within the normal range for 

age (Loerch et al., 2008). Overall, we analyzed up to 10 brain regions from 480 individuals aged from 16 

to 106 and over 1800 microarray samples. 

RNA	Isolation	



SUPPLEMENTAL INFORMATION 
 

UK-BEC	 exon	 arrays:	 RNA	 Extraction	 is	 described	 under	 Trabzuni	 et	 al.	 (Trabzuni	 et	 al.,	

2011).	

NABEC	3’	arrays:	the	RNA	isolation	and	array	processing	as	well	as	quality	measurements	

are	reported	in	Ramasamy	et	al.	(e.g	(Ramasamy	et	al.,	2013a),	(Hernandez	et	al.,	2012)).	

High-resolution	immunohistochemical	brain	imaging	dataset	production		

 

To complement out RNA expression findings, we have generated high resolution imaging data for 6 

selected BA9 (FCTX) samples using OLIG2 antibody (to stain oligodendrocytes (OLGs), where the 

DAB+ nuclear product is seen brown) and with Heamotoxylin as a counterstain (the nuclei of other cell 

types are stained in blue).  Briefly, the brain sections were placed into 2 changes of Xylene to remove 

wax – 3 mins each, with varying degrees of alcohol (70%, 99% and absolute alcohol) to rehydrate – 3 

mins each. The samples were then placed in picric acid to remove any artifacts – ca15 minutes. 

Subsequently, the samples were placed under running water to remove all picric residues (ca15 mins). 

Finally, antigen retrieval was performed, 1:200 with Citric Acid retrieval (5% Citric Buffer pH 6.0 heated 

to 125oC for 30 seconds then allowed to cool). 

The remaining process was done via the Leica Novolink Polymer Detection Kit: 

1. Peroxidase Block – 30 mins 

2. Tris Buffered Saline – 5 mins 

3. Protein Block – 15 mins 

4. Tris Buffered Saline – 5 mins 

5. Primary Antibody – 30 mins 

6. Tris Buffered Saline – 5 mins 

7. Post Primary Block – 30 mins 

8. Tris Buffered Saline – 5 mins 
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9. Novolink Polymer – 30 mins  

10. Tris Buffered Saline – 5 mins 

11. DAB secondary (50ul chromogen/1ml substrate buffer) 

12. Counterstained with Heamotoxylin – 30 seconds 

Slides then dehydrated, through to Xylene and mounted.  

The images were acquired on the ‘Zeiss AxioScan Slide Scanner.  

Details and specs of the system can be found here: 

www.zeiss.co.uk/microscopy/en_gb/products/imaging-systems/axio-scan-z1.html 

Magnification of the scans done set to x20 and in the Brightfield setting. 

NeuN slides staining  

In the NeuN staining protocol, antibody used was from Acris  (code AM10122SU-N) in dilution of 

1:200.  NeuN antibody was Acris AM10122SU-N was used at 1:200 dilution with citrate buffer pre-

treatment for antigen retrieval. The retrieval method was Leica Bond ERI solution for 20 minutes (citric 

acid @6pH). All pre-treatments including dewaxing and counterstains (haematoxylin) were carried out on 

the Leica Bond III IHC staining machine. The staining protocol used is Protocol F (factory set one). 

Image	acquisition	of	the	high-resolution		FCTX	OLIG2	stained		images	

 

Post-mortem human brain sections were placed into 2 changes of Xylene to remove wax (3 minutes 

each). Varying degrees of alcohol (70%,99% and absolute) used to rehydrate (3 minutes each), placed in 

Picric Acid to remove any artifacts and were put under running water to remove all picric residue (ca 15 

minutes). Antigen retrieval was performed subsequently, 1:200 with Citric acid for the OLIG2 staining 

(citric acid: 5% Citric Buffer pH 6.0 heated to 125oC for 30 seconds then allowed to cool). The Leica 

Novolink Polymer detection kit was then applied as follows: Peroxidase Block  - 30 minutes, Tris 

buffered Saline – 5 minutes, Protein block – 15 minutes, Tris buffered Saline – 5 minutes, Primary 
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antibody – 30 minutes, Tris Buffered Saline – 5 minutes, Post primary block – 30 minutes, Tris buffered 

Saline – 5 minutes, Novolimk Polymer – 40 minutes, Tris buffered Saline – 5 minutes and DAB 

secondary (50ul chromogen/1ml substrate buffer), Counterstained with Heamotoxylin – 30 seconds and 

slides were then dehydrated, through to Xylene and mounted. The images were acquired on the ‘Zeiss 

AxioScan Slide Scanner. Details and specs of the system can be found here: 

www.zeiss.co.uk/microscopy/en_gb/products/imaging-systems/axio-scan-z1.html. Magnification of the 

scans done set to x20 and in the Brightfield setting.  

NeuN	stained	sections	image	acquisition		

 

Image acquisition from the FCTX NeuN stained sections was done similarly to the OLIG2 stained 

samples, the images were acquired on the ‘Zeiss AxioScan Slide Scanner.  In order to account for the 

large diversity of cell size and shape, in the quantification of neuronal cells based on the NeuN stained 

slides, we increased tile size from the native device tile 1600 x 1200 to a larger tile of 10k x10k pixels. 

This was followed assessing the entropy of each slide, a statistical measurement that captures the 

randomness across grayscale image using the following formula 𝐸 = − 𝑝%𝑙𝑜𝑔(𝑝%) and excluding any 

image below entropy of 5. Then we preform element wise multiplication across the inverse red and blue 

image channel to create the 16bit interaction image that contains both NeuN staining as well as the 

supporting cells all transformed from local minima to local maxima – converting “valleys to hills”. This is 

followed by estimating five multilevel thresholds using Otsu method (Otsu, 1975). And creating a 

segmented binary image using the maximum threshold. Morphological operations are followed to ensure 

segmentation integrity and areas smaller then a lower bound of 500 pixels is enforced. 

This is followed by applying the watershed transform (Meyer, 1994)  to separate joined segments. 

And finished by harvesting additional per cell statistics.  Visual plots are produced per tile to enable 
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visual inspection of the quality of cell detection.  The raw .jpeg images of the NeuN stained slides can be 

seen under FigShare portal (link: https://figshare.com/s/f2675361af1242f3565f). 

ANALYSIS	METHODS	

Microarrays	

To analyze these extensive datasets, we developed dedicated programmed computer programs. 

Specifically, we have implemented a number of functions and scripts for mathematical, computational 

and statistical analyses of the microarrays and RNASeq data, including (1) definition of age groups based 

on histogram bins (16-44 years old, 45-79 years old and 80 – 106 years old), (2) microarray processing 

including identification of gene differentially expressed upon aging in each brain region, (3) comparisons 

between different brain regions, (4) expression correlations, (5) classification (6) enrichment analysis of 

the RNASeq data from specific cell types, (7) cellular specificity of the aging altered genes and (8) data 

visualization. These tailored mathematical and statistical analyses were conducted through tailored 

Matlab (version R2013B) programs that also called functions from Matlab Statistics toolbox. First, we 

divided the UKBEC microarray samples to three age groups (young, middle and old) by a mathematical 

calculation, using histogram bins of all the ages that were included in the dataset. Subsequently, 

significance p-values were computed using ANOVA (and FDR correction, q < 1e-3) based on the gene 

level expression signals of the interrogated genes. Subsequently, partial least squares regression (PLSR) 

linear regression model was further used to rank the aging altered genes based on the age prediction 

accuracy of these genes. We then applied unsupervised clustering and classification methods on the 

expression data, to investigate grouping of the samples of different age groups and brain regions based on 

expression signals of different groups of genes. Those methods included hierarchical classification 

(HCL), which was applied using the Euclidean distance and average linkage method.  We also applied a 

powerful non-linear parametric dimensionality reduction technique called t-Distributed Stochastic 

Neighbor Embedding (t-SNE) (Laurens van der Maaten, 2008 ) to create a 2D visualization of local and 

global data structures based on different groups of genes identified as altered in the aging brains including 
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cell type top markers. The technique is a variation of the Stochastic Neighbor Embedding method (termed 

SNE, Hinton and Roweis, 2002), with the aim to preserve as much of the significant structure of the high 

dimensional data as possible in a low dimensional map. SNE minimizes the sum of Kullback-Leiber 

divergences over all data points using a gradient descent method. The variance of the Gaussian noise is 

reduced through iterative process. We applied support vector machine (SVM) to classify the samples to 

age groups based on the expression patterns of the genes commonly altered in all the brain regions upon 

aging. Functional enrichment analysis to detect enriched functional groups of genes was conducted 

through the DAVID (Dennis et al., 2003) resource EASE (Hosack et al., 2003) program on the lists of 

genes found as altered in different brain regions upon aging, as well as to functionally analyze cell 

specific aging genes. To measure relationships among the annotation terms based on the degrees of their 

co-association genes the similar, redundant, and heterogeneous annotation contents from the same or 

different resources were grouped into annotation groups. A modified Fisher Exact P-value calculated for 

gene-enrichment analysis.  P < 0.05 considered as significant. The number of differentially expressed 

genes per term was compared against the human genome background.  

Cell	type	specific	genes:	definition	and	classification	analyses	
 

Cell-type specific genes were defined by analysis of RNASeq data from mouse brain 

(http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) through calculation of enrichment score 

based on the normalized RNASeq read counts from the mice cortex RNA libraries. We calculated the 

enrichment p-value for the 7 cell types (which included neurons and glial types), per each separately. The 

full list of markers is given under Table S5. We further used the defined lists of genes expression profiles 

to find age predictive genes (Table S6). Additional cell specific lists were based on a previous microarray 

data on four cell types (Cahoy et al., 2008). Additionally, we used  expression data from 24 central 

nervous system cell types  interrogated by microarrays was to classify the brain samples 
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(http://web.stanford.edu/group/barres_lab/brainseqMariko/brainseq2.html), Table S7. Further details are 

under supporting material.  

3.	 High	 resolution	 scanned	 immunohistochemical	 stained	 images	

computational	quantification				

OLIG2	stained	brain	sections	image	analysis		
 

To analyze slides produced by high throughput imaging on brain sections from selected old and 

young individuals (N=3 of each age group), a tailored systematic computational pipeline was developed 

using Matlab (R2015a). The pipeline preforms a cell counting procedure for each independent tile, 

followed by statistical permutation assessment.  The quantification module includes the following steps: 

1. For slide in each sample (typically composed of several thousands of individual multi-channel images 

here called slides): For each slide, entropy (i.e. 𝐻 = − 𝑝, log0 𝑝,1
%23 )  was calculated and the 

exclusion criteria of H=5 was used to discard slides without useful information. 2) Morphological top-hat 

and bottom-hat filtering using a disk kernel was performed to account to local noise.  3) A pyramidal 

Gaussian mixture model (k=4) was performed on the slide to label each pixel and using a majority vote 

across pyramidal levels a binary image was produced. 4) Morphological procedures were used to discard 

border elements as well as hole filling, and lower and upper area thresholds. 5) Watershed algorithm was 

performed to separate overlapping cells. 6) Each estimated cell was classified using an expertly trained 

classification model (see below) to further eliminate non-cell objects.  

Cell	quantification	and	classification	model	

 

For analysis of OLG, the tiles of each OLIG2 stained image were extracted. Images with low entropy 

were discarded (<5) and the information based filtering was followed by background and noise filtering. 
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Then the lower threshold was uncovered using empirical Pareto distribution modelling, and thresholding 

of the three color channels using this measurement to create a binarized segmentation of the image. This 

was followed by circle detection using circular Hough transform. Lastly, each circle was assigned a class 

using a previously trained random forest model based on manual expert classification of 2000 events (i.e 

stained cells) containing both brown- and blue- stained noise ones. For each slide, the output included a 

summary of the number of cells counted as true in it, per each of four density groups representing four 

different cell densities. The difference between age groups was calculated using permutation tests on the 

average number of cells per each density class. For training of the machine-learning algorithm, about 

2800 individual cells were manually labeled as ‘blue’, ‘brown’ (the OLG stained cells through the DAB+ 

nuclear product), or ‘other’ (which represents technical artifacts/noise).  This data was used to train a 

Random Forest learning algorithm and to generate a classification model.  

For analysis of neurons, we accounted for the large diversity of cell size and shapes by increasing the 

tile size from the native device tile. We assessed the entropy of each slide, and assessed statistically the 

entropy of each slide for filtering purposes, preformed element wise multiplication across the inverse red 

and blue image channel, estimated five multilevel thresholds and application of watershed transform. 

Area statistics per slide is aggregated into one large database, and data is binned into four size groups. For 

each bin, 100 random iterations over 1000 permutation analysis are performed to assess the empirical p-

value over the null T-distribution. In order to account for the large diversity of cell size and shape, in the 

quantification of neuronal cells based on the NeuN stained slides, we increased tile size from the native 

device tile. Briefly, assessed the entropy of each slide, and assessed statistically the entropy of each slide 

for filtering purposes, preformed element wise multiplication across the inverse red and blue image 

channel, estimated five multilevel thresholds and application of watershed transform. Further details 

about the computational methods for quantification of neurons are given under the supporting methods. 

Permutation	test	on	the	OLIG2	stained	slides		
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Each image is constructed from thousands of tiled images each approximately 0.6mm wide and 

0.46mm tall. For each tile, the number of cells was extracted. Statistical significance was calculated on 

groups for both types of stained cells on overall 10,922 aging and 8,766 young stained tiles. To account 

for the large imbalance in the total number of slides we randomly selected an equal number of 100 tiles 

per sample, and repeated this process across 100 iterations and 1000 random shuffling permutations. To 

further examine the effects of the two different cellular populations in BA9 (likely corresponding to gray 

matter cortical areas vs. the least dense, WHMT) we classified the different tiles based on the total cell 

density (regardless of sample) to four different groups based on density (low, low-med, med-high and 

high which generally may be attributed to white matter vs. grey matter areas). The significance p-value 

was calculated using normal distribution cumulative distribution function (CDF) per permutation using 

the following formula 𝑇5 =
678	6
:;<(6)

 where 𝑇= corresponds to the true labels. 

Overall 6 BA9 (FCTX) samples sections stained with OLIG2 were analyzed (3 young and 3 old 

samples). In total, 49,822 stained FCTX (BA9) image tiles were captured for all samples (number of 

image tiles in the old brains = 24,061, and in young ones = 25,761). Overall 20,190 tiles survived signal 

to noise ratio (SNR) exclusion criteria (old = 8,992, young = 11,198).  Generally, the cell detection and 

quantification pipeline included the following steps: SNR exclusion criteria, image enhancement, 

followed by object detection of all the cells in each slide This process was performed using a non-linear 

machine-learning model that was created using a large dictionary of positive and negative examples 

annotated manually by experts (general computational flow under Figure 5B). For each slide, the number 

of cells as well as morphological features per cell (including area, perimeter and roundness) was 

extracted. Overall, 393,625 cells (old = 172,868, young = 220,757) were quantified. Of these, 183,898 

were brown (OLG precursor) cells (old = 76,926, young =106,972) and 209,727 were blue (old = 95,942, 

young =113,785).  In the high-density slides we randomly selected 50 slides from each sample and run a 
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similar permutation test to the one above (old = 1828, young = 2612). FDR correction over the p-values 

was performed to account to the multiple iterations.  The tiles were classified to 4 different density groups 

(low, low-med, low-high and high) using k-means. Further details are under supporting methods.  

Permutation	tests	on	the	NeuN	stained	slides	

 

Per-slide Area statistics are aggregated into one large database, and data is binned into four size 

groups. For each bin 100 random iterations over 1000 permutation analysis are performed to assess the 

empirical p over the null t distribution. 

4.	Cell	type	marker	genes	and	age-association	statistical	analysis		

 

The cell type gene markers for seven cell types were defined based on statistical analysis of available 

RNA-Sequencing data produced by the Barres lab 

(http://web.stanford.edu/group/barres_lab/brain_rnaseq.html), Table S3.  For each group of cell type 

markers, an age predictive model was generated. Briefly, the UKBEC cohort samples were partitioned 

into training (60%), testing (20%) and validation (20%) sets, and gender, brain bank source and cause of 

death were incorporated as covariates. Following variable elimination using Competitive adaptive 

reweighted sampling (CARS), the model was assessed and stepwise fit was calculated. 

5.	Supplementary	Tables	list	and	legends			

Supplementary	Table	1|	UKBEC	cohort	samples	details,	related	to	Figure	1	
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The details for the UKBEC samples and microarray sample numbers are given for each of the 1,231 

analyzed brain samples. The details include: brain bank, individual ID, central nervous system (CNS) 

region, RNA Integrity number (RIN), chronological age, Post Mortem Interval (PMI) - in hours, brain 

tissue pH, cause of death code, gender and ethnicity. Reference in the main paper text: page 5, line 8.  

Supplementary	 Table	 2|	 Functional	 enrichment	 of	 brain	 aging	 altered	 genes,	

related	to	Figure	2	

 

Results of functional enrichment analysis based on the genes that were detected as altered in each of 

the analyzed 10 brain regions upon aging, and of the genes commonly altered in 8-10 brain regions upon 

aging. For each brain region, the top 200 genes were functionally analyzed. The functional analysis was 

conducted using the DAVID resource EASE tool (Hosack et al., 2003), and with Gene Analytics LifeMap 

tool (Edgar et al., 2013).  The functional analysis was conducted for each brain region, on the top 200 

aging altered genes (scores were calculated using a PLSR model) for each of the 10 brain regions. 

Reference in the main paper text: page 14, line 22.  

 

	Supplementary	Table	3|	Cell	type	marker	genes	altered	in	the	aging	brain,	related	

to	Figure	4	

 

Genes found as top enriched brain cell markers based on t-test of average RPKM values of RNASeq 

mouse transcriptome data of glia, neurons and vascular cells of rats cerebral cortex for 7 cell types: 

endothelial cells, neurons, oligodendrocyte (OLG) precursors, newly formed OLGs, myelinating OLGs, 

microglia and astrocytes (Zhang et al., 2014a), that were also found as altered in the human brain upon 

aging.  Specific cell type marker genes that were also altered in the brain upon aging, including cell type 
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specific enrichment score and p value. The specific cell type marker genes were identified by statistical 

analysis of the RNASeq data produced by the Barres laboratory from seven rat brain cell types. The 

Barres lab RNA brain RNASeq data resource can be found under: 

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html). Normalized RNASeq counts were analysed 

(Zhang et al., 2014b)).  

To complement our cell specific findings, we also analyzed the recent Barres brain RNASeq 

transcriptome dataset (published in Neuron, 2016, This data was produced from human fetal brains, and 

includes neurons, microglia, astrocytes and endothelial cells, and from several brain regions (temporal 

cortex, white matter, parietal cortex, and hippocampus). We used the normalized FPKM data for our 

analyses. This recent cell specific data is available under: 

web.stanford.edu/group/barres_lab/brainseqMariko/brainseq2.html.  

Additionally, we used the microarray data of 24 Central Nervous System (CNS) populations, of the 

resource that was published by Doyle et al. (Doyle et al., 2008)to define additional lists of cell type 

specific genes and investigate their expression patterns upon aging using our dataset. Reference in the 

main paper text: page 8, line 15.  

Supplementary	 Table	 4|	 Cross	 regional	 human	 aging	 altered	 genes,	 related	 to	

Figure	3	

This table legend is given directly following the table, which is in this file. Reference to the table in 

the main paper text: page 13, line 21.  

Supplementary	Table	5|	Age	associated	cell	specific	genes,	related	to	Figures	4	and	

7		
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Cell type specific markers that were found by statistical enrichment analysis of RNASeq data from rat 

brains (reference: Zhang, Y., et al., An RNA-sequencing transcriptome and splicing database of glia, 

neurons, and vascular cells of the cerebral cortex. J Neurosci, 2014. 34(36): p. 11929-47) (Zhang et al., 

2014b), for each of the 7 analyzed cell type populations. For each gene, given are the gene symbol, 

intercept estimate, standard error, T statistic and p-value.  Reference in the main paper text: page 20, line 

17.  

Supplementary	Table	6|	Age	associated	cell	specific	genes,	Related	to	Figure	4	

 

Cell type specific markers that were found as age predictive by a linear model, for each of the 7 

analyzed cell type populations. For each gene, given are the gene symbol, intercept estimate, standard 

error, T statistic and p value.  Reference in the main paper text: page 20, line 17.  

Supplementary	Table	7|	Aging	altered	genes	 that	were	also	 found	as	methylated	

upon	aging	(based	on	comparison	to	other	datasets),	Related	to	Figures	4	and	S7			

 

Upon comparison to the aging methylation/expression study data (reference: (Horvath, 2013)), a large 

number of the reported aging methylated brain genes were also found in our study as differentially 

expressed upon aging. Additionally, genes that we detected as altered upon aging that were also found as 

top neuronal cell type markers (based on Doyle et al 24 cell type microarray study (reference: Application 

of a translational profiling approach for the comparative analysis of CNS cell types, Doyle J. P. et al., Cell 

2008) are given as well. Reference in the main paper text: page 23, line 16.  

 

6. EXPRESSION DATASETS ACCESSION CODES  
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UKBEC Gene Expression Omnibus (GEO): GSE36192  

NABEC - see under (Ramasamy et al., 2013b) and GEO accession number: GSE36192. 
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Figure S1. Related to Figures 2 and 3. 



Figure S1 

Related to Figures 2 and 3.  

A) The number of altered genes per brain region in the main dataset of UKBEC (FDR<1e-3) B) A 

correlation between all the analyzed 1,231 UKBEC samples based on gene expression signals of 

genes that were altered upon aging in the white matter (WHMT). C) A heatmap showing the number 

(left) and percent (right) of brain aging altered genes that were commonly altered in two brain regions 

of the 10 studied concurrently.  
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Figure S2 

Related to Figure 3.  

Classification by a multi-dimensional reduction classification algorithm of the UKBEC samples 

based on the expression patterns of genes altered in a single brain region, commonly altered in 2-7 

brain regions and in 8-10 regions upon aging (B). The samples are much less separated by region 

based on expression of the multi-regional altered genes (commonly altered in 2-8 regions). In each 

sub section, the right panel presents the samples colored by age group (young, middle, old).  
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Figure S3 

Related to Figure 2.  

Support vector classification (SVM) of the independent NABEC dataset based on the expression 

patterns of a small subset of genes commonly altered in all the analyzed UKBEC brain regions (A). 

(B) The UKBEC samples are not classified by gender based on the RNA expression profiles of the 

small subset of aging altered common genes. (C) The second independent dataset (REST dataset) 

samples are largely classified by age group based on the expression profiles of the small subset of 

shared genes.  
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Figure S4 

Related to Figures 3 and 7.  

The pan-regional aging altered genes were enriched in 7 cell type (RNASeq data (from 

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html). The hierarchical classification Euclidian 

distance dendograms are shown as well. Color scale: z-score of count data. B) The single-regional 

aging genes were more enriched in neuronal specific genes, while multi regional aging genes were 

more enriched in OLG precursor and microglia specific genes (left). Overall, multi-regional genes 

were more enriched in cell specific markers as compared with both multi- and single- regional genes 

(right). C) Endothelial (D) OLG precursor and E) Newly formed OLGs specific genes are associated 

with age. OLG: oligodendrocytes.  
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Figure S5. Related to Figure 4.



Figure S5 

Related to Figure 4.  

A) (i) A heatmap of expression of the top 50 MG specific aging altered genes show mainly up 

regulation ii) The top 50 neuronal specific markers showed a global down regulation, both similarly to 

the top 100 specific markers (iii) AC specific aging altered genes showed specific down regulation in 

the SNIG and PUTM iv) The top 50 OLG specific markers showed a mixed pattern of change in 

aging. In all the panels of A, the left plots show average expression in samples < 60 years old, and the 

middle plots of > 80 years old. The right panel plots show the fold change ratio (log2) between them 

(old vs. young). B) (i) A heatmap based on expression signals of top 100 OLG precursor specific 

aging altered genes (on the z score of the expression values) ii) Classification of the UKBEC samples 

based on the expression profiles of the top OLG precursor specific aging altered genes, the samples 

are colored by either brain region (ii) or age group (iii). C) (i) A heatmap based on expression signals 

of the top 100 Endothelial specific aging altered genes (ii)  A classification of the samples based on 

the expression profiles of top 10 OLG precursor specific aging altered genes, the samples are colored 

by either region or age group as in A. D) (i) A heatmap of z-score normalized expression signals of 

the top 100 newly formed OLG specific aging altered genes. ii) Classification based on the top 100 

newly formed OLG specific genes, colored by Region (i) and Age (ii). OLG: as in Figure S3 legend.  
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Figure S6 

Related to Figure 4.  

A) A network based on Gene Ontology (GO) functional enrichment analysis for the WHMT 

aging altered genes (the analysis was conducted with the Cytoscape plug-in ClueGO (Bindea et al., 

2009)). The nodes (functional terms) are colored by functional group. The network is presented in a 

circular format. B) (i) Classification of all the samples based on the expression of aging altered genes 

annotated to the GO category protein transport, the samples are painted by regional identity and (ii) 

by age group.  (iii) A heatmap of protein category aging altered genes show mainly down regulation 

upon aging.  
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Figure S7  

Related to Figure 4 and Figure 7  

Classification plots of the UKBEC brain samples based on the expression signals of the neuronal 

populations specific genes characterized by a previous microarray study on 24 populations (Doyle et 

al., 2008). Given are examples for 6 different types of neurons. The regional classification showed 

distinction between the different anatomical regions similarly to one another (and to the plots of 

neuronal gene markers that were based on our lists that were defined by analysis of publically 

available rat brain RNASeq data, from http://web.stanford.edu/group/barres_lab/brain_rnaseq.html). 

Age-group separation was seen in some of the regions (in particular, the PUTM and WHMT as well 

as CRBL for motor neurons). The classification plots show classification of the samples based on the 

following aging altered neuronal markers: motor neurons specific genes, cortical CorticoStatin 

neurons, forebrain cholinergic neurons, corticostriatal neurons, corticoThalamic neurons and 

corticoSpinal neurons specific genes (A-F). CRBL: cerebellum, PUTM: putamen, WHMT: white 

matter.  

 



Table	S4.	Cross-regional	aging	altered	genes	(commonly	altered	in	10	human	brain	regions)	

Soreq L. et al., Major shifts in glial regional identity are a transcriptional hallmark of 
human brain aging 

Related	to	Figure	3.		

#	 Gene	
Symbol	

Gene	Full	
Name	

Cellular	
component/	
cell	specificity		

Literature	
evidence	for	
aging	
involvement*?		

Literature	
evidence	for	
neuro/	
psychiatric	
disease	
involvement?		

1	 TXNIP	 Thioredoxin	
interacting	
protein	
	

Cytoplasm		 Yes		
(PMID	-	
23958415,	
22661500)	
	

Yes		(AD)	
-		22482078	
	

2	 CP	 Ceruloplasmi
n	
(ferroxidase)	
	

Astrocytes		 Yes	(18977241,	
and	1761530	–	
cognitive	aging)		

Yes	(PD	-	
16150804,	
MS	-	
23868451)	

3	 HIST1H4C	 Histone	
cluster	1,	H4c	
	

Nucleous	 Yes	(susceptible,		
(20800603)	

	

4	 MPZL2	
(EVA)	

Myelin	
protein	zero-
like	2	
	

Membrane,	
cytoskeleton		

	 	

5	 VWF	 Von	
Willebrand	
factor	
	

Endoplasmatic	
reticulum,	
extracellular	
matrix		

	 Yes	
(22120183)		

6	 CD163	 Macrophage-
Associated	
Antigen	
	

Cell	
membrane/	
Monocytes	
and	
Macrophages		

	 Yes	(MS,	
21737148)		
	

7	 SGPP1	 Sphingosine-
1-phosphate	
phosphatase	
1	
	

Endoplasmic	
reticulum	
membrane	
		

	 Yes	
(Schizophreni
a,	18683247)	



8	 FLJ35776	
(DLGAP1-
AS1)	

DLGAP1	
antisense	
RNA	1	
	

Uncharacterize
d	*	LncRNA		

	 	

9	 VSIG4	 V-set	and	
immunoglobu
lin	domain	
containing	4	
	

Macrophages		 	 	

	

	

	

	

	



Supplementary	 Table	4|	Cross	 regional	 human	aging	altered	genes,	 related	 to	

Figure	3	

This supplemental table is included within this supporting information file. The cross-regional 

aging altered genes that were found as significantly altered in all the analyzed 10 brain regions upon 

aging. The table includes the full gene names, literature evidence for involvement in aging (if any) and 

cellular specificity. Reference in the main paper text: page 13, line 21.  
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